|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452 |
- <?xml version="1.0"?>
- <!--
- Stump-based 20x20 frontal eye detector.
- Created by Shameem Hameed (http://umich.edu/~shameem)
-
- ////////////////////////////////////////////////////////////////////////////////////////
-
- IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
-
- By downloading, copying, installing or using the software you agree to this license.
- If you do not agree to this license, do not download, install,
- copy or use the software.
-
-
- Intel License Agreement
- For Open Source Computer Vision Library
-
- Copyright (C) 2000, Intel Corporation, all rights reserved.
- Third party copyrights are property of their respective owners.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistribution's of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
-
- * Redistribution's in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
- * The name of Intel Corporation may not be used to endorse or promote products
- derived from this software without specific prior written permission.
-
- This software is provided by the copyright holders and contributors "as is" and
- any express or implied warranties, including, but not limited to, the implied
- warranties of merchantability and fitness for a particular purpose are disclaimed.
- In no event shall the Intel Corporation or contributors be liable for any direct,
- indirect, incidental, special, exemplary, or consequential damages
- (including, but not limited to, procurement of substitute goods or services;
- loss of use, data, or profits; or business interruption) however caused
- and on any theory of liability, whether in contract, strict liability,
- or tort (including negligence or otherwise) arising in any way out of
- the use of this software, even if advised of the possibility of such damage.
- -->
- <opencv_storage>
- <haarcascade_frontaleye type_id="opencv-haar-classifier">
- <size>
- 20 20</size>
- <stages>
- <_>
- <!-- stage 0 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 20 12 -1.</_>
- <_>
- 0 14 20 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1296395957469940</threshold>
- <left_val>-0.7730420827865601</left_val>
- <right_val>0.6835014820098877</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 15 -1.</_>
- <_>
- 9 6 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0463268086314201</threshold>
- <left_val>0.5735275149345398</left_val>
- <right_val>-0.4909768998622894</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 10 9 2 -1.</_>
- <_>
- 9 10 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0161730907857418</threshold>
- <left_val>0.6025434136390686</left_val>
- <right_val>-0.3161070942878723</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 10 9 -1.</_>
- <_>
- 7 3 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0458288416266441</threshold>
- <left_val>0.6417754888534546</left_val>
- <right_val>-0.1554504036903381</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 2 2 18 -1.</_>
- <_>
- 12 8 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0537596195936203</threshold>
- <left_val>0.5421931743621826</left_val>
- <right_val>-0.2048082947731018</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 8 6 -1.</_>
- <_>
- 8 9 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0341711901128292</threshold>
- <left_val>-0.2338819056749344</left_val>
- <right_val>0.4841090142726898</right_val></_></_></trees>
- <stage_threshold>-1.4562760591506958</stage_threshold>
- <parent>-1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 1 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 17 18 -1.</_>
- <_>
- 2 6 17 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2172762006521225</threshold>
- <left_val>0.7109889984130859</left_val>
- <right_val>-0.5936073064804077</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 1 8 -1.</_>
- <_>
- 10 14 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120719699189067</threshold>
- <left_val>-0.2824048101902008</left_val>
- <right_val>0.5901355147361755</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 9 2 -1.</_>
- <_>
- 10 10 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0178541392087936</threshold>
- <left_val>0.5313752293586731</left_val>
- <right_val>-0.2275896072387695</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 6 6 -1.</_>
- <_>
- 5 3 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0223336108028889</threshold>
- <left_val>-0.1755609959363937</left_val>
- <right_val>0.6335613727569580</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 15 9 -1.</_>
- <_>
- 3 4 15 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0914200171828270</threshold>
- <left_val>0.6156309247016907</left_val>
- <right_val>-0.1689953058958054</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 9 6 -1.</_>
- <_>
- 6 5 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0289736501872540</threshold>
- <left_val>-0.1225007995963097</left_val>
- <right_val>0.7440117001533508</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 17 6 3 -1.</_>
- <_>
- 10 17 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8203463926911354e-003</threshold>
- <left_val>0.1697437018156052</left_val>
- <right_val>-0.6544165015220642</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 10 9 1 -1.</_>
- <_>
- 12 10 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0203404892235994</threshold>
- <left_val>-0.1255664974451065</left_val>
- <right_val>0.8271045088768005</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 6 11 -1.</_>
- <_>
- 3 7 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119261499494314</threshold>
- <left_val>0.3860568106174469</left_val>
- <right_val>-0.2099234014749527</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 18 3 1 -1.</_>
- <_>
- 10 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7281101625412703e-004</threshold>
- <left_val>-0.6376119256019592</left_val>
- <right_val>0.1295239031314850</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 16 1 2 -1.</_>
- <_>
- 16 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8322050891583785e-005</threshold>
- <left_val>-0.3463147878646851</left_val>
- <right_val>0.2292426973581314</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 17 6 3 -1.</_>
- <_>
- 11 17 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.0854417756199837e-003</threshold>
- <left_val>-0.6366580128669739</left_val>
- <right_val>0.1307865977287293</right_val></_></_></trees>
- <stage_threshold>-1.2550230026245117</stage_threshold>
- <parent>0</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 2 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 5 18 -1.</_>
- <_>
- 8 6 5 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1181226968765259</threshold>
- <left_val>0.6784452199935913</left_val>
- <right_val>-0.5004578232765198</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 9 7 -1.</_>
- <_>
- 9 7 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0343327596783638</threshold>
- <left_val>0.6718636155128479</left_val>
- <right_val>-0.3574487864971161</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 6 6 10 -1.</_>
- <_>
- 16 6 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0215307995676994</threshold>
- <left_val>0.7222070097923279</left_val>
- <right_val>-0.1819241940975189</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 9 5 -1.</_>
- <_>
- 12 8 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0219099707901478</threshold>
- <left_val>0.6652938723564148</left_val>
- <right_val>-0.2751022875308991</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 7 9 6 -1.</_>
- <_>
- 6 7 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0287135392427444</threshold>
- <left_val>0.6995570063591003</left_val>
- <right_val>-0.1961558014154434</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 6 6 -1.</_>
- <_>
- 3 7 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0114674801006913</threshold>
- <left_val>0.5926734805107117</left_val>
- <right_val>-0.2209735065698624</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 4 18 -1.</_>
- <_>
- 16 6 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0226111691445112</threshold>
- <left_val>0.3448306918144226</left_val>
- <right_val>-0.3837955892086029</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 17 3 3 -1.</_>
- <_>
- 0 18 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9308089977130294e-003</threshold>
- <left_val>-0.7944571971893311</left_val>
- <right_val>0.1562865972518921</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 17 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6419910833938047e-005</threshold>
- <left_val>-0.3089601099491119</left_val>
- <right_val>0.3543108999729157</right_val></_></_></trees>
- <stage_threshold>-1.3728189468383789</stage_threshold>
- <parent>1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 3 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 20 12 -1.</_>
- <_>
- 0 14 20 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1988652050495148</threshold>
- <left_val>-0.5286070108413696</left_val>
- <right_val>0.3553672134876251</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 9 8 -1.</_>
- <_>
- 9 6 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0360089391469955</threshold>
- <left_val>0.4210968911647797</left_val>
- <right_val>-0.3934898078441620</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 12 9 -1.</_>
- <_>
- 5 6 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0775698497891426</threshold>
- <left_val>0.4799154102802277</left_val>
- <right_val>-0.2512216866016388</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 16 1 2 -1.</_>
- <_>
- 4 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2630853285081685e-005</threshold>
- <left_val>-0.3847548961639404</left_val>
- <right_val>0.3184922039508820</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 10 2 1 -1.</_>
- <_>
- 19 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2773229759186506e-004</threshold>
- <left_val>-0.2642731964588165</left_val>
- <right_val>0.3254724144935608</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 6 5 -1.</_>
- <_>
- 11 8 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0185748506337404</threshold>
- <left_val>0.4673658907413483</left_val>
- <right_val>-0.1506727039813995</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 1 -1.</_>
- <_>
- 1 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0008762122597545e-005</threshold>
- <left_val>0.2931315004825592</left_val>
- <right_val>-0.2536509931087494</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 6 6 -1.</_>
- <_>
- 8 8 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0185521300882101</threshold>
- <left_val>0.4627366065979004</left_val>
- <right_val>-0.1314805001020432</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 7 6 7 -1.</_>
- <_>
- 13 7 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0130304200574756</threshold>
- <left_val>0.4162721931934357</left_val>
- <right_val>-0.1775148957967758</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 14 1 2 -1.</_>
- <_>
- 19 15 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5694141085259616e-005</threshold>
- <left_val>-0.2803510129451752</left_val>
- <right_val>0.2668074071407318</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 17 1 2 -1.</_>
- <_>
- 6 18 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7005260451696813e-004</threshold>
- <left_val>-0.2702724933624268</left_val>
- <right_val>0.2398165017366409</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 7 2 7 -1.</_>
- <_>
- 15 7 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3129199873656034e-003</threshold>
- <left_val>0.4441143870353699</left_val>
- <right_val>-0.1442888975143433</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 2 4 -1.</_>
- <_>
- 7 8 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7583490116521716e-003</threshold>
- <left_val>-0.1612619012594223</left_val>
- <right_val>0.4294076859951019</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 12 6 -1.</_>
- <_>
- 5 10 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0251947492361069</threshold>
- <left_val>0.4068729877471924</left_val>
- <right_val>-0.1820258051156998</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 17 1 3 -1.</_>
- <_>
- 2 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4031709870323539e-003</threshold>
- <left_val>0.0847597867250443</left_val>
- <right_val>-0.8001856803894043</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 3 6 -1.</_>
- <_>
- 7 7 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3991729877889156e-003</threshold>
- <left_val>0.5576609969139099</left_val>
- <right_val>-0.1184315979480743</right_val></_></_></trees>
- <stage_threshold>-1.2879480123519897</stage_threshold>
- <parent>2</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 4 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 9 12 -1.</_>
- <_>
- 9 7 3 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0299430806189775</threshold>
- <left_val>0.3581081032752991</left_val>
- <right_val>-0.3848763108253479</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 11 12 -1.</_>
- <_>
- 6 6 11 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1256738007068634</threshold>
- <left_val>0.3931693136692047</left_val>
- <right_val>-0.3001225888729096</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 5 8 -1.</_>
- <_>
- 1 16 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3635272197425365e-003</threshold>
- <left_val>-0.4390861988067627</left_val>
- <right_val>0.1925701051950455</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 7 6 7 -1.</_>
- <_>
- 16 7 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.0971820279955864e-003</threshold>
- <left_val>0.3990666866302490</left_val>
- <right_val>-0.2340787053108215</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 6 6 -1.</_>
- <_>
- 12 8 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0165979098528624</threshold>
- <left_val>0.4209528863430023</left_val>
- <right_val>-0.2267484068870544</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 18 4 2 -1.</_>
- <_>
- 16 19 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0199299324303865e-003</threshold>
- <left_val>-0.7415673136711121</left_val>
- <right_val>0.1260118931531906</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 17 2 3 -1.</_>
- <_>
- 18 18 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5202340437099338e-003</threshold>
- <left_val>-0.7615460157394409</left_val>
- <right_val>0.0863736122846603</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 3 7 -1.</_>
- <_>
- 10 7 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9663940444588661e-003</threshold>
- <left_val>0.4218223989009857</left_val>
- <right_val>-0.1790491938591003</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 6 8 -1.</_>
- <_>
- 7 6 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0192076005041599</threshold>
- <left_val>0.4689489901065826</left_val>
- <right_val>-0.1437875032424927</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 6 6 11 -1.</_>
- <_>
- 4 6 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122226802632213</threshold>
- <left_val>0.3284207880496979</left_val>
- <right_val>-0.2180214971303940</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 10 12 8 -1.</_>
- <_>
- 8 14 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0575486682355404</threshold>
- <left_val>-0.3676880896091461</left_val>
