From 7837be1c3e5d8749f06a6feb49541ec169f5e899 Mon Sep 17 00:00:00 2001 From: hallerni98888 Date: Fri, 14 Nov 2025 17:25:07 +0100 Subject: [PATCH] done? --- neuralNetworkTests.c | 73 ++++++++++++++++++++++++++++---------------- 1 file changed, 46 insertions(+), 27 deletions(-) diff --git a/neuralNetworkTests.c b/neuralNetworkTests.c index cbe0737..8de0a7c 100644 --- a/neuralNetworkTests.c +++ b/neuralNetworkTests.c @@ -9,41 +9,60 @@ static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) { FILE *file = fopen(path, "wb"); - if (file == NULL) { + if (!file) { perror("Fehler beim Erstellen der Testdatei"); exit(EXIT_FAILURE); } - // Dateikopf speichern - const char *fileTag = "info2_neural_network_file_format"; - fwrite(fileTag, sizeof(char), strlen(fileTag), file); + // File header + const char *fileTag = "__info2_neural_network_file_format__"; + fwrite(fileTag, strlen(fileTag), 1, file); - // Dimensionen der Eingabe und Ausgabe für den ersten Layer speichern - unsigned int inputDimension = nn.layers[0].weights.rows; // Eingabedimension ist die Anzahl der Eingabeneuronen im ersten Layer - unsigned int outputDimension = nn.layers[0].weights.cols; // Ausgabedimension ist die Anzahl der Ausgabeneuronen im ersten Layer - fwrite(&inputDimension, sizeof(unsigned int), 1, file); - fwrite(&outputDimension, sizeof(unsigned int), 1, file); - // Alle Layer speichern - for (unsigned int i = 0; i < nn.numberOfLayers; i++) { - // Layer-Dimensionen speichern - inputDimension = nn.layers[i].weights.rows; - outputDimension = nn.layers[i].weights.cols; - - fwrite(&inputDimension, sizeof(unsigned int), 1, file); - fwrite(&outputDimension, sizeof(unsigned int), 1, file); - - // Gewichte speichern - fwrite(&nn.layers[i].weights.rows, sizeof(unsigned int), 1, file); - fwrite(&nn.layers[i].weights.cols, sizeof(unsigned int), 1, file); - fwrite(nn.layers[i].weights.buffer, sizeof(MatrixType), nn.layers[i].weights.rows * nn.layers[i].weights.cols, file); - - // Biases speichern - fwrite(&nn.layers[i].biases.rows, sizeof(unsigned int), 1, file); - fwrite(&nn.layers[i].biases.cols, sizeof(unsigned int), 1, file); - fwrite(nn.layers[i].biases.buffer, sizeof(MatrixType), nn.layers[i].biases.rows * nn.layers[i].biases.cols, file); + if (nn.numberOfLayers == 0) + { + unsigned int zero = 0; + fwrite(&zero, sizeof(unsigned int), 1, file); + fclose(file); + return; } + // first layer dimension + unsigned int in = nn.layers[0].weights.cols; + unsigned int out = nn.layers[0].weights.rows; + + fwrite(&in, sizeof(unsigned int), 1, file); + fwrite(&out, sizeof(unsigned int), 1, file); + + // do all layers + for (unsigned int i = 0; i < nn.numberOfLayers; i++) + { + const Layer *L = &nn.layers[i]; + + // Write weights matrix + fwrite(L->weights.buffer, + sizeof(MatrixType), + L->weights.rows * L->weights.cols, + file); + + // Write biases matrix + fwrite(L->biases.buffer, + sizeof(MatrixType), + L->biases.rows * L->biases.cols, + file); + + // After layer i, write dimension of next layer + if (i + 1 < nn.numberOfLayers) + { + unsigned int nextOut = nn.layers[i+1].weights.rows; + fwrite(&nextOut, sizeof(unsigned int), 1, file); + } + } + + // --- 5. Write terminating zero --- + unsigned int zero = 0; + fwrite(&zero, sizeof(unsigned int), 1, file); + fclose(file); }