library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.float.all; use work.task.all; entity sine is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; step_size : in work.reg32.word; phase : in work.reg32.word; amplitude : in work.reg32.word; signal_write : out std_logic; signal_writedata : out std_logic_vector( 31 downto 0 ) ); end entity sine; architecture rtl of sine is signal current_task_state : work.task.State; --multiple sources signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN; --multiple sources --Selbst angelegte Signal: signal data_valid_flag : std_logic; signal busy_flag : std_logic; signal result_valid_flag : std_logic; signal angle_sig : signed( 31 downto 0); signal ergebnis : signed( 31 downto 0 ); signal ampl_sig : signed( 31 downto 0 ); --Zustände für die Zustandsmaschine für die Berechnung type CalcState is ( CALC_IDLE, CALC_START, CALC_SINE, CALC_STORE_RESULT ); --Signale für die Zustandsmaschine für die Berechnung signal current_calc_state : CalcState; signal next_calc_state : CalcState; begin u_float_sine : entity work.float_sine -- Das hier ist der Core! generic map ( ITERATIONS => 8 ) port map ( clk => clk, reset => reset, data_valid => data_valid_flag, --# load new input data busy => busy_flag, --# generating new result result_valid => result_valid_flag, --# flag when result is valid angle => angle_sig, -- angle in brads (2**size brads = 2*pi radians) sine => ergebnis --Hierzu nachfragen ); --Bei diesem task nichts ändern! task_state_transitions : process ( all ) is begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => if ( index = work.task.STREAM_LEN - 1 ) then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process task_state_transitions; --Übergangsschaltnetz der Zustandsmaschine für die Berechnung ###Fertig calc_state_transitions: process (all) is begin next_calc_state <= current_calc_state; case current_calc_state is when CALC_IDLE=> if (current_task_state= work.task.TASK_RUNNING) then next_calc_state <= CALC_START; end if; when CALC_START=> next_calc_state <= CALC_SINE; when CALC_SINE => if (result_valid_flag = '1' and busy_flag = '0') then --or falling_edge( busy) ? next_calc_state <= CALC_STORE_RESULT; end if; when CALC_STORE_RESULT => if ( index = work.task.STREAM_LEN ) then next_calc_state <= CALC_IDLE; else next_calc_state <= CALC_START; end if; end case; end process calc_state_transitions; --Zustandsspeicher und Ausgangsschaltnetz zu der Steuerung der Tasks task_sync : process (clk, reset) is begin if (reset = '1') then current_task_state <= work.task.TASK_IDLE; elsif (rising_edge( clk)) then current_task_state <= next_task_state; case next_task_state is when work.task. TASK_IDLE => null; when work.task. TASK_RUNNING => null; when work.task. TASK_DONE => null; end case; end if; end process task_sync; --Zustandsspeicher und Ausgangsschaltnetz zu Berechnung sync : process (clk, reset) is begin if (reset = '1') then index <= 0; data_valid_flag <= '0'; current_calc_state <= CALC_IDLE; --ergebnis <= (others => '0'); --Wird von IP Core gesteuert und darf deshalb hier nicht getrieben werden signal_writedata <= (others => '0'); signal_write <= '0'; angle_sig <= (others => '0'); elsif (rising_edge( clk)) then current_calc_state <= next_calc_state; case next_calc_state is when CALC_IDLE => data_valid_flag <= '0'; signal_write <= '0'; angle_sig <= signed (phase); ampl_sig <= signed (amplitude); when CALC_START => data_valid_flag <= '1'; signal_write <= '0'; angle_sig <= angle_sig + signed(step_size); --step_size = 2 * PI / 32 when CALC_SINE => --hier Berechnung mit IP Core? data_valid_flag <= '0'; when CALC_STORE_RESULT => index <= index + 1; signal_write <= '1'; --Berechne float multiplikation zu Fuss. Exponent + Exponent usw. signal_writedata <= std_logic_vector( ergebnis(31 downto 31) & (ergebnis(30 downto 23) + (signed(ampl_sig(30 downto 23)) - 127)) & ergebnis(22 downto 0)); end case; end if; end process sync; task_state <= current_task_state; end architecture rtl;