- <right_val>0.2435711026191711</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 17 6 3 -1.</_>
- <_>
- 9 17 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5794079825282097e-003</threshold>
- <left_val>-0.7224506735801697</left_val>
- <right_val>0.0636645630002022</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 9 3 3 -1.</_>
- <_>
- 11 9 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9545740690082312e-003</threshold>
- <left_val>0.3584643900394440</left_val>
- <right_val>-0.1669632941484451</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 3 6 -1.</_>
- <_>
- 9 8 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2017991654574871e-003</threshold>
- <left_val>0.3909480869770050</left_val>
- <right_val>-0.1204179003834724</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 6 5 -1.</_>
- <_>
- 9 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0136249903589487</threshold>
- <left_val>-0.5876771807670593</left_val>
- <right_val>0.0884047299623489</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 17 1 3 -1.</_>
- <_>
- 6 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2853112467564642e-005</threshold>
- <left_val>-0.2634845972061157</left_val>
- <right_val>0.2141927927732468</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 18 4 2 -1.</_>
- <_>
- 0 19 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6782939676195383e-003</threshold>
- <left_val>-0.7839016914367676</left_val>
- <right_val>0.0805269628763199</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 11 9 -1.</_>
- <_>
- 4 4 11 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0705971792340279</threshold>
- <left_val>0.4146926105022430</left_val>
- <right_val>-0.1398995965719223</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 14 9 -1.</_>
- <_>
- 3 4 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0920936465263367</threshold>
- <left_val>-0.1305518001317978</left_val>
- <right_val>0.5043578147888184</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 6 4 -1.</_>
- <_>
- 2 9 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8004386052489281e-003</threshold>
- <left_val>0.3660975098609924</left_val>
- <right_val>-0.1403664946556091</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 13 1 2 -1.</_>
- <_>
- 18 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5080977694597095e-005</threshold>
- <left_val>-0.2970443964004517</left_val>
- <right_val>0.2070294022560120</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 5 3 11 -1.</_>
- <_>
- 14 5 1 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9870450962334871e-003</threshold>
- <left_val>0.3561570048332214</left_val>
- <right_val>-0.1544596999883652</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 18 8 2 -1.</_>
- <_>
- 0 18 4 1 2.</_>
- <_>
- 4 19 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6441509835422039e-003</threshold>
- <left_val>-0.5435351729393005</left_val>
- <right_val>0.1029511019587517</right_val></_></_></trees>
- <stage_threshold>-1.2179850339889526</stage_threshold>
- <parent>3</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 5 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 12 5 -1.</_>
- <_>
- 9 8 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0478624701499939</threshold>
- <left_val>0.4152823984622955</left_val>
- <right_val>-0.3418582081794739</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 11 10 -1.</_>
- <_>
- 4 12 11 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0873505324125290</threshold>
- <left_val>-0.3874978125095367</left_val>
- <right_val>0.2420420050621033</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 9 6 4 -1.</_>
- <_>
- 16 9 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168494991958141</threshold>
- <left_val>0.5308247804641724</left_val>
- <right_val>-0.1728291064500809</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 6 8 -1.</_>
- <_>
- 3 7 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0288700293749571</threshold>
- <left_val>0.3584350943565369</left_val>
- <right_val>-0.2240259051322937</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 16 3 3 -1.</_>
- <_>
- 0 17 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5679389946162701e-003</threshold>
- <left_val>0.1499049961566925</left_val>
- <right_val>-0.6560940742492676</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 11 12 1 -1.</_>
- <_>
- 11 11 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0241166595369577</threshold>
- <left_val>0.5588967800140381</left_val>
- <right_val>-0.1481028050184250</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 9 4 -1.</_>
- <_>
- 7 8 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0328266583383083</threshold>
- <left_val>0.4646868109703064</left_val>
- <right_val>-0.1078552976250649</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 16 6 4 -1.</_>
- <_>
- 7 16 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0152330603450537</threshold>
- <left_val>-0.7395442724227905</left_val>
- <right_val>0.0562368817627430</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 17 1 3 -1.</_>
- <_>
- 18 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0209511169232428e-004</threshold>
- <left_val>-0.4554882049560547</left_val>
- <right_val>0.0970698371529579</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 17 1 3 -1.</_>
- <_>
- 18 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5365108205005527e-004</threshold>
- <left_val>0.0951472967863083</left_val>
- <right_val>-0.5489501953125000</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 4 10 -1.</_>
- <_>
- 4 9 2 5 2.</_>
- <_>
- 6 14 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0106389503926039</threshold>
- <left_val>0.4091297090053558</left_val>
- <right_val>-0.1230840981006622</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 6 4 -1.</_>
- <_>
- 6 8 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5217830017209053e-003</threshold>
- <left_val>0.4028914868831635</left_val>
- <right_val>-0.1604878008365631</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 2 18 -1.</_>
- <_>
- 10 8 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1067709997296333</threshold>
- <left_val>0.6175932288169861</left_val>
- <right_val>-0.0730911865830421</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 8 6 -1.</_>
- <_>
- 0 5 4 3 2.</_>
- <_>
- 4 8 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0162569191306829</threshold>
- <left_val>-0.1310368031263351</left_val>
- <right_val>0.3745365142822266</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 5 -1.</_>
- <_>
- 8 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0206793602555990</threshold>
- <left_val>-0.7140290737152100</left_val>
- <right_val>0.0523900091648102</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 0 2 14 -1.</_>
- <_>
- 18 7 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0170523691922426</threshold>
- <left_val>0.1282286047935486</left_val>
- <right_val>-0.3108068108558655</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 18 4 2 -1.</_>
- <_>
- 10 18 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7122060097754002e-003</threshold>
- <left_val>-0.6055650711059570</left_val>
- <right_val>0.0818847566843033</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 17 6 3 -1.</_>
- <_>
- 1 18 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0851430235779844e-005</threshold>
- <left_val>-0.2681298851966858</left_val>
- <right_val>0.1445384025573731</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 3 5 -1.</_>
- <_>
- 12 8 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9284431412816048e-003</threshold>
- <left_val>-0.0787953510880470</left_val>
- <right_val>0.5676258206367493</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 3 4 -1.</_>
- <_>
- 12 8 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5217379443347454e-003</threshold>
- <left_val>0.3706862926483154</left_val>
- <right_val>-0.1362057030200958</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 6 5 -1.</_>
- <_>
- 13 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0224261991679668</threshold>
- <left_val>-0.6870499849319458</left_val>
- <right_val>0.0510628595948219</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 6 7 -1.</_>
- <_>
- 3 7 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6451441273093224e-003</threshold>
- <left_val>0.2349222004413605</left_val>
- <right_val>-0.1790595948696137</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 1 3 -1.</_>
- <_>
- 0 14 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1175329564139247e-003</threshold>
- <left_val>-0.5986905097961426</left_val>
- <right_val>0.0743244364857674</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 9 6 -1.</_>
- <_>
- 3 4 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0192127898335457</threshold>
- <left_val>-0.1570255011320114</left_val>
- <right_val>0.2973746955394745</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 9 2 -1.</_>
- <_>
- 8 7 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6293429806828499e-003</threshold>
- <left_val>-0.0997690185904503</left_val>
- <right_val>0.4213027060031891</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 14 3 6 -1.</_>
- <_>
- 0 16 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5671862363815308e-003</threshold>
- <left_val>-0.6085879802703857</left_val>
- <right_val>0.0735062584280968</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 6 4 -1.</_>
- <_>
- 3 11 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0112179601565003</threshold>
- <left_val>-0.1032081022858620</left_val>
- <right_val>0.4190984964370728</right_val></_></_></trees>
- <stage_threshold>-1.2905240058898926</stage_threshold>
- <parent>4</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 6 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 9 3 -1.</_>
- <_>
- 9 9 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0174864400178194</threshold>
- <left_val>0.3130728006362915</left_val>
- <right_val>-0.3368118107318878</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 9 6 -1.</_>
- <_>
- 6 2 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0307146497070789</threshold>
- <left_val>-0.1876619011163712</left_val>
- <right_val>0.5378080010414124</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 6 6 -1.</_>
- <_>
- 8 7 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0221887193620205</threshold>
- <left_val>0.3663788139820099</left_val>
- <right_val>-0.1612481027841568</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 2 1 -1.</_>
- <_>
- 2 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0700771680567414e-005</threshold>
- <left_val>0.2124571055173874</left_val>
- <right_val>-0.2844462096691132</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 6 2 -1.</_>
- <_>
- 12 10 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0170420221984386e-003</threshold>
- <left_val>0.3954311013221741</left_val>
- <right_val>-0.1317359060049057</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 6 6 -1.</_>
- <_>
- 15 8 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8563609384000301e-003</threshold>
- <left_val>0.3037385940551758</left_val>
- <right_val>-0.2065781950950623</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 16 6 4 -1.</_>
- <_>
- 8 16 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0141292596235871</threshold>
- <left_val>-0.7650300860404968</left_val>
- <right_val>0.0982131883502007</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 9 9 -1.</_>
- <_>
- 8 3 9 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0479154810309410</threshold>
- <left_val>0.4830738902091980</left_val>
- <right_val>-0.1300680935382843</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 17 1 3 -1.</_>
- <_>
- 18 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7032979637151584e-005</threshold>
- <left_val>-0.2521657049655914</left_val>
- <right_val>0.2438668012619019</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 17 1 3 -1.</_>
- <_>
- 18 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0221180273219943e-003</threshold>
- <left_val>0.0688576027750969</left_val>
- <right_val>-0.6586114168167114</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 3 3 -1.</_>
- <_>
- 8 10 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6056109927594662e-003</threshold>
- <left_val>0.4294202923774719</left_val>
- <right_val>-0.1302246004343033</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 14 2 2 -1.</_>
- <_>
- 9 14 1 1 2.</_>
- <_>
- 10 15 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4505340813193470e-005</threshold>
- <left_val>-0.1928862035274506</left_val>
- <right_val>0.2895849943161011</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 14 2 2 -1.</_>
- <_>
- 9 14 1 1 2.</_>
- <_>
- 10 15 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6721157054416835e-005</threshold>
- <left_val>0.3029071092605591</left_val>
- <right_val>-0.1985436975955963</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 19 12 -1.</_>
- <_>
- 0 14 19 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2628143131732941</threshold>
- <left_val>-0.2329394072294235</left_val>
- <right_val>0.2369246035814285</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 9 14 -1.</_>
- <_>
- 10 6 3 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0235696695744991</threshold>
- <left_val>0.1940104067325592</left_val>
- <right_val>-0.2848461866378784</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 3 4 -1.</_>
- <_>
- 14 8 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9120172150433064e-003</threshold>
- <left_val>0.5537897944450378</left_val>
- <right_val>-0.0956656783819199</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 17 1 3 -1.</_>
- <_>
- 4 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0788799853762612e-005</threshold>
- <left_val>-0.2391265928745270</left_val>
- <right_val>0.2179948985576630</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 6 3 -1.</_>
- <_>
- 6 9 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8732017427682877e-003</threshold>
- <left_val>0.4069742858409882</left_val>
- <right_val>-0.1276804059743881</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 18 5 2 -1.</_>
- <_>
- 2 19 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6778609715402126e-003</threshold>
- <left_val>-0.5774465799331665</left_val>
- <right_val>0.0973247885704041</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 2 2 -1.</_>
- <_>
- 7 8 1 1 2.</_>
- <_>
- 8 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6832430739887059e-004</threshold>
- <left_val>0.2902188003063202</left_val>
- <right_val>-0.1683126986026764</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 2 2 -1.</_>
- <_>
- 7 8 1 1 2.</_>
- <_>
- 8 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8687182394787669e-005</threshold>
- <left_val>-0.1955157071352005</left_val>
- <right_val>0.2772096991539002</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 13 2 -1.</_>
- <_>
- 5 11 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0129535002633929</threshold>
- <left_val>-0.0968383178114891</left_val>
- <right_val>0.4032387137413025</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 1 9 -1.</_>
- <_>
- 10 11 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0130439596250653</threshold>
- <left_val>0.4719856977462769</left_val>
- <right_val>-0.0892875492572784</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 8 2 12 -1.</_>
- <_>
- 15 8 1 6 2.</_>
- <_>
