Browse Source

Add cozmomovement script; Adjust feature vectors for the brain

Development
Tobi 5 years ago
parent
commit
c40daab5fd

+ 1
- 0
.gitignore View File

# Builds # Builds
*.apk *.apk
*.unitypackage *.unitypackage
envs/

+ 3
- 2
Assets/Brains/CozmoLearning.asset View File

brainParameters: brainParameters:
vectorObservationSize: 0 vectorObservationSize: 0
numStackedVectorObservations: 1 numStackedVectorObservations: 1
vectorActionSize: 01000000
vectorActionSize: 0300000003000000
cameraResolutions: cameraResolutions:
- width: 84 - width: 84
height: 84 height: 84
blackAndWhite: 1 blackAndWhite: 1
vectorActionDescriptions: vectorActionDescriptions:
-
- forward
- rotate
vectorActionSpaceType: 0 vectorActionSpaceType: 0
model: {fileID: 0} model: {fileID: 0}
inferenceDevice: 0 inferenceDevice: 0

+ 49
- 5
Assets/Scenes/CozmoTraining.unity View File

m_Icon: {fileID: 0} m_Icon: {fileID: 0}
m_NavMeshLayer: 0 m_NavMeshLayer: 0
m_StaticEditorFlags: 0 m_StaticEditorFlags: 0
m_IsActive: 0
m_IsActive: 1
--- !u!65 &99578046 --- !u!65 &99578046
BoxCollider: BoxCollider:
m_ObjectHideFlags: 0 m_ObjectHideFlags: 0
- component: {fileID: 589453882} - component: {fileID: 589453882}
m_Layer: 0 m_Layer: 0
m_Name: Camera m_Name: Camera
m_TagString: Untagged
m_TagString: MainCamera
m_Icon: {fileID: 0} m_Icon: {fileID: 0}
m_NavMeshLayer: 0 m_NavMeshLayer: 0
m_StaticEditorFlags: 0 m_StaticEditorFlags: 0
broadcastHub: broadcastHub:
broadcastingBrains: broadcastingBrains:
- {fileID: 11400000, guid: 94e62c225e4fe8148a7543c5fd1acfd4, type: 2} - {fileID: 11400000, guid: 94e62c225e4fe8148a7543c5fd1acfd4, type: 2}
_brainsToControl: []
_brainsToControl:
- {fileID: 11400000, guid: 94e62c225e4fe8148a7543c5fd1acfd4, type: 2}
maxSteps: 0 maxSteps: 0
trainingConfiguration: trainingConfiguration:
width: 80 width: 80
- target: {fileID: 7570006595835424293, guid: 0f97dac5215d69a4795763340d82925d, - target: {fileID: 7570006595835424293, guid: 0f97dac5215d69a4795763340d82925d,
type: 3} type: 3}
propertyPath: m_LocalPosition.x propertyPath: m_LocalPosition.x
value: 0.5
value: 0.332
objectReference: {fileID: 0} objectReference: {fileID: 0}
- target: {fileID: 7570006595835424293, guid: 0f97dac5215d69a4795763340d82925d, - target: {fileID: 7570006595835424293, guid: 0f97dac5215d69a4795763340d82925d,
type: 3} type: 3}
- target: {fileID: 7570006595835424293, guid: 0f97dac5215d69a4795763340d82925d, - target: {fileID: 7570006595835424293, guid: 0f97dac5215d69a4795763340d82925d,
type: 3} type: 3}
propertyPath: m_LocalPosition.z propertyPath: m_LocalPosition.z
value: 0.5
value: -0.199
objectReference: {fileID: 0} objectReference: {fileID: 0}
- target: {fileID: 7570006595835424293, guid: 0f97dac5215d69a4795763340d82925d, - target: {fileID: 7570006595835424293, guid: 0f97dac5215d69a4795763340d82925d,
type: 3} type: 3}
resetOnDone: 1 resetOnDone: 1
onDemandDecision: 0 onDemandDecision: 0
numberOfActionsBetweenDecisions: 1 numberOfActionsBetweenDecisions: 1
--- !u!65 &7570006596986120126
BoxCollider:
m_ObjectHideFlags: 0
m_CorrespondingSourceObject: {fileID: 0}
m_PrefabInstance: {fileID: 0}
m_PrefabAsset: {fileID: 0}
m_GameObject: {fileID: 7570006596986120123}
m_Material: {fileID: 0}
m_IsTrigger: 0
m_Enabled: 1
serializedVersion: 2
m_Size: {x: 0.05, y: 0.07, z: 0.08}
m_Center: {x: 0, y: 0.035, z: 0}
--- !u!54 &7570006596986120127
Rigidbody:
m_ObjectHideFlags: 0
m_CorrespondingSourceObject: {fileID: 0}
m_PrefabInstance: {fileID: 0}
m_PrefabAsset: {fileID: 0}
m_GameObject: {fileID: 7570006596986120123}
serializedVersion: 2
m_Mass: 1
m_Drag: 0
m_AngularDrag: 0.05
m_UseGravity: 1
m_IsKinematic: 0
m_Interpolate: 0
m_Constraints: 84
m_CollisionDetection: 0
--- !u!114 &7570006596986120128
MonoBehaviour:
m_ObjectHideFlags: 0
m_CorrespondingSourceObject: {fileID: 0}
m_PrefabInstance: {fileID: 0}
m_PrefabAsset: {fileID: 0}
m_GameObject: {fileID: 7570006596986120123}
m_Enabled: 1
m_EditorHideFlags: 0
m_Script: {fileID: 11500000, guid: d2056048a78a0cc4c97e7899ba1c0e31, type: 3}
m_Name:
m_EditorClassIdentifier:
m_Speed: 0.1
m_TurnSpeed: 50

