generated from freudenreichan/info2Praktikum-DobleSpiel
128 lines
3.4 KiB
C
128 lines
3.4 KiB
C
#include <string.h>
|
|
#include "stack.h"
|
|
#include "bintree.h"
|
|
|
|
// TODO: binären Suchbaum implementieren
|
|
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
|
|
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
|
|
* `treeSize`: zählt die Knoten im Baum (rekursiv),
|
|
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
|
|
|
|
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
|
|
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
|
|
/*
|
|
memcpy
|
|
dest - pointer to the memory location to copy to
|
|
src - pointer to the memory location to copy from
|
|
count - number of bytes to copy
|
|
*/
|
|
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
|
|
{
|
|
if (root == NULL)
|
|
{
|
|
TreeNode *newtreenode = malloc(sizeof(TreeNode));
|
|
if (newtreenode != NULL)
|
|
{
|
|
|
|
newtreenode->data = malloc(dataSize);
|
|
if (newtreenode->data == NULL)
|
|
{
|
|
free(newtreenode);
|
|
return NULL;
|
|
}
|
|
|
|
memcpy(newtreenode->data, data, dataSize);
|
|
|
|
newtreenode->left = NULL;
|
|
newtreenode->right = NULL;
|
|
|
|
if (isDuplicate != NULL)
|
|
{
|
|
*isDuplicate = 0;
|
|
}
|
|
}
|
|
return newtreenode;
|
|
}
|
|
|
|
int compare_value = compareFct(data, root->data); // wie funktioniert comparefcttype funktion? bzw wo steht diese?
|
|
|
|
if (compare_value == 0 && isDuplicate != NULL)
|
|
{
|
|
*isDuplicate = 1;
|
|
return root;
|
|
}
|
|
|
|
if (compare_value < 0)
|
|
{
|
|
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
|
|
}
|
|
else
|
|
{
|
|
root->right = addToTree(root->right, data, dataSize, compareFct, isDuplicate);
|
|
}
|
|
|
|
return root;
|
|
}
|
|
|
|
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
|
|
// Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element,
|
|
// push the top node and push all its left nodes.
|
|
void *nextTreeData(TreeNode *root)
|
|
{
|
|
static StackNode *stack = NULL;
|
|
TreeNode *currentElement = root;
|
|
|
|
if (currentElement != NULL)
|
|
{
|
|
clearStack(stack);
|
|
stack = NULL;
|
|
|
|
while (currentElement != NULL)
|
|
{
|
|
stack = push(stack, currentElement);
|
|
currentElement = currentElement->left;
|
|
}
|
|
}
|
|
|
|
if (stack == NULL)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
TreeNode *node = (TreeNode *)top(stack);
|
|
stack = pop(stack);
|
|
|
|
currentElement = node->right;
|
|
while (currentElement != NULL)
|
|
{
|
|
stack = push(stack, currentElement);
|
|
currentElement = currentElement->left;
|
|
}
|
|
return node->data;
|
|
}
|
|
|
|
// Releases all memory resources (including data copies).
|
|
void clearTree(TreeNode *root)
|
|
{
|
|
if (root != NULL)
|
|
{
|
|
clearTree(root->left);
|
|
clearTree(root->right);
|
|
free(root->data);
|
|
free(root);
|
|
}
|
|
}
|
|
|
|
// Returns the number of entries in the tree given by root.
|
|
unsigned int treeSize(const TreeNode *root)
|
|
{
|
|
unsigned int count = 0;
|
|
|
|
if (root != NULL)
|
|
{
|
|
count = 1;
|
|
count += treeSize(root->right);
|
|
count += treeSize(root->left);
|
|
}
|
|
return count;
|
|
} |