- 16 14 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0261781066656113e-003</threshold>
- <left_val>-0.1362338066101074</left_val>
- <right_val>0.3068627119064331</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 5 -1.</_>
- <_>
- 5 0 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0438038781285286e-003</threshold>
- <left_val>-0.7795410156250000</left_val>
- <right_val>0.0573163107037544</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 3 7 -1.</_>
- <_>
- 13 6 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2507249377667904e-003</threshold>
- <left_val>0.3087705969810486</left_val>
- <right_val>-0.1500630974769592</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 16 6 4 -1.</_>
- <_>
- 9 16 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158268101513386</threshold>
- <left_val>0.0645518898963928</left_val>
- <right_val>-0.7245556712150574</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 16 2 1 -1.</_>
- <_>
- 10 16 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5864507632795721e-005</threshold>
- <left_val>-0.1759884059429169</left_val>
- <right_val>0.2321038991212845</right_val></_></_></trees>
- <stage_threshold>-1.1600480079650879</stage_threshold>
- <parent>5</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 7 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 10 9 2 -1.</_>
- <_>
- 9 10 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0278548691421747</threshold>
- <left_val>0.4551844894886017</left_val>
- <right_val>-0.1809991002082825</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 15 14 -1.</_>
- <_>
- 0 13 15 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1289504021406174</threshold>
- <left_val>-0.5256553292274475</left_val>
- <right_val>0.1618890017271042</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 5 6 -1.</_>
- <_>
- 9 3 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0244031809270382</threshold>
- <left_val>-0.1497496068477631</left_val>
- <right_val>0.4235737919807434</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 3 4 -1.</_>
- <_>
- 4 9 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4458570405840874e-003</threshold>
- <left_val>0.3294866979122162</left_val>
- <right_val>-0.1744769066572189</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 3 6 -1.</_>
- <_>
- 6 7 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5336529836058617e-003</threshold>
- <left_val>0.4742664098739624</left_val>
- <right_val>-0.0736183598637581</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 16 1 2 -1.</_>
- <_>
- 17 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1358150813030079e-005</threshold>
- <left_val>-0.3042193055152893</left_val>
- <right_val>0.1563327014446259</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 6 12 -1.</_>
- <_>
- 11 8 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0162256807088852</threshold>
- <left_val>0.2300218045711517</left_val>
- <right_val>-0.2035982012748718</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 10 6 1 -1.</_>
- <_>
- 8 10 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6007009223103523e-003</threshold>
- <left_val>0.4045926928520203</left_val>
- <right_val>-0.1348544061183929</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 17 9 3 -1.</_>
- <_>
- 10 17 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0219289995729923</threshold>
- <left_val>-0.6872448921203613</left_val>
- <right_val>0.0806842669844627</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 18 6 2 -1.</_>
- <_>
- 14 19 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8971210122108459e-003</threshold>
- <left_val>-0.6961960792541504</left_val>
- <right_val>0.0485452190041542</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 3 14 -1.</_>
- <_>
- 10 5 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4074649922549725e-003</threshold>
- <left_val>0.2516626119613648</left_val>
- <right_val>-0.1623664945363998</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 16 9 4 -1.</_>
- <_>
- 11 16 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0284371692687273</threshold>
- <left_val>0.0603942610323429</left_val>
- <right_val>-0.6674445867538452</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 4 14 -1.</_>
- <_>
- 0 7 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0832128822803497</threshold>
- <left_val>0.0643579214811325</left_val>
- <right_val>-0.5362604260444641</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 6 3 -1.</_>
- <_>
- 10 1 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0124193299561739</threshold>
- <left_val>-0.7081686258316040</left_val>
- <right_val>0.0575266107916832</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 3 4 -1.</_>
- <_>
- 7 8 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6992599964141846e-003</threshold>
- <left_val>0.5125433206558228</left_val>
- <right_val>-0.0873508006334305</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 3 4 -1.</_>
- <_>
- 5 8 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8025809489190578e-004</threshold>
- <left_val>0.2668766081333160</left_val>
- <right_val>-0.1796150952577591</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 6 5 -1.</_>
- <_>
- 7 1 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0197243392467499</threshold>
- <left_val>-0.6756373047828674</left_val>
- <right_val>0.0729419067502022</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 18 1 2 -1.</_>
- <_>
- 1 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0269250487908721e-003</threshold>
- <left_val>0.0539193190634251</left_val>
- <right_val>-0.5554018020629883</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 6 6 -1.</_>
- <_>
- 7 2 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0259571895003319</threshold>
- <left_val>0.5636252760887146</left_val>
- <right_val>-0.0718983933329582</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 18 4 2 -1.</_>
- <_>
- 0 19 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2552699772641063e-003</threshold>
- <left_val>-0.5034663081169128</left_val>
- <right_val>0.0896914526820183</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 3 8 12 -1.</_>
- <_>
- 12 7 8 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0499705784022808</threshold>
- <left_val>0.1768511980772018</left_val>
- <right_val>-0.2230195999145508</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 9 3 4 -1.</_>
- <_>
- 13 9 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9899610672146082e-003</threshold>
- <left_val>0.3912242054939270</left_val>
- <right_val>-0.1014975011348724</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 3 5 -1.</_>
- <_>
- 13 8 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8546842299401760e-003</threshold>
- <left_val>-0.1177017986774445</left_val>
- <right_val>0.4219093918800354</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 17 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0448860120959580e-004</threshold>
- <left_val>-0.1733397990465164</left_val>
- <right_val>0.2234444022178650</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 17 1 3 -1.</_>
- <_>
- 5 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9689260524464771e-005</threshold>
- <left_val>-0.2340963035821915</left_val>
- <right_val>0.1655824035406113</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 3 6 -1.</_>
- <_>
- 10 4 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0134239196777344</threshold>
- <left_val>0.4302381873130798</left_val>
- <right_val>-0.0997236520051956</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 17 2 3 -1.</_>
- <_>
- 4 18 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2581999655812979e-003</threshold>
- <left_val>0.0727209895849228</left_val>
- <right_val>-0.5750101804733276</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 1 9 -1.</_>
- <_>
- 12 10 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0125462803989649</threshold>
- <left_val>0.3618457913398743</left_val>
- <right_val>-0.1145701035857201</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 3 9 -1.</_>
- <_>
- 8 6 1 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8705769218504429e-003</threshold>
- <left_val>0.2821053862571716</left_val>
- <right_val>-0.1236755028367043</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 13 3 6 -1.</_>
- <_>
- 17 15 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0197856407612562</threshold>
- <left_val>0.0478767491877079</left_val>
- <right_val>-0.8066623806953430</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 3 8 -1.</_>
- <_>
- 8 7 1 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7588930465281010e-003</threshold>
- <left_val>-0.1092538982629776</left_val>
- <right_val>0.3374697864055634</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 3 5 -1.</_>
- <_>
- 6 0 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9974269717931747e-003</threshold>
- <left_val>-0.8029593825340271</left_val>
- <right_val>0.0457067005336285</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 9 8 -1.</_>
- <_>
- 7 6 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0130334803834558</threshold>
- <left_val>0.1868043988943100</left_val>
- <right_val>-0.1768891066312790</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 3 3 -1.</_>
- <_>
- 3 9 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3742579612880945e-003</threshold>
- <left_val>0.2772547900676727</left_val>
- <right_val>-0.1280900985002518</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 18 4 2 -1.</_>
- <_>
- 16 19 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7657810132950544e-003</threshold>
- <left_val>0.0907589420676231</left_val>
- <right_val>-0.4259473979473114</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 10 3 10 -1.</_>
- <_>
- 17 15 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8941841446794569e-004</threshold>
- <left_val>-0.3881632983684540</left_val>
- <right_val>0.0892677977681160</right_val></_></_></trees>
- <stage_threshold>-1.2257250547409058</stage_threshold>
- <parent>6</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 8 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 6 4 -1.</_>
- <_>
- 10 9 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0144692296162248</threshold>
- <left_val>0.3750782907009125</left_val>
- <right_val>-0.2492828965187073</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 10 12 -1.</_>
- <_>
- 5 6 10 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1331762969493866</threshold>
- <left_val>0.3016637861728668</left_val>
- <right_val>-0.2241407036781311</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 6 3 -1.</_>
- <_>
- 8 9 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0101321600377560</threshold>
- <left_val>0.3698559105396271</left_val>
- <right_val>-0.1785001009702683</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 7 3 7 -1.</_>
- <_>
- 12 7 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8511182218790054e-003</threshold>
- <left_val>0.4608676135540009</left_val>
- <right_val>-0.1293139010667801</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 6 4 -1.</_>
- <_>
- 14 8 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0142958397045732</threshold>
- <left_val>0.4484142959117889</left_val>
- <right_val>-0.1022624000906944</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 8 6 5 -1.</_>
- <_>
- 16 8 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9606940485537052e-003</threshold>
- <left_val>0.2792798876762390</left_val>
- <right_val>-0.1532382965087891</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 12 2 4 -1.</_>
- <_>
- 12 14 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0109327696263790</threshold>
- <left_val>-0.1514174044132233</left_val>
- <right_val>0.3988964855670929</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 15 1 2 -1.</_>
- <_>
- 3 16 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0430990086169913e-005</threshold>
- <left_val>-0.2268157005310059</left_val>
- <right_val>0.2164438962936401</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 3 4 -1.</_>
- <_>
- 13 7 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8431681245565414e-003</threshold>
- <left_val>0.4542014896869659</left_val>
- <right_val>-0.1258715987205505</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 6 6 -1.</_>
- <_>
- 12 0 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0223462097346783</threshold>
- <left_val>-0.6269019246101379</left_val>
- <right_val>0.0824031233787537</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 6 3 8 -1.</_>
- <_>
- 11 6 1 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8836669884622097e-003</threshold>
- <left_val>0.2635925114154816</left_val>
- <right_val>-0.1468663066625595</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 17 1 2 -1.</_>
- <_>
- 16 18 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5506002758629620e-005</threshold>
- <left_val>-0.2450702041387558</left_val>
- <right_val>0.1667888015508652</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 16 1 3 -1.</_>
- <_>
- 16 17 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9026997294276953e-004</threshold>
- <left_val>-0.4264996051788330</left_val>
- <right_val>0.0899735614657402</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 11 1 2 -1.</_>
- <_>
- 11 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4861579984426498e-003</threshold>
- <left_val>-0.1204025000333786</left_val>
- <right_val>0.3009765148162842</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 7 6 9 -1.</_>
- <_>
- 5 7 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119883399456739</threshold>
- <left_val>0.2785247862339020</left_val>
- <right_val>-0.1224434003233910</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 18 9 1 -1.</_>
- <_>
- 7 18 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0105022396892309</threshold>
- <left_val>0.0404527597129345</left_val>
- <right_val>-0.7405040860176086</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 4 9 -1.</_>
- <_>
- 0 14 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0309630092233419</threshold>
- <left_val>-0.6284269094467163</left_val>
- <right_val>0.0480137616395950</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 17 6 3 -1.</_>
- <_>
- 11 17 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0114145204424858</threshold>
- <left_val>0.0394052118062973</left_val>
- <right_val>-0.7167412042617798</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 6 12 -1.</_>
- <_>
- 9 8 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0123370001092553</threshold>
- <left_val>0.1994132995605469</left_val>
- <right_val>-0.1927430033683777</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 3 4 -1.</_>
- <_>
- 7 8 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9942267835140228e-003</threshold>
- <left_val>0.5131816267967224</left_val>
- <right_val>-0.0616580583155155</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 17 1 3 -1.</_>
- <_>
- 3 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1923230485990644e-003</threshold>
- <left_val>-0.7260529994964600</left_val>
- <right_val>0.0506527200341225</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 9 6 4 -1.</_>
- <_>
- 13 9 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4582789093255997e-003</threshold>
- <left_val>0.2960307896137238</left_val>
- <right_val>-0.1175478994846344</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 3 2 -1.</_>
- <_>
- 7 1 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7877509128302336e-003</threshold>
