You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

METADATA 1.9KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. Metadata-Version: 2.1
  2. Name: numpy
  3. Version: 1.16.3
  4. Summary: NumPy is the fundamental package for array computing with Python.
  5. Home-page: https://www.numpy.org
  6. Author: Travis E. Oliphant et al.
  7. Maintainer: NumPy Developers
  8. Maintainer-email: numpy-discussion@python.org
  9. License: BSD
  10. Download-URL: https://pypi.python.org/pypi/numpy
  11. Platform: Windows
  12. Platform: Linux
  13. Platform: Solaris
  14. Platform: Mac OS-X
  15. Platform: Unix
  16. Classifier: Development Status :: 5 - Production/Stable
  17. Classifier: Intended Audience :: Science/Research
  18. Classifier: Intended Audience :: Developers
  19. Classifier: License :: OSI Approved
  20. Classifier: Programming Language :: C
  21. Classifier: Programming Language :: Python
  22. Classifier: Programming Language :: Python :: 2
  23. Classifier: Programming Language :: Python :: 2.7
  24. Classifier: Programming Language :: Python :: 3
  25. Classifier: Programming Language :: Python :: 3.4
  26. Classifier: Programming Language :: Python :: 3.5
  27. Classifier: Programming Language :: Python :: 3.6
  28. Classifier: Programming Language :: Python :: 3.7
  29. Classifier: Programming Language :: Python :: Implementation :: CPython
  30. Classifier: Topic :: Software Development
  31. Classifier: Topic :: Scientific/Engineering
  32. Classifier: Operating System :: Microsoft :: Windows
  33. Classifier: Operating System :: POSIX
  34. Classifier: Operating System :: Unix
  35. Classifier: Operating System :: MacOS
  36. Requires-Python: >=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*
  37. It provides:
  38. - a powerful N-dimensional array object
  39. - sophisticated (broadcasting) functions
  40. - tools for integrating C/C++ and Fortran code
  41. - useful linear algebra, Fourier transform, and random number capabilities
  42. - and much more
  43. Besides its obvious scientific uses, NumPy can also be used as an efficient
  44. multi-dimensional container of generic data. Arbitrary data-types can be
  45. defined. This allows NumPy to seamlessly and speedily integrate with a wide
  46. variety of databases.
  47. All NumPy wheels distributed on PyPI are BSD licensed.