+ 8
- 0
Assets/Scripts/Movemnet.meta View File

fileFormatVersion: 2
guid: 8400d2753da4d924bbdb3537db7363ac
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

+ 90
- 0
Assets/Scripts/Movemnet/CozmoMovement.cs View File

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class CozmoMovement : MonoBehaviour
{
public float m_Speed = 12f; // How fast the tank moves forward and back.
public float m_TurnSpeed = 180f; // How fast the tank turns in degrees per second.

private string m_MovementAxisName; // The name of the input axis for moving forward and back.
private string m_TurnAxisName; // The name of the input axis for turning.
private Rigidbody m_Rigidbody; // Reference used to move the tank.
private float m_MovementInputValue; // The current value of the movement input.
private float m_TurnInputValue; // The current value of the turn input.

private void Awake()
{
m_Rigidbody = GetComponent<Rigidbody>();
}


private void OnEnable()
{
// When the tank is turned on, make sure it's not kinematic.
m_Rigidbody.isKinematic = false;

// Also reset the input values.
m_MovementInputValue = 0f;
m_TurnInputValue = 0f;
}


private void OnDisable()
{
// When the tank is turned off, set it to kinematic so it stops moving.
m_Rigidbody.isKinematic = true;
}


private void Start()
{
// The axes names are based on player number.
m_MovementAxisName = "Vertical";
m_TurnAxisName = "Horizontal";
}


private void Update()
{
// Store the value of both input axes.
m_MovementInputValue = Input.GetAxis(m_MovementAxisName);
m_TurnInputValue = Input.GetAxis(m_TurnAxisName);
}

private void FixedUpdate()
{
// Adjust the rigidbodies position and orientation in FixedUpdate.
Move();
Turn();
}


private void Move()
{
// Create a vector in the direction the tank is facing with a magnitude based on the input, speed and the time between frames.
Vector3 movement = transform.forward * m_MovementInputValue * m_Speed * Time.deltaTime;