- <left_val>0.0450687110424042</left_val>
- <right_val>-0.6953541040420532</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 2 1 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2503209766000509e-004</threshold>
- <left_val>0.2004725039005280</left_val>
- <right_val>-0.1577524989843369</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 2 14 -1.</_>
- <_>
- 1 0 1 7 2.</_>
- <_>
- 2 7 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0367889925837517e-003</threshold>
- <left_val>0.2929981946945190</left_val>
- <right_val>-0.1170049980282784</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 11 8 -1.</_>
- <_>
- 5 9 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0747421607375145</threshold>
- <left_val>-0.1139231994748116</left_val>
- <right_val>0.3025662004947662</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 5 6 -1.</_>
- <_>
- 9 5 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0202555190771818</threshold>
- <left_val>-0.1051589027047157</left_val>
- <right_val>0.4067046046257019</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 5 10 -1.</_>
- <_>
- 7 14 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0442145094275475</threshold>
- <left_val>-0.2763164043426514</left_val>
- <right_val>0.1236386969685555</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 10 2 2 -1.</_>
- <_>
- 16 10 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7259558495134115e-004</threshold>
- <left_val>0.2435503005981445</left_val>
- <right_val>-0.1330094933509827</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 18 8 2 -1.</_>
- <_>
- 0 19 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4453739169985056e-003</threshold>
- <left_val>-0.5386617183685303</left_val>
- <right_val>0.0625106468796730</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 17 1 3 -1.</_>
- <_>
- 7 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2725353422574699e-005</threshold>
- <left_val>-0.2077220976352692</left_val>
- <right_val>0.1627043932676315</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 11 6 -1.</_>
- <_>
- 7 4 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0366271100938320</threshold>
- <left_val>0.3656840920448303</left_val>
- <right_val>-0.0903302803635597</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 9 3 -1.</_>
- <_>
- 8 4 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0996399000287056e-003</threshold>
- <left_val>-0.1318302005529404</left_val>
- <right_val>0.2535429894924164</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 2 2 -1.</_>
- <_>
- 0 10 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4709280114620924e-003</threshold>
- <left_val>-0.5685349702835083</left_val>
- <right_val>0.0535054318606853</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 3 6 -1.</_>
- <_>
- 0 7 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0141146704554558</threshold>
- <left_val>-0.4859901070594788</left_val>
- <right_val>0.0584852509200573</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 2 2 -1.</_>
- <_>
- 6 7 1 1 2.</_>
- <_>
- 7 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4537261864170432e-004</threshold>
- <left_val>-0.0800936371088028</left_val>
- <right_val>0.4026564955711365</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 3 6 -1.</_>
- <_>
- 8 6 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1098632179200649e-003</threshold>
- <left_val>0.4470323920249939</left_val>
- <right_val>-0.0629474371671677</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 6 4 -1.</_>
- <_>
- 14 1 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0191259607672691</threshold>
- <left_val>-0.6642286777496338</left_val>
- <right_val>0.0498227700591087</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 11 6 8 -1.</_>
- <_>
- 11 11 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0773010589182377e-003</threshold>
- <left_val>0.1737940013408661</left_val>
- <right_val>-0.1685059964656830</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 15 3 3 -1.</_>
- <_>
- 17 16 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9198289848864079e-003</threshold>
- <left_val>-0.6011028289794922</left_val>
- <right_val>0.0574279390275478</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 3 9 -1.</_>
- <_>
- 6 9 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0249021500349045</threshold>
- <left_val>0.2339798063039780</left_val>
- <right_val>-0.1181845963001251</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 8 6 -1.</_>
- <_>
- 0 5 4 3 2.</_>
- <_>
- 4 8 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0201477799564600</threshold>
- <left_val>-0.0894598215818405</left_val>
- <right_val>0.3602440059185028</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 1 3 -1.</_>
- <_>
- 0 7 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7597640398889780e-003</threshold>
- <left_val>0.0494584403932095</left_val>
- <right_val>-0.6310262084007263</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 2 6 -1.</_>
- <_>
- 18 0 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3812039978802204e-003</threshold>
- <left_val>-0.1521805971860886</left_val>
- <right_val>0.1897173970937729</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 17 6 3 -1.</_>
- <_>
- 12 17 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109045403078198</threshold>
- <left_val>-0.5809738039970398</left_val>
- <right_val>0.0448627285659313</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 15 2 2 -1.</_>
- <_>
- 13 15 1 1 2.</_>
- <_>
- 14 16 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5157178798690438e-005</threshold>
- <left_val>-0.1377734988927841</left_val>
- <right_val>0.1954316049814224</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 12 3 -1.</_>
- <_>
- 4 1 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8649770431220531e-003</threshold>
- <left_val>-0.1030222997069359</left_val>
- <right_val>0.2537496984004974</right_val></_></_></trees>
- <stage_threshold>-1.2863140106201172</stage_threshold>
- <parent>7</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 9 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 10 9 -1.</_>
- <_>
- 5 6 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1021588966250420</threshold>
- <left_val>0.4168125987052918</left_val>
- <right_val>-0.1665562987327576</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 9 7 -1.</_>
- <_>
- 10 7 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0519398190081120</threshold>
- <left_val>0.3302395045757294</left_val>
- <right_val>-0.2071571052074432</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 9 6 -1.</_>
- <_>
- 8 8 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0427177809178829</threshold>
- <left_val>0.2609373033046722</left_val>
- <right_val>-0.1601389050483704</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 16 6 2 -1.</_>
- <_>
- 0 17 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3890418601222336e-004</threshold>
- <left_val>-0.3475053012371063</left_val>
- <right_val>0.1391891986131668</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 7 14 -1.</_>
- <_>
- 12 13 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0242643896490335</threshold>
- <left_val>-0.4255205988883972</left_val>
- <right_val>0.1357838064432144</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 7 6 8 -1.</_>
- <_>
- 15 7 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0238205995410681</threshold>
- <left_val>0.3174980878829956</left_val>
- <right_val>-0.1665204018354416</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 10 6 3 -1.</_>
- <_>
- 4 10 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0518180727958679e-003</threshold>
- <left_val>0.3094717860221863</left_val>
- <right_val>-0.1333830058574677</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 17 1 3 -1.</_>
- <_>
- 18 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8517157342284918e-004</threshold>
- <left_val>-0.6008226275444031</left_val>
- <right_val>0.0877470001578331</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 6 2 -1.</_>
- <_>
- 7 2 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3705149330198765e-003</threshold>
- <left_val>-0.1231144964694977</left_val>
- <right_val>0.3833355009555817</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 4 -1.</_>
- <_>
- 6 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0134035395458341</threshold>
- <left_val>0.3387736976146698</left_val>
- <right_val>-0.1014048978686333</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 18 6 2 -1.</_>
- <_>
- 10 18 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6856360062956810e-003</threshold>
- <left_val>-0.6119359731674194</left_val>
- <right_val>0.0477402210235596</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 5 2 -1.</_>
- <_>
- 7 7 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2887418530881405e-003</threshold>
- <left_val>0.2527579069137573</left_val>
- <right_val>-0.1443451046943665</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 3 6 -1.</_>
- <_>
- 7 7 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0108767496421933</threshold>
- <left_val>0.5477573275566101</left_val>
- <right_val>-0.0594554804265499</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 18 2 2 -1.</_>
- <_>
- 18 18 1 1 2.</_>
- <_>
- 19 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7882640026509762e-004</threshold>
- <left_val>0.0834103003144264</left_val>
- <right_val>-0.4422636926174164</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 8 3 7 -1.</_>
- <_>
- 17 8 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4550149682909250e-003</threshold>
- <left_val>0.2333099991083145</left_val>
- <right_val>-0.1396448016166687</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 16 2 3 -1.</_>
- <_>
- 0 17 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2721839593723416e-003</threshold>
- <left_val>0.0604802891612053</left_val>
- <right_val>-0.4945608973503113</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 19 6 1 -1.</_>
- <_>
- 7 19 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8933159559965134e-003</threshold>
- <left_val>-0.6683326959609985</left_val>
- <right_val>0.0462184995412827</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 6 6 -1.</_>
- <_>
- 9 7 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0264499895274639</threshold>
- <left_val>-0.0732353627681732</left_val>
- <right_val>0.4442596137523651</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 2 4 -1.</_>
- <_>
- 0 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3706070389598608e-003</threshold>
- <left_val>-0.4246433973312378</left_val>
- <right_val>0.0686765611171722</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 4 3 -1.</_>
- <_>
- 2 9 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9559480026364326e-003</threshold>
- <left_val>0.1621803939342499</left_val>
- <right_val>-0.1822299957275391</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 6 9 -1.</_>
- <_>
- 3 10 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0306199099868536</threshold>
- <left_val>-0.0586433410644531</left_val>
- <right_val>0.5326362848281860</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 6 2 -1.</_>
- <_>
- 11 0 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5765907317399979e-003</threshold>
- <left_val>-0.6056268215179443</left_val>
- <right_val>0.0533459894359112</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 2 1 -1.</_>
- <_>
- 15 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6372493165545166e-005</threshold>
- <left_val>-0.1668083965778351</left_val>
- <right_val>0.1928416043519974</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 1 4 -1.</_>
- <_>
- 0 10 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0975950434803963e-003</threshold>
- <left_val>0.0441195107996464</left_val>
- <right_val>-0.5745884180068970</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 6 2 2 -1.</_>
- <_>
- 15 6 1 1 2.</_>
- <_>
- 16 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7112718564458191e-004</threshold>
- <left_val>-0.1108639985322952</left_val>
- <right_val>0.2310539036989212</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 3 6 -1.</_>
- <_>
- 8 5 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6607588455080986e-003</threshold>
- <left_val>0.4045628905296326</left_val>
- <right_val>-0.0624460913240910</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 17 1 3 -1.</_>
- <_>
- 19 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7489158613607287e-004</threshold>
- <left_val>0.0648751482367516</left_val>
- <right_val>-0.4487104117870331</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 3 1 -1.</_>
- <_>
- 8 10 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1120870476588607e-003</threshold>
- <left_val>-0.0938614606857300</left_val>
- <right_val>0.3045391142368317</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 6 6 -1.</_>
- <_>
- 14 1 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0238378196954727</threshold>
- <left_val>-0.5888742804527283</left_val>
- <right_val>0.0466594211757183</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 5 2 1 -1.</_>
- <_>
- 16 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2272899514064193e-004</threshold>
- <left_val>-0.1489859968423843</left_val>
- <right_val>0.1770195066928864</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 7 4 -1.</_>
- <_>
- 8 4 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0244674701243639</threshold>
- <left_val>-0.0557896010577679</left_val>
- <right_val>0.4920830130577087</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 14 15 -1.</_>
- <_>
- 4 5 14 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1423932015895844</threshold>
- <left_val>0.1519200056791306</left_val>
- <right_val>-0.1877889931201935</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 6 6 -1.</_>
- <_>
- 9 8 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0201231203973293</threshold>
- <left_val>0.2178010046482086</left_val>
- <right_val>-0.1208190023899078</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 17 1 3 -1.</_>
- <_>
- 11 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1513679783092812e-004</threshold>
- <left_val>-0.1685658991336823</left_val>
- <right_val>0.1645192950963974</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 16 2 4 -1.</_>
- <_>
- 12 16 1 2 2.</_>
- <_>
- 13 18 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7556740678846836e-003</threshold>
- <left_val>-0.6944203972816467</left_val>
- <right_val>0.0394494682550430</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 13 2 1 -1.</_>
- <_>
- 11 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5843912782147527e-005</threshold>
- <left_val>0.1894136965274811</left_val>
- <right_val>-0.1518384069204330</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 3 3 -1.</_>
- <_>
- 12 8 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0697711780667305e-003</threshold>
- <left_val>0.4706459939479828</left_val>
- <right_val>-0.0579276196658611</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 6 8 -1.</_>
- <_>
- 4 0 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0373931787908077</threshold>
- <left_val>-0.7589244842529297</left_val>
- <right_val>0.0341160483658314</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 6 6 -1.</_>
- <_>
- 3 5 3 3 2.</_>
- <_>
- 6 8 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0159956105053425</threshold>
