2025-12-02 17:06:00 +01:00

72 lines
2.0 KiB
C

#include <string.h>
#include "stack.h"
#include "bintree.h"
// TODO: binären Suchbaum implementieren
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
* `treeSize`: zählt die Knoten im Baum (rekursiv),
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
{
TreeNode newNode = {data, NULL, NULL};
if(root == NULL)
{
return &newNode;
}
if (data < root->data)
{
root->left = addToTree(root->left, data, dataSize,compareFct, isDuplicate);
}
else if(data > root->data)
{
root->right = addToTree(root->right, data, dataSize,compareFct, isDuplicate);
}
return root;
}
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
// Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element,
// push the top node and push all its left nodes.
void *nextTreeData(TreeNode *root)
{
}
// Releases all memory resources (including data copies).
void clearTree(TreeNode *root)
{
if (root == NULL)
{
return;
}
if (root->left != NULL)
{
clearTree(root->left);
free(root->left);
root->left = NULL;
}
if (root->right != NULL)
{
clearTree(root->right);
free(root->right);
root->right = NULL;
}
root = NULL;
}
// Returns the number of entries in the tree given by root.
unsigned int treeSize(const TreeNode *root)
{
return root == NULL ? 0 : treeSize(root->left) + treeSize(root->right) + 1;
}