// Apply this movement to the rigidbody's position.
m_Rigidbody.MovePosition(m_Rigidbody.position + movement);
}


private void Turn()
{
// Determine the number of degrees to be turned based on the input, speed and time between frames.
float turn = m_TurnInputValue * m_TurnSpeed * Time.deltaTime;

// Make this into a rotation in the y axis.
Quaternion turnRotation = Quaternion.Euler(0f, turn, 0f);

// Apply this rotation to the rigidbody's rotation.
m_Rigidbody.MoveRotation(m_Rigidbody.rotation * turnRotation);
}

}

+ 11
- 0
Assets/Scripts/Movemnet/CozmoMovement.cs.meta View File

fileFormatVersion: 2
guid: d2056048a78a0cc4c97e7899ba1c0e31
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

+ 246
- 0
Notebooks/.ipynb_checkpoints/getting-started-checkpoint.ipynb View File

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Unity ML-Agents Toolkit\n",
"## Environment Basics\n",
"This notebook contains a walkthrough of the basic functions of the Python API for the Unity ML-Agents toolkit. For instructions on building a Unity environment, see [here](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Getting-Started-with-Balance-Ball.md)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Set environment parameters\n",
"\n",
"Be sure to set `env_name` to the name of the Unity environment file you want to launch. Ensure that the environment build is in `../envs`."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"env_name = \"../envs/Bachelorarbeit-Cozmo\" # Name of the Unity environment binary to launch\n",
"train_mode = True # Whether to run the environment in training or inference mode"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. Load dependencies\n",
"\n",
"The following loads the necessary dependencies and checks the Python version (at runtime). ML-Agents Toolkit (v0.3 onwards) requires Python 3."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Python version:\n",
"3.6.7 |Anaconda, Inc.| (default, Oct 28 2018, 19:44:12) [MSC v.1915 64 bit (AMD64)]\n"
]
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import sys\n",
"\n",
"from mlagents.envs import UnityEnvironment\n",
"\n",
"%matplotlib inline\n",
"\n",
"print(\"Python version:\")\n",
"print(sys.version)\n",
"\n",
"# check Python version\n",
"if (sys.version_info[0] < 3):\n",
" raise Exception(\"ERROR: ML-Agents Toolkit (v0.3 onwards) requires Python 3\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. Start the environment\n",
"`UnityEnvironment` launches and begins communication with the environment when instantiated.\n",
"\n",
"Environments contain _brains_ which are responsible for deciding the actions of their associated _agents_. Here we check for the first brain available, and set it as the default brain we will be controlling from Python."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"env = UnityEnvironment(file_name=env_name)\n",
"\n",
"# Set the default brain to work with\n",
"default_brain = env.brain_names[0]\n",
"brain = env.brains[default_brain]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4. Examine the observation and state spaces\n",
"We can reset the environment to be provided with an initial set of observations and states for all the agents within the environment. In ML-Agents, _states_ refer to a vector of variables corresponding to relevant aspects of the environment for an agent. Likewise, _observations_ refer to a set of relevant pixel-wise visuals for an agent."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'env' is not defined",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-4-960e284ef7df>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m# Reset the environment\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0menv_info\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0menv\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreset\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrain_mode\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtrain_mode\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mdefault_brain\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;31m# Examine the state space for the default brain\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Agent state looks like: \\n{}\"\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0menv_info\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvector_observations\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mNameError\u001b[0m: name 'env' is not defined"
]
}
],
"source": [
"# Reset the environment\n",
"env_info = env.reset(train_mode=train_mode)[default_brain]\n",
"\n",
"# Examine the state space for the default brain\n",
"print(\"Agent state looks like: \\n{}\".format(env_info.vector_observations[0]))\n",
"\n",
"# Examine the observation space for the default brain\n",
"for observation in env_info.visual_observations:\n",
" print(\"Agent observations look like:\")\n",
" if observation.shape[3] == 3:\n",
" plt.imshow(observation[0,:,:,:])\n",
" else:\n",
" plt.imshow(observation[0,:,:,0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 5. Take random actions in the environment\n",
"Once we restart an environment, we can step the environment forward and provide actions to all of the agents within the environment. Here we simply choose random actions based on the `action_space_type` of the default brain. \n",
"\n",
"Once this cell is executed, 10 messages will be printed that detail how much reward will be accumulated for the next 10 episodes. The Unity environment will then pause, waiting for further signals telling it what to do next. Thus, not seeing any animation is expected when running this cell."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'env' is not defined",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-5-d20208746165>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mepisode\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m10\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0menv_info\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0menv\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreset\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrain_mode\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtrain_mode\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mdefault_brain\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mdone\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mFalse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mepisode_rewards\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mwhile\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mdone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mNameError\u001b[0m: name 'env' is not defined"
]
}
],
"source": [
"for episode in range(10):\n",
" env_info = env.reset(train_mode=train_mode)[default_brain]\n",
" done = False\n",
" episode_rewards = 0\n",
" while not done:\n",
" action_size = brain.vector_action_space_size\n",
" if brain.vector_action_space_type == 'continuous':\n",
" env_info = env.step(np.random.randn(len(env_info.agents), \n",
" action_size[0]))[default_brain]\n",
" else:\n",
" action = np.column_stack([np.random.randint(0, action_size[i], size=(len(env_info.agents))) for i in range(len(action_size))])\n",
" env_info = env.step(action)[default_brain]\n",
" episode_rewards += env_info.rewards[0]\n",
" done = env_info.local_done[0]\n",
" print(\"Total reward this episode: {}\".format(episode_rewards))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6. Close the environment when finished\n",
"When we are finished using an environment, we can close it with the function below."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'env' is not defined",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-6-1baceacf4cb1>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0menv\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mclose\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;31mNameError\u001b[0m: name 'env' is not defined"
]
}
],
"source": [
"env.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 1
}