- <left_val>0.3067046999931335</left_val>
- <right_val>-0.0875255763530731</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 3 3 -1.</_>
- <_>
- 11 8 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1183990649878979e-003</threshold>
- <left_val>0.2619537115097046</left_val>
- <right_val>-0.0912148877978325</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 17 4 2 -1.</_>
- <_>
- 5 18 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0651360498741269e-003</threshold>
- <left_val>-0.1742756068706513</left_val>
- <right_val>0.1527764052152634</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 16 5 2 -1.</_>
- <_>
- 8 17 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6029420075938106e-003</threshold>
- <left_val>0.3561263084411621</left_val>
- <right_val>-0.0766299962997437</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 3 3 -1.</_>
- <_>
- 0 5 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3619908392429352e-003</threshold>
- <left_val>0.0493569709360600</left_val>
- <right_val>-0.5922877192497253</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 6 2 -1.</_>
- <_>
- 8 3 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107799097895622</threshold>
- <left_val>-0.6392217874526978</left_val>
- <right_val>0.0332045406103134</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 9 3 -1.</_>
- <_>
- 7 4 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3590869754552841e-003</threshold>
- <left_val>0.1610738933086395</left_val>
- <right_val>-0.1522132009267807</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 1 4 -1.</_>
- <_>
- 0 15 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4596069753170013e-003</threshold>
- <left_val>0.0331729613244534</left_val>
- <right_val>-0.7500774264335632</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 17 8 3 -1.</_>
- <_>
- 0 18 8 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.1385448575019836e-003</threshold>
- <left_val>0.0263252798467875</left_val>
- <right_val>-0.7173116207122803</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 11 6 -1.</_>
- <_>
- 6 3 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0333384908735752</threshold>
- <left_val>0.3353661000728607</left_val>
- <right_val>-0.0708035901188850</right_val></_></_></trees>
- <stage_threshold>-1.1189440488815308</stage_threshold>
- <parent>8</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 10 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 10 6 2 -1.</_>
- <_>
- 6 10 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0195539798587561</threshold>
- <left_val>-0.1043972000479698</left_val>
- <right_val>0.5312895178794861</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 1 12 -1.</_>
- <_>
- 10 14 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0221229195594788</threshold>
- <left_val>-0.2474727034568787</left_val>
- <right_val>0.2084725052118301</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 3 4 -1.</_>
- <_>
- 6 8 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1829389519989491e-003</threshold>
- <left_val>0.3828943967819214</left_val>
- <right_val>-0.1471157968044281</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 17 1 3 -1.</_>
- <_>
- 0 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6381728760898113e-004</threshold>
- <left_val>-0.6263288855552673</left_val>
- <right_val>0.1199325993657112</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 17 1 3 -1.</_>
- <_>
- 0 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9958612332120538e-004</threshold>
- <left_val>0.0925734713673592</left_val>
- <right_val>-0.5516883134841919</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 3 4 -1.</_>
- <_>
- 14 8 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1527570039033890e-003</threshold>
- <left_val>-0.0729298070073128</left_val>
- <right_val>0.5551251173019409</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 5 4 -1.</_>
- <_>
- 1 7 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9388681761920452e-003</threshold>
- <left_val>0.2019603997468948</left_val>
- <right_val>-0.2091203927993774</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 14 1 2 -1.</_>
- <_>
- 18 15 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4613410166930407e-004</threshold>
- <left_val>-0.2786181867122650</left_val>
- <right_val>0.1381741017103195</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 2 4 -1.</_>
- <_>
- 14 8 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1691689509898424e-003</threshold>
- <left_val>0.3668589890003204</left_val>
- <right_val>-0.0763082429766655</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 6 6 8 -1.</_>
- <_>
- 12 6 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0221893899142742</threshold>
- <left_val>0.3909659981727600</left_val>
- <right_val>-0.1097154021263123</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 6 10 -1.</_>
- <_>
- 10 6 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4523608200252056e-003</threshold>
- <left_val>0.1283859014511108</left_val>
- <right_val>-0.2415986955165863</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 16 1 3 -1.</_>
- <_>
- 17 17 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7997002517804503e-004</threshold>
- <left_val>0.0719780698418617</left_val>
- <right_val>-0.4397650063037872</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 2 10 -1.</_>
- <_>
- 2 7 1 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6783639118075371e-003</threshold>
- <left_val>0.2156984955072403</left_val>
- <right_val>-0.1420592069625855</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 6 3 -1.</_>
- <_>
- 7 9 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0151886399835348</threshold>
- <left_val>0.3645878136157990</left_val>
- <right_val>-0.0826759263873100</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 5 12 -1.</_>
- <_>
- 0 14 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0619798712432384e-003</threshold>
- <left_val>-0.3438040912151337</left_val>
- <right_val>0.0920682325959206</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 1 3 -1.</_>
- <_>
- 0 12 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7351920250803232e-003</threshold>
- <left_val>-0.6172549724578857</left_val>
- <right_val>0.0492144785821438</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 16 6 4 -1.</_>
- <_>
- 8 16 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0124234501272440</threshold>
- <left_val>-0.5855895280838013</left_val>
- <right_val>0.0461126007139683</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 2 6 -1.</_>
- <_>
- 0 8 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0130314296111465</threshold>
- <left_val>-0.5971078872680664</left_val>
- <right_val>0.0406724587082863</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 18 2 1 -1.</_>
- <_>
- 12 18 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2369629694148898e-003</threshold>
- <left_val>-0.6833416819572449</left_val>
- <right_val>0.0331561788916588</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 9 2 -1.</_>
- <_>
- 5 2 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1022108420729637e-003</threshold>
- <left_val>-0.0947292372584343</left_val>
- <right_val>0.3010224103927612</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 2 -1.</_>
- <_>
- 0 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6952849738299847e-004</threshold>
- <left_val>0.0818168669939041</left_val>
- <right_val>-0.3519603013992310</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 9 3 3 -1.</_>
- <_>
- 16 9 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7970580374822021e-003</threshold>
- <left_val>0.2371897995471954</left_val>
- <right_val>-0.1176870986819267</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 16 1 3 -1.</_>
- <_>
- 18 17 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1074528386816382e-004</threshold>
- <left_val>-0.4476378858089447</left_val>
- <right_val>0.0576824806630611</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 10 6 1 -1.</_>
- <_>
- 13 10 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9126471169292927e-003</threshold>
- <left_val>0.4342541098594666</left_val>
- <right_val>-0.0668685734272003</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 4 4 -1.</_>
- <_>
- 3 3 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3132149837911129e-003</threshold>
- <left_val>0.1815001070499420</left_val>
- <right_val>-0.1418032050132752</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 1 18 -1.</_>
- <_>
- 11 8 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0608146600425243</threshold>
- <left_val>0.4722171127796173</left_val>
- <right_val>-0.0614106394350529</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 5 12 -1.</_>
- <_>
- 9 5 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0967141836881638</threshold>
- <left_val>0.2768316864967346</left_val>
- <right_val>-0.0944900363683701</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 8 1 -1.</_>
- <_>
- 16 0 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9073550142347813e-003</threshold>
- <left_val>-0.1227853000164032</left_val>
- <right_val>0.2105740010738373</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 3 10 -1.</_>
- <_>
- 9 6 1 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0431869029998779e-003</threshold>
- <left_val>0.3564156889915466</left_val>
- <right_val>-0.0778062269091606</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 2 1 6 -1.</_>
- <_>
- 19 4 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8800031654536724e-003</threshold>
- <left_val>-0.4103479087352753</left_val>
- <right_val>0.0696943774819374</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 6 2 2 -1.</_>
- <_>
- 18 7 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3547428213059902e-003</threshold>
- <left_val>-0.7301788926124573</left_val>
- <right_val>0.0366551503539085</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 3 4 -1.</_>
- <_>
- 8 7 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6500627696514130e-003</threshold>
- <left_val>0.5518112778663635</left_val>
- <right_val>-0.0531680807471275</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 6 5 -1.</_>
- <_>
- 7 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0173973105847836</threshold>
- <left_val>-0.5708423256874085</left_val>
- <right_val>0.0502140894532204</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 7 3 -1.</_>
- <_>
- 0 4 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8304329179227352e-003</threshold>
- <left_val>-0.4618028104305267</left_val>
- <right_val>0.0502026900649071</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 2 1 -1.</_>
- <_>
- 2 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3255619928240776e-004</threshold>
- <left_val>-0.0953627303242683</left_val>
- <right_val>0.2598375976085663</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 2 10 -1.</_>
- <_>
- 4 8 1 5 2.</_>
- <_>
- 5 13 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3100529797375202e-003</threshold>
- <left_val>0.2287247031927109</left_val>
- <right_val>-0.1053353026509285</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 18 18 2 -1.</_>
- <_>
- 2 18 9 1 2.</_>
- <_>
- 11 19 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5426651164889336e-003</threshold>
- <left_val>-0.5699051022529602</left_val>
- <right_val>0.0488634593784809</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 4 4 -1.</_>
- <_>
- 2 7 2 2 2.</_>
- <_>
- 4 9 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2723060362040997e-003</threshold>
- <left_val>0.3514518141746521</left_val>
- <right_val>-0.0823901072144508</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 3 4 -1.</_>
- <_>
- 18 3 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8578968271613121e-003</threshold>
- <left_val>-0.6041762232780457</left_val>
- <right_val>0.0445394404232502</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 9 2 8 -1.</_>
- <_>
- 16 9 1 4 2.</_>
- <_>
- 17 13 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5867310576140881e-003</threshold>
- <left_val>-0.1034090965986252</left_val>
- <right_val>0.2328201979398727</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 7 1 6 -1.</_>
- <_>
- 15 9 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7427811659872532e-003</threshold>
- <left_val>0.2849028110504150</left_val>
- <right_val>-0.0980904996395111</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 2 -1.</_>
- <_>
- 14 3 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3515240279957652e-003</threshold>
- <left_val>0.2309643030166626</left_val>
- <right_val>-0.1136184036731720</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 2 3 -1.</_>
- <_>
- 17 1 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2526069078594446e-003</threshold>
- <left_val>0.0644783228635788</left_val>
- <right_val>-0.4220589101314545</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 18 2 2 -1.</_>
- <_>
- 16 18 1 1 2.</_>
- <_>
- 17 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8038659840822220e-004</threshold>
- <left_val>-0.3807620108127594</left_val>
- <right_val>0.0600432902574539</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 4 4 3 -1.</_>
- <_>
- 10 5 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9043921753764153e-003</threshold>
- <left_val>-0.0761049985885620</left_val>
- <right_val>0.3323217034339905</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 8 6 -1.</_>
- <_>
- 4 2 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0969670563936234e-003</threshold>
- <left_val>0.1428779065608978</left_val>
- <right_val>-0.1688780039548874</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 14 6 6 -1.</_>
- <_>
- 7 16 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9317929446697235e-003</threshold>
- <left_val>0.2725540995597839</left_val>
- <right_val>-0.0928795635700226</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 15 2 2 -1.</_>
- <_>
- 11 16 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1471060570329428e-003</threshold>
- <left_val>-0.1527305990457535</left_val>
- <right_val>0.1970240026712418</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 9 4 -1.</_>
- <_>
- 10 1 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0376628898084164</threshold>
- <left_val>-0.5932043790817261</left_val>
- <right_val>0.0407386012375355</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 3 7 -1.</_>
- <_>
- 10 7 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8165571428835392e-003</threshold>
- <left_val>0.2549408972263336</left_val>
- <right_val>-0.0940819606184959</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 17 2 2 -1.</_>
- <_>
- 6 17 1 1 2.</_>
- <_>
- 7 18 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6205562325194478e-004</threshold>
- <left_val>0.0467957183718681</left_val>
- <right_val>-0.4845437109470367</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 3 9 -1.</_>
- <_>
- 5 6 1 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2202551849186420e-003</threshold>
- <left_val>0.2468214929103851</left_val>
- <right_val>-0.0946739763021469</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 19 10 -1.</_>
- <_>
- 0 15 19 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0689865127205849</threshold>
- <left_val>-0.6651480197906494</left_val>
- <right_val>0.0359263904392719</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 17 6 1 -1.</_>
- <_>
- 7 17 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1707608401775360e-003</threshold>
