forked from freudenreichan/info2Praktikum-NeuronalesNetz
157 lines
3.8 KiB
C
157 lines
3.8 KiB
C
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "matrix.h"
|
|
|
|
// TODO Matrix-Funktionen implementieren
|
|
|
|
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
|
{
|
|
Matrix m = {0, 0, NULL};
|
|
|
|
if (rows > 0 && cols > 0)
|
|
{
|
|
m.rows = rows;
|
|
m.cols = cols;
|
|
m.buffer = malloc(rows * cols * sizeof(int));
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
void clearMatrix(Matrix *matrix)
|
|
{
|
|
|
|
if (matrix == NULL)
|
|
{
|
|
return;
|
|
}
|
|
|
|
// Speicher freigeben, falls vorhanden
|
|
free(matrix->buffer);
|
|
matrix->buffer = NULL;
|
|
|
|
// Metadaten zurücksetzen
|
|
matrix->rows = 0;
|
|
matrix->cols = 0;
|
|
}
|
|
|
|
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
|
{
|
|
matrix.buffer[rowIdx * matrix.cols + colIdx] = value; // setzte Matrix auf den Wert value am Punkt (row col)
|
|
}
|
|
|
|
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
|
{
|
|
MatrixType value = 0;
|
|
|
|
if (rowIdx < matrix.rows && colIdx < matrix.cols)
|
|
{
|
|
value = matrix.buffer[rowIdx * matrix.cols + colIdx]; // hole Wert value am Punkt (row col)
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
Matrix add(const Matrix matrix1, const Matrix matrix2)
|
|
{
|
|
Matrix result = {0};
|
|
|
|
if (matrix1.rows != matrix2.rows || matrix1.cols != matrix2.cols)
|
|
{
|
|
return result;
|
|
}
|
|
|
|
result.rows = matrix1.rows;
|
|
result.cols = matrix1.cols;
|
|
result.buffer = malloc(result.rows * result.cols * sizeof(MatrixType));
|
|
|
|
// wenn buffer nicht allokiert werden kann dann zurücksetzen und abbrechen
|
|
if (result.buffer == NULL)
|
|
{
|
|
result.rows = result.cols = 0;
|
|
|
|
return result;
|
|
}
|
|
|
|
if (matrix1.cols == 1 && matrix1.rows == matrix2.rows) // Broadcasting
|
|
{
|
|
|
|
for (unsigned int i = 0; i < matrix1.rows; i++)
|
|
{
|
|
for (unsigned int j = 0; j < result.cols; j++)
|
|
{
|
|
result.buffer[i * result.cols + j] = matrix1.buffer[i] + matrix2.buffer[i * matrix2.cols + j];
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
else if (matrix2.cols == 1 && matrix1.rows == matrix2.rows)
|
|
{
|
|
for (unsigned int i = 0; i < matrix2.rows; i++)
|
|
{
|
|
for (unsigned int j = 0; j < result.cols; j++)
|
|
{
|
|
result.buffer[i * result.cols + j] = matrix1.buffer[i * matrix1.cols + j] + matrix2.buffer[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
else
|
|
{
|
|
// Elementweise Addition
|
|
for (unsigned int i = 0; i < result.rows; i++)
|
|
{
|
|
for (unsigned int j = 0; j < result.cols; j++)
|
|
{
|
|
result.buffer[i * result.cols + j] = matrix1.buffer[i * matrix1.cols + j] + matrix2.buffer[i * matrix2.cols + j];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
return result;
|
|
}
|
|
|
|
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
|
{
|
|
Matrix result = {0};
|
|
|
|
if (matrix1.cols != matrix2.rows)
|
|
{
|
|
return result;
|
|
}
|
|
|
|
result.rows = matrix1.rows;
|
|
result.cols = matrix2.cols;
|
|
result.buffer = malloc(result.rows * result.cols * sizeof(MatrixType));
|
|
|
|
// wenn buffer nicht allokiert werden kann dann zurücksetzen und abbrechen
|
|
if (result.buffer == NULL)
|
|
{
|
|
result.rows = result.cols = 0;
|
|
|
|
return result;
|
|
}
|
|
|
|
// Matritzenmultiplikation
|
|
|
|
for (int r = 0; r < result.rows; r++) // Zeile in Ergebnis
|
|
{
|
|
for (int m = 0; m < result.cols; m++) // Spalte in Ergebnis
|
|
{
|
|
MatrixType sum = 0;
|
|
|
|
for (int n = 0; n < matrix1.cols; n++)
|
|
{
|
|
sum += matrix1.buffer[r * matrix1.cols + n] *
|
|
matrix2.buffer[n * matrix2.cols + m];
|
|
}
|
|
|
|
result.buffer[r * result.cols + m] = sum;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
} |