#include #include #include "matrix.h" // TODO Matrix-Funktionen implementieren Matrix createMatrix(unsigned int rows, unsigned int cols) { Matrix m = {0, 0, NULL}; if (rows > 0 && cols > 0) { m.rows = rows; m.cols = cols; m.buffer = malloc(rows * cols * sizeof(int)); } return m; } void clearMatrix(Matrix *matrix) { if (matrix == NULL) { return; } // Speicher freigeben, falls vorhanden free(matrix->buffer); matrix->buffer = NULL; // Metadaten zurücksetzen matrix->rows = 0; matrix->cols = 0; } void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx) { matrix.buffer[rowIdx * matrix.cols + colIdx] = value; // setzte Matrix auf den Wert value am Punkt (row col) } MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx) { MatrixType value = 0; return value = matrix.buffer[rowIdx * matrix.cols + colIdx]; // hole Wert value am Punkt (row col) } Matrix add(const Matrix matrix1, const Matrix matrix2) { Matrix result = {0}; if (matrix1.rows != matrix2.rows || matrix1.cols != matrix2.cols) { return result; } result.rows = matrix1.rows; result.cols = matrix1.cols; result.buffer = malloc(result.rows * result.cols * sizeof(MatrixType)); // wenn buffer nicht allokiert werden kann dann zurücksetzen und abbrechen if (result.buffer == NULL) { result.rows = result.cols = 0; return result; } // Matritzenaddition for (unsigned int i = 0; i < result.rows; i++) { for (unsigned int j = 0; j < result.cols; j++) { result.buffer[i * result.cols + j] = matrix1.buffer[i * matrix1.cols + j] + matrix2.buffer[i * matrix2.cols + j]; } } return result; } Matrix multiply(const Matrix matrix1, const Matrix matrix2) { Matrix result = {0}; if (matrix1.rows != matrix2.rows || matrix1.cols != matrix2.cols) { return result; } result.rows = matrix1.rows; result.cols = matrix1.cols; result.buffer = malloc(result.rows * result.cols * sizeof(MatrixType)); // wenn buffer nicht allokiert werden kann dann zurücksetzen und abbrechen if (result.buffer == NULL) { result.rows = result.cols = 0; return result; } // Matritzenmultiplikation for (unsigned int i = 0; i < result.rows; i++) { for (unsigned int j = 0; j < result.cols; j++) { MatrixType sum = 0; for (unsigned int k = 0; k < matrix1.cols; k++) { sum += matrix1.buffer[i * matrix1.cols + k] * matrix2.buffer[k * matrix2.cols + j]; } result.buffer[i * result.cols + j] = sum; } } return result; }