- <left_val>0.0258333198726177</left_val>
- <right_val>-0.7268627285957336</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 6 3 -1.</_>
- <_>
- 3 12 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0105362497270107</threshold>
- <left_val>-0.0818289965391159</left_val>
- <right_val>0.2976079881191254</right_val></_></_></trees>
- <stage_threshold>-1.1418989896774292</stage_threshold>
- <parent>9</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 11 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 18 5 -1.</_>
- <_>
- 8 5 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0627587288618088</threshold>
- <left_val>0.2789908051490784</left_val>
- <right_val>-0.2965610921382904</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 15 6 4 -1.</_>
- <_>
- 1 17 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4516479354351759e-003</threshold>
- <left_val>-0.3463588058948517</left_val>
- <right_val>0.2090384066104889</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 10 6 6 -1.</_>
- <_>
- 16 10 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8699486330151558e-003</threshold>
- <left_val>0.2414488941431046</left_val>
- <right_val>-0.1920557022094727</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 14 4 3 -1.</_>
- <_>
- 0 15 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4624869003891945e-003</threshold>
- <left_val>-0.5915178060531616</left_val>
- <right_val>0.1248644962906838</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 6 11 -1.</_>
- <_>
- 3 7 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.4818761572241783e-003</threshold>
- <left_val>0.1839154064655304</left_val>
- <right_val>-0.2485826015472412</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 17 7 2 -1.</_>
- <_>
- 13 18 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3226840130519122e-004</threshold>
- <left_val>-0.3304725885391235</left_val>
- <right_val>0.1099926009774208</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 14 2 3 -1.</_>
- <_>
- 0 15 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8101120367646217e-003</threshold>
- <left_val>0.0987440124154091</left_val>
- <right_val>-0.4963478147983551</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 2 -1.</_>
- <_>
- 3 0 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4422430694103241e-003</threshold>
- <left_val>0.2934441864490509</left_val>
- <right_val>-0.1309475004673004</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 6 3 -1.</_>
- <_>
- 3 1 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4148122221231461e-003</threshold>
- <left_val>-0.1476269960403442</left_val>
- <right_val>0.3327716886997223</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 2 6 -1.</_>
- <_>
- 0 10 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0155651401728392</threshold>
- <left_val>-0.6840490102767944</left_val>
- <right_val>0.0998726934194565</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 6 14 -1.</_>
- <_>
- 1 2 3 7 2.</_>
- <_>
- 4 9 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0287205204367638</threshold>
- <left_val>-0.1483328044414520</left_val>
- <right_val>0.3090257942676544</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 5 2 2 -1.</_>
- <_>
- 17 5 1 1 2.</_>
- <_>
- 18 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6687392215244472e-005</threshold>
- <left_val>-0.1743104010820389</left_val>
- <right_val>0.2140295952558518</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 10 9 4 -1.</_>
- <_>
- 14 10 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0523710586130619</threshold>
- <left_val>-0.0701568573713303</left_val>
- <right_val>0.4922299087047577</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 12 4 -1.</_>
- <_>
- 6 9 4 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0864856913685799</threshold>
- <left_val>0.5075724720954895</left_val>
- <right_val>-0.0752942115068436</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 12 2 -1.</_>
- <_>
- 11 10 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0421698689460754</threshold>
- <left_val>0.4568096101284027</left_val>
- <right_val>-0.0902199000120163</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 13 1 2 -1.</_>
- <_>
- 2 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5369830331765115e-005</threshold>
- <left_val>-0.2653827965259552</left_val>
- <right_val>0.1618953943252564</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 7 4 3 -1.</_>
- <_>
- 16 8 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2918000146746635e-003</threshold>
- <left_val>0.0748901516199112</left_val>
- <right_val>-0.5405467152595520</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 16 1 3 -1.</_>
- <_>
- 19 17 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5511651812121272e-004</threshold>
- <left_val>-0.4926199018955231</left_val>
- <right_val>0.0587239488959312</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 11 1 2 -1.</_>
- <_>
- 18 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5108138844370842e-005</threshold>
- <left_val>-0.2143210023641586</left_val>
- <right_val>0.1407776027917862</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 8 2 -1.</_>
- <_>
- 12 7 4 1 2.</_>
- <_>
- 16 8 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9981209449470043e-003</threshold>
- <left_val>-0.0905473381280899</left_val>
- <right_val>0.3571606874465942</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 9 2 4 -1.</_>
- <_>
- 15 9 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4929979806765914e-003</threshold>
- <left_val>0.2562345862388611</left_val>
- <right_val>-0.1422906965017319</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 6 4 -1.</_>
- <_>
- 14 2 3 2 2.</_>
- <_>
- 17 4 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7239411137998104e-003</threshold>
- <left_val>-0.1564925014972687</left_val>
- <right_val>0.2108871042728424</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 6 1 -1.</_>
- <_>
- 17 0 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2218320518732071e-003</threshold>
- <left_val>-0.1507298946380615</left_val>
- <right_val>0.2680186927318573</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 12 2 1 -1.</_>
- <_>
- 4 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3993072146549821e-004</threshold>
- <left_val>0.2954699099063873</left_val>
- <right_val>-0.1069239005446434</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 2 3 1 -1.</_>
- <_>
- 18 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0113459322601557e-003</threshold>
- <left_val>0.0506143495440483</left_val>
- <right_val>-0.7168337106704712</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 16 18 2 -1.</_>
- <_>
- 7 16 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0114528704434633</threshold>
- <left_val>-0.1271906942129135</left_val>
- <right_val>0.2415277957916260</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 19 8 1 -1.</_>
- <_>
- 6 19 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0782170575112104e-003</threshold>
- <left_val>0.2481300979852676</left_val>
- <right_val>-0.1346119940280914</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 17 4 3 -1.</_>
- <_>
- 1 18 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3417691010981798e-003</threshold>
- <left_val>0.0535783097147942</left_val>
- <right_val>-0.5227416753768921</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 13 1 2 -1.</_>
- <_>
- 19 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9398651248775423e-005</threshold>
- <left_val>-0.2169874012470245</left_val>
- <right_val>0.1281217932701111</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 16 10 4 -1.</_>
- <_>
- 9 16 5 2 2.</_>
- <_>
- 14 18 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0982551872730255e-003</threshold>
- <left_val>0.2440188974142075</left_val>
- <right_val>-0.1157058998942375</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 9 2 4 -1.</_>
- <_>
- 12 9 1 2 2.</_>
- <_>
- 13 11 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6289720078930259e-003</threshold>
- <left_val>0.2826147079467773</left_val>
- <right_val>-0.1065946966409683</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 11 1 9 -1.</_>
- <_>
- 19 14 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0139848599210382</threshold>
- <left_val>0.0427158996462822</left_val>
- <right_val>-0.7364631295204163</right_val></_></_></trees>
- <stage_threshold>-1.1255199909210205</stage_threshold>
- <parent>10</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 12 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 14 14 -1.</_>
- <_>
- 6 13 14 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1641651988029480</threshold>
- <left_val>-0.4896030128002167</left_val>
- <right_val>0.1760770976543427</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 17 4 2 -1.</_>
- <_>
- 2 18 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3413062384352088e-004</threshold>
- <left_val>-0.2822043001651764</left_val>
- <right_val>0.2419957965612412</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 1 3 -1.</_>
- <_>
- 0 3 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7193210078403354e-003</threshold>
- <left_val>-0.7148588895797730</left_val>
- <right_val>0.0861622169613838</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 1 3 -1.</_>
- <_>
- 0 13 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5654950402677059e-003</threshold>
- <left_val>-0.7297238111495972</left_val>
- <right_val>0.0940706729888916</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 15 4 4 -1.</_>
- <_>
- 15 17 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9124479731544852e-003</threshold>
- <left_val>-0.3118715882301331</left_val>
- <right_val>0.1814339011907578</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 18 7 -1.</_>
- <_>
- 8 5 6 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1351236999034882</threshold>
- <left_val>0.2957729995250702</left_val>
- <right_val>-0.2217925041913986</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 16 5 3 -1.</_>
- <_>
- 1 17 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0300549007952213e-003</threshold>
- <left_val>-0.6659513711929321</left_val>
- <right_val>0.0854310169816017</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 2 3 -1.</_>
- <_>
- 0 5 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8640460222959518e-003</threshold>
- <left_val>-0.6208636164665222</left_val>
- <right_val>0.0531060211360455</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 2 6 -1.</_>
- <_>
- 1 6 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4065420255064964e-003</threshold>
- <left_val>0.2234628945589066</left_val>
- <right_val>-0.2021100968122482</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 14 4 3 -1.</_>
- <_>
- 16 15 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5820449702441692e-003</threshold>
- <left_val>-0.5403040051460266</left_val>
- <right_val>0.0682136192917824</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 10 6 -1.</_>
- <_>
- 0 0 5 3 2.</_>
- <_>
- 5 3 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0415444709360600</threshold>
- <left_val>-0.0652158409357071</left_val>
- <right_val>0.6210923194885254</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 3 6 -1.</_>
- <_>
- 3 2 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1709550470113754e-003</threshold>
- <left_val>-0.7555329799652100</left_val>
- <right_val>0.0526404492557049</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 3 10 -1.</_>
- <_>
- 3 0 1 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1552738770842552e-003</threshold>
- <left_val>0.0909394025802612</left_val>
- <right_val>-0.4424613118171692</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 2 2 -1.</_>
- <_>
- 5 6 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0043520014733076e-003</threshold>
- <left_val>0.2429233044385910</left_val>
- <right_val>-0.1866979002952576</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 4 4 -1.</_>
- <_>
- 12 8 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0115198297426105</threshold>
- <left_val>-0.1176315024495125</left_val>
- <right_val>0.3672345876693726</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 5 7 3 -1.</_>
- <_>
- 13 6 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9040733873844147e-003</threshold>
- <left_val>-0.4893133044242859</left_val>
- <right_val>0.1089702025055885</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 13 1 2 -1.</_>
- <_>
- 10 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3973670583218336e-004</threshold>
- <left_val>-0.2185039967298508</left_val>
- <right_val>0.1848998963832855</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 16 4 2 -1.</_>
- <_>
- 18 16 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3727260520681739e-003</threshold>
- <left_val>-0.1507291048765183</left_val>
- <right_val>0.2917312979698181</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 4 7 -1.</_>
- <_>
- 18 12 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0108073903247714</threshold>
- <left_val>0.4289745092391968</left_val>
- <right_val>-0.1028013974428177</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 17 1 3 -1.</_>
- <_>
- 16 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2670770520344377e-003</threshold>
- <left_val>0.0741921588778496</left_val>
- <right_val>-0.6420825123786926</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 9 1 3 -1.</_>
- <_>
- 19 10 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2991129662841558e-003</threshold>
- <left_val>0.0471002794802189</left_val>
- <right_val>-0.7233523130416870</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 7 2 6 -1.</_>
- <_>
- 19 7 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7187510859221220e-003</threshold>
- <left_val>-0.1708686947822571</left_val>
- <right_val>0.2351350933313370</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 3 4 -1.</_>
- <_>
- 9 1 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6619180142879486e-003</threshold>
- <left_val>-0.7897542715072632</left_val>
- <right_val>0.0450846701860428</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 6 9 -1.</_>
- <_>
- 16 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0482666492462158</threshold>
- <left_val>-0.6957991719245911</left_val>
- <right_val>0.0419760793447495</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 10 2 -1.</_>
- <_>
- 9 2 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0152146900072694</threshold>
- <left_val>-0.1081828027963638</left_val>
- <right_val>0.3646062016487122</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 8 4 -1.</_>
- <_>
- 2 12 4 2 2.</_>
- <_>
- 6 14 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0080131515860558e-003</threshold>
- <left_val>0.3097099065780640</left_val>
- <right_val>-0.1135921031236649</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 7 3 -1.</_>
- <_>
- 0 5 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6127157770097256e-003</threshold>
- <left_val>0.0806653425097466</left_val>
- <right_val>-0.4665853083133698</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 14 3 3 -1.</_>
- <_>
- 15 14 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9607013612985611e-003</threshold>
- <left_val>-0.8720194101333618</left_val>
- <right_val>0.0367745906114578</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 4 3 -1.</_>
- <_>
- 2 3 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8847199175506830e-003</threshold>
- <left_val>-0.1166628971695900</left_val>