+ 2
- 0
Notebooks/UnitySDK.log View File

17.04.2019 15:13:21

+ 270
- 0
Notebooks/getting-started.ipynb
File diff suppressed because it is too large
View File


+ 5
- 2
ProjectSettings/EditorBuildSettings.asset View File

m_ObjectHideFlags: 0 m_ObjectHideFlags: 0
serializedVersion: 2 serializedVersion: 2
m_Scenes: m_Scenes:
- enabled: 0
path:
guid: 00000000000000000000000000000000
- enabled: 1 - enabled: 1
path: Assets/Scenes/SampleScene.unity
guid: 99c9720ab356a0642a771bea13969a05
path: Assets/Scenes/CozmoTraining.unity
guid: 2b0b419445af9d44b84ac124a2015b65
m_configObjects: {} m_configObjects: {}

+ 2
- 0
ProjectSettings/GraphicsSettings.asset View File

- {fileID: 10753, guid: 0000000000000000f000000000000000, type: 0} - {fileID: 10753, guid: 0000000000000000f000000000000000, type: 0}
- {fileID: 10770, guid: 0000000000000000f000000000000000, type: 0} - {fileID: 10770, guid: 0000000000000000f000000000000000, type: 0}
- {fileID: 10783, guid: 0000000000000000f000000000000000, type: 0} - {fileID: 10783, guid: 0000000000000000f000000000000000, type: 0}
- {fileID: 16000, guid: 0000000000000000f000000000000000, type: 0}
- {fileID: 17000, guid: 0000000000000000f000000000000000, type: 0}
m_PreloadedShaders: [] m_PreloadedShaders: []
m_SpritesDefaultMaterial: {fileID: 10754, guid: 0000000000000000f000000000000000, m_SpritesDefaultMaterial: {fileID: 10754, guid: 0000000000000000f000000000000000,
type: 0} type: 0}

