This commit is contained in:
Simon 2025-11-14 13:01:03 +01:00
parent ff21ecab21
commit 44f0bfc16d
3 changed files with 40 additions and 4 deletions

View File

@ -6,13 +6,13 @@
Matrix createMatrix(unsigned int rows, unsigned int cols)
{
Matrix m = {0, 0, NULL};
Matrix m = {NULL, 0, 0};
if (rows > 0 && cols > 0)
{
m.buffer = malloc(rows * cols * sizeof(int));
m.rows = rows;
m.cols = cols;
m.buffer = malloc(rows * cols * sizeof(int));
}
return m;

View File

@ -9,9 +9,9 @@ typedef float MatrixType;
typedef struct
{
MatrixType *buffer; // Zeiger auf die Matrixdaten
unsigned int rows; // Anzahl der Zeilen
unsigned int cols; // Anzahl der Spalten
MatrixType *buffer; // Zeiger auf die Matrixdaten
} Matrix;

View File

@ -8,7 +8,43 @@
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{
// TODO
FILE *file = fopen(path, "wb");
if (file == NULL) {
perror("Fehler beim Erstellen der Testdatei");
exit(EXIT_FAILURE);
}
// Dateikopf speichern
const char *fileTag = "info2_neural_network_file_format";
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
// Dimensionen der Eingabe und Ausgabe für den ersten Layer speichern
unsigned int inputDimension = nn.layers[0].weights.rows; // Eingabedimension ist die Anzahl der Eingabeneuronen im ersten Layer
unsigned int outputDimension = nn.layers[0].weights.cols; // Ausgabedimension ist die Anzahl der Ausgabeneuronen im ersten Layer
fwrite(&inputDimension, sizeof(unsigned int), 1, file);
fwrite(&outputDimension, sizeof(unsigned int), 1, file);
// Alle Layer speichern
for (unsigned int i = 0; i < nn.numberOfLayers; i++) {
// Layer-Dimensionen speichern
inputDimension = nn.layers[i].weights.rows;
outputDimension = nn.layers[i].weights.cols;
fwrite(&inputDimension, sizeof(unsigned int), 1, file);
fwrite(&outputDimension, sizeof(unsigned int), 1, file);
// Gewichte speichern
fwrite(&nn.layers[i].weights.rows, sizeof(unsigned int), 1, file);
fwrite(&nn.layers[i].weights.cols, sizeof(unsigned int), 1, file);
fwrite(nn.layers[i].weights.buffer, sizeof(MatrixType), nn.layers[i].weights.rows * nn.layers[i].weights.cols, file);
// Biases speichern
fwrite(&nn.layers[i].biases.rows, sizeof(unsigned int), 1, file);
fwrite(&nn.layers[i].biases.cols, sizeof(unsigned int), 1, file);
fwrite(nn.layers[i].biases.buffer, sizeof(MatrixType), nn.layers[i].biases.rows * nn.layers[i].biases.cols, file);
}
fclose(file);
}
void test_loadModelReturnsCorrectNumberOfLayers(void)