- <right_val>0.3307026922702789</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 2 7 -1.</_>
- <_>
- 2 0 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0988810099661350e-003</threshold>
- <left_val>0.2387257069349289</left_val>
- <right_val>-0.1765675991773605</right_val></_></_></trees>
- <stage_threshold>-1.1729990243911743</stage_threshold>
- <parent>11</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 13 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 16 4 4 -1.</_>
- <_>
- 15 18 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5903379321098328e-003</threshold>
- <left_val>-0.2368807941675186</left_val>
- <right_val>0.2463164031505585</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 12 4 -1.</_>
- <_>
- 5 10 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4815930090844631e-003</threshold>
- <left_val>-0.3137362003326416</left_val>
- <right_val>0.1867575943470001</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 17 1 2 -1.</_>
- <_>
- 3 18 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3048402555286884e-005</threshold>
- <left_val>-0.2764435112476349</left_val>
- <right_val>0.1649623960256577</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 3 4 -1.</_>
- <_>
- 7 1 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8514640182256699e-003</threshold>
- <left_val>-0.5601450800895691</left_val>
- <right_val>0.1129473969340324</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 3 4 -1.</_>
- <_>
- 7 2 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8588210009038448e-003</threshold>
- <left_val>0.0398489981889725</left_val>
- <right_val>-0.5807185769081116</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 9 12 -1.</_>
- <_>
- 9 8 3 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0246512200683355</threshold>
- <left_val>0.1675501018762589</left_val>
- <right_val>-0.2534367144107819</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 8 6 -1.</_>
- <_>
- 8 3 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0472455210983753</threshold>
- <left_val>-0.1066208034753799</left_val>
- <right_val>0.3945198059082031</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 6 3 -1.</_>
- <_>
- 17 2 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5964651294052601e-003</threshold>
- <left_val>-0.1774425059556961</left_val>
- <right_val>0.2728019058704376</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 1 3 -1.</_>
- <_>
- 0 7 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3177490327507257e-003</threshold>
- <left_val>-0.5427265167236328</left_val>
- <right_val>0.0486065894365311</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 10 2 -1.</_>
- <_>
- 15 0 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0261709839105606e-003</threshold>
- <left_val>0.2439424991607666</left_val>
- <right_val>-0.1314364969730377</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 3 2 -1.</_>
- <_>
- 12 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4632768947631121e-003</threshold>
- <left_val>0.0690493434667587</left_val>
- <right_val>-0.7033624053001404</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 19 10 1 -1.</_>
- <_>
- 8 19 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1692588925361633e-003</threshold>
- <left_val>-0.1328946053981781</left_val>
- <right_val>0.2209852933883667</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 7 16 -1.</_>
- <_>
- 0 12 7 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0293958708643913</threshold>
- <left_val>-0.2853052020072937</left_val>
- <right_val>0.1354399025440216</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 16 1 3 -1.</_>
- <_>
- 2 17 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6181448316201568e-004</threshold>
- <left_val>-0.5804138183593750</left_val>
- <right_val>0.0374506488442421</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 12 6 -1.</_>
- <_>
- 11 8 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1082099974155426</threshold>
- <left_val>0.3946728110313416</left_val>
- <right_val>-0.0786559432744980</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 9 6 7 -1.</_>
- <_>
- 16 9 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0180248692631722</threshold>
- <left_val>0.2735562920570374</left_val>
- <right_val>-0.1341529935598373</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 17 6 1 -1.</_>
- <_>
- 14 17 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2509840354323387e-003</threshold>
- <left_val>0.0233880598098040</left_val>
- <right_val>-0.8008859157562256</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 3 1 -1.</_>
- <_>
- 17 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6088379779830575e-003</threshold>
- <left_val>-0.5676252245903015</left_val>
- <right_val>0.0412156693637371</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 17 8 2 -1.</_>
- <_>
- 0 17 4 1 2.</_>
- <_>
- 4 18 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7564752427861094e-004</threshold>
- <left_val>-0.1489126980304718</left_val>
- <right_val>0.1908618062734604</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 2 1 -1.</_>
- <_>
- 18 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7122338300105184e-005</threshold>
- <left_val>-0.1555753052234650</left_val>
- <right_val>0.1942822039127350</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 15 6 5 -1.</_>
- <_>
- 6 15 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0207553207874298</threshold>
- <left_val>-0.6300653219223023</left_val>
- <right_val>0.0361343808472157</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 8 2 -1.</_>
- <_>
- 7 3 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2931738793849945e-003</threshold>
- <left_val>0.2560924887657166</left_val>
- <right_val>-0.1058826968073845</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 8 4 -1.</_>
- <_>
- 4 3 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0108441496267915</threshold>
- <left_val>-0.1012485027313232</left_val>
- <right_val>0.3032212853431702</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 19 2 1 -1.</_>
- <_>
- 6 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3752777350600809e-005</threshold>
- <left_val>0.1911157965660095</left_val>
- <right_val>-0.1384923011064529</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 19 2 1 -1.</_>
- <_>
- 6 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6480963141657412e-005</threshold>
- <left_val>-0.1520525068044663</left_val>
- <right_val>0.2170630991458893</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 17 1 3 -1.</_>
- <_>
- 16 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3560829684138298e-003</threshold>
- <left_val>0.0494317896664143</left_val>
- <right_val>-0.6427984237670898</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 2 3 -1.</_>
- <_>
- 1 11 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0662558795884252e-004</threshold>
- <left_val>0.1798201054334641</left_val>
- <right_val>-0.1404460966587067</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 19 4 1 -1.</_>
- <_>
- 2 19 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0473709553480148e-003</threshold>
- <left_val>-0.1093354970216751</left_val>
- <right_val>0.2426594048738480</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 18 4 2 -1.</_>
- <_>
- 2 18 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0243969736620784e-003</threshold>
- <left_val>0.2716268002986908</left_val>
- <right_val>-0.1182091981172562</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 17 1 3 -1.</_>
- <_>
- 2 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2024149764329195e-003</threshold>
- <left_val>-0.7015110254287720</left_val>
- <right_val>0.0394898988306522</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 11 2 -1.</_>
- <_>
- 5 8 11 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6911649666726589e-003</threshold>
- <left_val>-0.0922189131379128</left_val>
- <right_val>0.3104628920555115</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 4 10 -1.</_>
- <_>
- 9 7 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1396654993295670</threshold>
- <left_val>0.6897938847541809</left_val>
- <right_val>-0.0397061184048653</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 4 3 -1.</_>
- <_>
- 0 3 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1276050247251987e-003</threshold>
- <left_val>0.0972776114940643</left_val>
- <right_val>-0.2884179949760437</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 19 10 1 -1.</_>
- <_>
- 15 19 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7594310231506824e-003</threshold>
- <left_val>0.2416867017745972</left_val>
- <right_val>-0.1127782016992569</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 17 8 3 -1.</_>
- <_>
- 15 17 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2236132323741913e-003</threshold>
- <left_val>-0.1143027991056442</left_val>
- <right_val>0.2425678074359894</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 19 3 1 -1.</_>
- <_>
- 9 19 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2590440455824137e-003</threshold>
- <left_val>-0.5967938899993897</left_val>
- <right_val>0.0476639606058598</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 4 -1.</_>
- <_>
- 15 0 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7192099262028933e-003</threshold>
- <left_val>-0.4641413092613220</left_val>
- <right_val>0.0528476908802986</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 6 4 3 -1.</_>
- <_>
- 10 7 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9696151874959469e-003</threshold>
- <left_val>-0.0732442885637283</left_val>
- <right_val>0.3874309062957764</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 3 2 -1.</_>
- <_>
- 0 9 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1776720210909843e-003</threshold>
- <left_val>-0.7419322729110718</left_val>
- <right_val>0.0404967106878757</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 12 3 6 -1.</_>
- <_>
- 7 14 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0035100430250168e-003</threshold>
- <left_val>-0.1388880014419556</left_val>
- <right_val>0.1876762062311173</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 18 1 2 -1.</_>
- <_>
- 1 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2013457752764225e-004</threshold>
- <left_val>-0.5494061708450317</left_val>
- <right_val>0.0494178496301174</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 4 4 -1.</_>
- <_>
- 2 12 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3168768063187599e-003</threshold>
- <left_val>-0.0824829787015915</left_val>
- <right_val>0.3174056112766266</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 6 7 -1.</_>
- <_>
- 3 8 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0147745897993445</threshold>
- <left_val>0.2081609964370728</left_val>
- <right_val>-0.1211555972695351</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 4 5 -1.</_>
- <_>
- 2 8 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0414164513349533</threshold>
- <left_val>-0.8243780732154846</left_val>
- <right_val>0.0333291888237000</right_val></_></_></trees>
- <stage_threshold>-1.0368299484252930</stage_threshold>
- <parent>12</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 14 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 16 1 3 -1.</_>
- <_>
- 19 17 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0962520334869623e-004</threshold>
- <left_val>0.0845799669623375</left_val>
- <right_val>-0.5611841082572937</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 18 6 -1.</_>
- <_>
- 7 5 6 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0561397895216942</threshold>
- <left_val>0.1534174978733063</left_val>
- <right_val>-0.2696731984615326</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 15 4 2 -1.</_>
- <_>
- 2 16 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0292009683325887e-003</threshold>
- <left_val>-0.2048998028039932</left_val>
- <right_val>0.2015317976474762</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 6 2 11 -1.</_>
- <_>
- 19 6 1 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8783010784536600e-003</threshold>
- <left_val>-0.1735114008188248</left_val>
- <right_val>0.2129794955253601</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 2 6 -1.</_>
- <_>
- 0 14 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4144392274320126e-003</threshold>
- <left_val>-0.5962486863136292</left_val>
- <right_val>0.0470779500901699</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 5 3 2 -1.</_>
- <_>
- 12 6 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4831849839538336e-003</threshold>
- <left_val>0.1902461051940918</left_val>
- <right_val>-0.1598639041185379</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 2 3 -1.</_>
- <_>
- 1 4 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5968941412866116e-003</threshold>
- <left_val>0.0314471311867237</left_val>
- <right_val>-0.6869434118270874</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 14 4 4 -1.</_>
- <_>
- 16 16 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4255330208688974e-003</threshold>
- <left_val>-0.2360935956239700</left_val>
- <right_val>0.1103610992431641</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 12 5 -1.</_>
- <_>
- 10 8 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0849505662918091</threshold>
- <left_val>0.2310716062784195</left_val>
- <right_val>-0.1377653032541275</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 7 2 7 -1.</_>
- <_>
- 14 7 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0145681016147137e-003</threshold>
- <left_val>0.3867610991001129</left_val>
- <right_val>-0.0562173798680305</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 2 6 -1.</_>
- <_>
- 2 8 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1482061129063368e-003</threshold>
- <left_val>0.1819159984588623</left_val>
- <right_val>-0.1761569976806641</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 7 -1.</_>
- <_>
- 16 0 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103967702016234</threshold>
- <left_val>-0.7535138130187988</left_val>
- <right_val>0.0240919701755047</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 6 2 -1.</_>
- <_>
- 6 2 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0134667502716184</threshold>
- <left_val>-0.7211886048316956</left_val>
- <right_val>0.0349493697285652</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 20 9 -1.</_>
- <_>
- 0 12 20 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0844354778528214</threshold>
- <left_val>-0.3379263877868652</left_val>
- <right_val>0.0711138173937798</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 14 2 2 -1.</_>
- <_>
- 10 15 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4771490134298801e-003</threshold>
- <left_val>-0.1176510974764824</left_val>
- <right_val>0.2254198938608170</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 10 4 -1.</_>
- <_>
- 6 7 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158280506730080</threshold>
- <left_val>-0.0695362165570259</left_val>
- <right_val>0.3139536976814270</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 5 9 -1.</_>
- <_>
- 6 4 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0649169832468033</threshold>
- <left_val>-0.0750435888767242</left_val>
- <right_val>0.4067733883857727</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 18 2 2 -1.</_>
- <_>
- 16 18 1 1 2.</_>
- <_>
- 17 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9652469675056636e-004</threshold>