+ 1
- 1
ProjectSettings/ProjectSettings.asset View File

useOnDemandResources: 0 useOnDemandResources: 0
accelerometerFrequency: 60 accelerometerFrequency: 60
companyName: DefaultCompany companyName: DefaultCompany
productName: Bachelorarbeit
productName: Bachelorarbeit-Cozmo
defaultCursor: {fileID: 0} defaultCursor: {fileID: 0}
cursorHotspot: {x: 0, y: 0} cursorHotspot: {x: 0, y: 0}
m_SplashScreenBackgroundColor: {r: 0.13725491, g: 0.12156863, b: 0.1254902, a: 1} m_SplashScreenBackgroundColor: {r: 0.13725491, g: 0.12156863, b: 0.1254902, a: 1}

+ 45
- 3
ProjectSettings/QualitySettings.asset View File

vSyncCount: 0 vSyncCount: 0
lodBias: 0.3 lodBias: 0.3
maximumLODLevel: 0 maximumLODLevel: 0
streamingMipmapsActive: 0
streamingMipmapsAddAllCameras: 1
streamingMipmapsMemoryBudget: 512
streamingMipmapsRenderersPerFrame: 512
streamingMipmapsMaxLevelReduction: 2
streamingMipmapsMaxFileIORequests: 1024
particleRaycastBudget: 4 particleRaycastBudget: 4
asyncUploadTimeSlice: 2 asyncUploadTimeSlice: 2
asyncUploadBufferSize: 16 asyncUploadBufferSize: 16
asyncUploadPersistentBuffer: 1
resolutionScalingFixedDPIFactor: 1 resolutionScalingFixedDPIFactor: 1
excludedTargetPlatforms: [] excludedTargetPlatforms: []
- serializedVersion: 2 - serializedVersion: 2
vSyncCount: 0 vSyncCount: 0
lodBias: 0.4 lodBias: 0.4
maximumLODLevel: 0 maximumLODLevel: 0
streamingMipmapsActive: 0
streamingMipmapsAddAllCameras: 1
streamingMipmapsMemoryBudget: 512
streamingMipmapsRenderersPerFrame: 512
streamingMipmapsMaxLevelReduction: 2
streamingMipmapsMaxFileIORequests: 1024
particleRaycastBudget: 16 particleRaycastBudget: 16
asyncUploadTimeSlice: 2 asyncUploadTimeSlice: 2
asyncUploadBufferSize: 16 asyncUploadBufferSize: 16
asyncUploadPersistentBuffer: 1
resolutionScalingFixedDPIFactor: 1 resolutionScalingFixedDPIFactor: 1
excludedTargetPlatforms: [] excludedTargetPlatforms: []
- serializedVersion: 2 - serializedVersion: 2
vSyncCount: 1 vSyncCount: 1
lodBias: 0.7 lodBias: 0.7
maximumLODLevel: 0 maximumLODLevel: 0
streamingMipmapsActive: 0
streamingMipmapsAddAllCameras: 1
streamingMipmapsMemoryBudget: 512
streamingMipmapsRenderersPerFrame: 512
streamingMipmapsMaxLevelReduction: 2
streamingMipmapsMaxFileIORequests: 1024
particleRaycastBudget: 64 particleRaycastBudget: 64
asyncUploadTimeSlice: 2 asyncUploadTimeSlice: 2
asyncUploadBufferSize: 16 asyncUploadBufferSize: 16
asyncUploadPersistentBuffer: 1
resolutionScalingFixedDPIFactor: 1 resolutionScalingFixedDPIFactor: 1
excludedTargetPlatforms: [] excludedTargetPlatforms: []
- serializedVersion: 2 - serializedVersion: 2
vSyncCount: 1 vSyncCount: 1
lodBias: 1 lodBias: 1
maximumLODLevel: 0 maximumLODLevel: 0
streamingMipmapsActive: 0
streamingMipmapsAddAllCameras: 1
streamingMipmapsMemoryBudget: 512
streamingMipmapsRenderersPerFrame: 512
streamingMipmapsMaxLevelReduction: 2
streamingMipmapsMaxFileIORequests: 1024
particleRaycastBudget: 256 particleRaycastBudget: 256
asyncUploadTimeSlice: 2 asyncUploadTimeSlice: 2
asyncUploadBufferSize: 16 asyncUploadBufferSize: 16
asyncUploadPersistentBuffer: 1
resolutionScalingFixedDPIFactor: 1 resolutionScalingFixedDPIFactor: 1
excludedTargetPlatforms: [] excludedTargetPlatforms: []
- serializedVersion: 2 - serializedVersion: 2
name: Very High name: Very High
pixelLightCount: 3 pixelLightCount: 3
shadows: 2
shadows: 0
shadowResolution: 2 shadowResolution: 2
shadowProjection: 1 shadowProjection: 1
shadowCascades: 2 shadowCascades: 2
textureQuality: 0 textureQuality: 0
anisotropicTextures: 1 anisotropicTextures: 1
antiAliasing: 4 antiAliasing: 4
softParticles: 1
softParticles: 0
softVegetation: 1 softVegetation: 1
realtimeReflectionProbes: 1
realtimeReflectionProbes: 0
billboardsFaceCameraPosition: 1 billboardsFaceCameraPosition: 1
vSyncCount: 1 vSyncCount: 1
lodBias: 1.5 lodBias: 1.5
maximumLODLevel: 0 maximumLODLevel: 0
streamingMipmapsActive: 0
streamingMipmapsAddAllCameras: 1
streamingMipmapsMemoryBudget: 512
streamingMipmapsRenderersPerFrame: 512
streamingMipmapsMaxLevelReduction: 2
streamingMipmapsMaxFileIORequests: 1024
particleRaycastBudget: 1024 particleRaycastBudget: 1024
asyncUploadTimeSlice: 2 asyncUploadTimeSlice: 2
asyncUploadBufferSize: 16 asyncUploadBufferSize: 16
asyncUploadPersistentBuffer: 1
resolutionScalingFixedDPIFactor: 1 resolutionScalingFixedDPIFactor: 1
excludedTargetPlatforms: [] excludedTargetPlatforms: []
- serializedVersion: 2 - serializedVersion: 2
vSyncCount: 1 vSyncCount: 1
lodBias: 2 lodBias: 2
maximumLODLevel: 0 maximumLODLevel: 0
streamingMipmapsActive: 0
streamingMipmapsAddAllCameras: 1
streamingMipmapsMemoryBudget: 512
streamingMipmapsRenderersPerFrame: 512
streamingMipmapsMaxLevelReduction: 2
streamingMipmapsMaxFileIORequests: 1024
particleRaycastBudget: 4096 particleRaycastBudget: 4096
asyncUploadTimeSlice: 2 asyncUploadTimeSlice: 2
asyncUploadBufferSize: 16 asyncUploadBufferSize: 16
asyncUploadPersistentBuffer: 1
resolutionScalingFixedDPIFactor: 1 resolutionScalingFixedDPIFactor: 1
excludedTargetPlatforms: [] excludedTargetPlatforms: []
m_PerPlatformDefaultQuality: m_PerPlatformDefaultQuality:

+ 1
- 1
ProjectSettings/UnityConnectSettings.asset View File

UnityConnectSettings: UnityConnectSettings:
m_ObjectHideFlags: 0 m_ObjectHideFlags: 0
serializedVersion: 1 serializedVersion: 1
m_Enabled: 0
m_Enabled: 1
m_TestMode: 0 m_TestMode: 0
m_EventOldUrl: https://api.uca.cloud.unity3d.com/v1/events m_EventOldUrl: https://api.uca.cloud.unity3d.com/v1/events
m_EventUrl: https://cdp.cloud.unity3d.com/v1/events m_EventUrl: https://cdp.cloud.unity3d.com/v1/events

Loading…
Cancel
Save