- <left_val>0.0739533603191376</left_val>
- <right_val>-0.3454400897026062</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 14 2 4 -1.</_>
- <_>
- 0 16 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3129520229995251e-003</threshold>
- <left_val>-0.1690943986177445</left_val>
- <right_val>0.1525837033987045</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 2 5 -1.</_>
- <_>
- 11 8 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8032129891216755e-003</threshold>
- <left_val>0.3526014983654022</left_val>
- <right_val>-0.0834440663456917</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 7 12 7 -1.</_>
- <_>
- 7 7 4 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1479167938232422</threshold>
- <left_val>0.4300465881824493</left_val>
- <right_val>-0.0573099292814732</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 6 -1.</_>
- <_>
- 3 0 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0165841504931450</threshold>
- <left_val>0.2343268990516663</left_val>
- <right_val>-0.1090764030814171</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 4 4 -1.</_>
- <_>
- 3 0 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0183270573616028e-003</threshold>
- <left_val>-0.1360093951225281</left_val>
- <right_val>0.2640928924083710</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 8 -1.</_>
- <_>
- 2 0 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0364719182252884</threshold>
- <left_val>-0.6280974149703980</left_val>
- <right_val>0.0435451082885265</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 1 -1.</_>
- <_>
- 1 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3119226726703346e-005</threshold>
- <left_val>0.1647063046693802</left_val>
- <right_val>-0.1646378040313721</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 3 3 -1.</_>
- <_>
- 0 1 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6719450727105141e-003</threshold>
- <left_val>-0.4742136001586914</left_val>
- <right_val>0.0485869199037552</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 2 4 -1.</_>
- <_>
- 5 6 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0151178836822510e-003</threshold>
- <left_val>0.1822218000888825</left_val>
- <right_val>-0.1409751027822495</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 10 9 1 -1.</_>
- <_>
- 5 10 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0199480205774307</threshold>
- <left_val>-0.0697876587510109</left_val>
- <right_val>0.3670746088027954</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 17 1 3 -1.</_>
- <_>
- 1 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6699437340721488e-004</threshold>
- <left_val>0.0557292997837067</left_val>
- <right_val>-0.4458543062210083</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 17 2 3 -1.</_>
- <_>
- 0 18 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1806039838120341e-003</threshold>
- <left_val>-0.4687662124633789</left_val>
- <right_val>0.0489022210240364</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 15 16 3 -1.</_>
- <_>
- 8 15 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158473495393991</threshold>
- <left_val>-0.1212020963430405</left_val>
- <right_val>0.2056653052568436</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 4 1 -1.</_>
- <_>
- 2 5 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1985700111836195e-003</threshold>
- <left_val>0.2026209980249405</left_val>
- <right_val>-0.1282382011413574</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 6 20 -1.</_>
- <_>
- 3 0 2 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1096495985984802</threshold>
- <left_val>-0.8661919236183167</left_val>
- <right_val>0.0303518492728472</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 4 6 -1.</_>
- <_>
- 2 5 2 3 2.</_>
- <_>
- 4 8 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.2532606795430183e-003</threshold>
- <left_val>0.2934311926364899</left_val>
- <right_val>-0.0853619500994682</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 16 6 3 -1.</_>
- <_>
- 11 16 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0146865304559469</threshold>
- <left_val>0.0327986218035221</left_val>
- <right_val>-0.7755656242370606</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 17 6 1 -1.</_>
- <_>
- 14 17 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3514430029317737e-003</threshold>
- <left_val>0.2442699968814850</left_val>
- <right_val>-0.1150325015187264</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 17 15 2 -1.</_>
- <_>
- 8 17 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3728090822696686e-003</threshold>
- <left_val>0.2168767005205154</left_val>
- <right_val>-0.1398448050022125</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 0 2 3 -1.</_>
- <_>
- 18 1 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4263390116393566e-003</threshold>
- <left_val>0.0456142202019691</left_val>
- <right_val>-0.5456771254539490</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 7 4 -1.</_>
- <_>
- 13 3 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8404068909585476e-003</threshold>
- <left_val>0.1494950056076050</left_val>
- <right_val>-0.1506250947713852</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 6 4 4 -1.</_>
- <_>
- 13 6 2 2 2.</_>
- <_>
- 15 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7988980766385794e-003</threshold>
- <left_val>-0.0873016268014908</left_val>
- <right_val>0.2548153102397919</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 6 3 4 -1.</_>
- <_>
- 17 8 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0094281062483788e-003</threshold>
- <left_val>0.1725907027721405</left_val>
- <right_val>-0.1428847014904022</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 9 2 2 -1.</_>
- <_>
- 15 9 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4370709434151649e-003</threshold>
- <left_val>0.2684809863567352</left_val>
- <right_val>-0.0818982198834419</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 17 1 3 -1.</_>
- <_>
- 17 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0485399980098009e-003</threshold>
- <left_val>0.0461132600903511</left_val>
- <right_val>-0.4724327921867371</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 19 8 1 -1.</_>
- <_>
- 7 19 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7460780218243599e-003</threshold>
- <left_val>-0.1103043034672737</left_val>
- <right_val>0.2037972956895828</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 3 6 -1.</_>
- <_>
- 0 12 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8608627878129482e-003</threshold>
- <left_val>-0.1561965942382813</left_val>
- <right_val>0.1592743992805481</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 15 5 -1.</_>
- <_>
- 9 7 5 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0277249794453382</threshold>
- <left_val>0.1134911999106407</left_val>
- <right_val>-0.2188514024019241</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 9 5 -1.</_>
- <_>
- 9 9 3 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0470806397497654</threshold>
- <left_val>-0.0416887290775776</left_val>
- <right_val>0.5363004803657532</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 6 2 -1.</_>
- <_>
- 10 1 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9283770173788071e-003</threshold>
- <left_val>-0.5359513163566589</left_val>
- <right_val>0.0442375093698502</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 12 2 -1.</_>
- <_>
- 10 0 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0128805404528975</threshold>
- <left_val>0.2323794960975647</left_val>
- <right_val>-0.1024625003337860</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 10 3 -1.</_>
- <_>
- 12 0 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0236047692596912</threshold>
- <left_val>-0.0882914364337921</left_val>
- <right_val>0.3056105971336365</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 9 6 -1.</_>
- <_>
- 5 2 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0159022007137537</threshold>
- <left_val>-0.1223810985684395</left_val>
- <right_val>0.1784912049770355</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 6 4 -1.</_>
- <_>
- 8 5 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9939495772123337e-003</threshold>
- <left_val>-0.0837290063500404</left_val>
- <right_val>0.3231959044933319</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 2 3 -1.</_>
- <_>
- 17 5 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.7100867852568626e-003</threshold>
- <left_val>0.0384792089462280</left_val>
- <right_val>-0.6813815236091614</right_val></_></_></trees>
- <stage_threshold>-1.0492420196533203</stage_threshold>
- <parent>13</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 15 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 4 3 -1.</_>
- <_>
- 5 3 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2480720654129982e-003</threshold>
- <left_val>-0.1641687005758286</left_val>
- <right_val>0.4164853096008301</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 2 6 -1.</_>
- <_>
- 6 9 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5813550241291523e-003</threshold>
- <left_val>-0.1246595978736877</left_val>
- <right_val>0.4038512110710144</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 10 2 6 -1.</_>
- <_>
- 15 10 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6073239967226982e-003</threshold>
- <left_val>0.2608245909214020</left_val>
- <right_val>-0.2028252035379410</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 3 3 -1.</_>
- <_>
- 7 5 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5205370038747787e-003</threshold>
- <left_val>-0.1055722981691361</left_val>
- <right_val>0.3666911125183106</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 4 8 2 -1.</_>
- <_>
- 12 4 4 1 2.</_>
- <_>
- 16 5 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4119189474731684e-003</threshold>
- <left_val>-0.1387760043144226</left_val>
- <right_val>0.2995991110801697</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 8 1 6 -1.</_>
- <_>
- 15 10 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.7156179100275040e-003</threshold>
- <left_val>-0.0776834636926651</left_val>
- <right_val>0.4848192036151886</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 17 11 3 -1.</_>
- <_>
- 4 18 11 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1093840952962637e-003</threshold>
- <left_val>-0.1122900024056435</left_val>
- <right_val>0.2921550869941711</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 16 20 -1.</_>
- <_>
- 3 10 16 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0868366286158562</threshold>
- <left_val>-0.3677960038185120</left_val>
- <right_val>0.0725972428917885</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 4 4 6 -1.</_>
- <_>
- 12 6 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2652182057499886e-003</threshold>
- <left_val>-0.1089029014110565</left_val>
- <right_val>0.3179126083850861</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 6 6 -1.</_>
- <_>
- 13 0 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0199135299772024</threshold>
- <left_val>-0.5337343811988831</left_val>
- <right_val>0.0705857127904892</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 6 4 -1.</_>
- <_>
- 13 1 3 2 2.</_>
- <_>
- 16 3 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8297839928418398e-003</threshold>
- <left_val>-0.1357591003179550</left_val>
- <right_val>0.2278887927532196</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 6 4 -1.</_>
- <_>
- 13 0 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0104318596422672</threshold>
- <left_val>0.0887979120016098</left_val>
- <right_val>-0.4795897006988525</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 6 9 -1.</_>
- <_>
- 10 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0200404394418001</threshold>
- <left_val>0.1574553996324539</left_val>
- <right_val>-0.1777157038450241</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 3 4 -1.</_>
- <_>
- 8 0 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2967290394008160e-003</threshold>
- <left_val>-0.6843491792678833</left_val>
- <right_val>0.0356714613735676</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 17 14 2 -1.</_>
- <_>
- 0 17 7 1 2.</_>
- <_>
- 7 18 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1624139044433832e-003</threshold>
- <left_val>0.2831803858280182</left_val>
- <right_val>-0.0985112786293030</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 18 2 2 -1.</_>
- <_>
- 6 18 1 1 2.</_>
- <_>
- 7 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5464888787828386e-004</threshold>
- <left_val>-0.3707734048366547</left_val>
- <right_val>0.0809329524636269</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 17 1 3 -1.</_>
- <_>
- 18 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8152060511056334e-004</threshold>
- <left_val>-0.3220703005790710</left_val>
- <right_val>0.0775510594248772</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 18 2 2 -1.</_>
- <_>
- 17 18 1 1 2.</_>
- <_>
- 18 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7563021285459399e-004</threshold>
- <left_val>-0.3244127929210663</left_val>
- <right_val>0.0879494771361351</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 1 9 -1.</_>
- <_>
- 5 10 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3823810778558254e-003</threshold>
- <left_val>-0.0889247134327888</left_val>
- <right_val>0.3172721862792969</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 6 4 -1.</_>
- <_>
- 7 3 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0111509095877409</threshold>
- <left_val>0.0710198432207108</left_val>
- <right_val>-0.4049403965473175</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 6 2 -1.</_>
- <_>
- 1 9 3 1 2.</_>
- <_>
- 4 10 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0593760525807738e-003</threshold>
- <left_val>0.2605066895484924</left_val>
- <right_val>-0.1176564022898674</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 2 3 -1.</_>
- <_>
- 7 9 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3906480055302382e-003</threshold>
- <left_val>-0.0843886211514473</left_val>
- <right_val>0.3123055100440979</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 6 12 -1.</_>
- <_>
- 8 8 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0110007496550679</threshold>
- <left_val>0.1915224939584732</left_val>
- <right_val>-0.1521002054214478</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 18 2 2 -1.</_>
- <_>
- 4 18 1 1 2.</_>
- <_>
- 5 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4643228971399367e-004</threshold>
- <left_val>-0.3176515996456146</left_val>
- <right_val>0.0865822583436966</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 6 6 -1.</_>
- <_>
- 9 3 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0230532698333263</threshold>
- <left_val>-0.1008976027369499</left_val>
- <right_val>0.2576929032802582</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 17 6 2 -1.</_>
- <_>
- 6 18 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2135660983622074e-003</threshold>
- <left_val>0.4568921029567719</left_val>
- <right_val>-0.0524047911167145</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 18 16 2 -1.</_>
- <_>
- 3 19 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7139709396287799e-004</threshold>
- <left_val>-0.3551838099956513</left_val>
- <right_val>0.0800943821668625</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 3 11 -1.</_>
- <_>
- 4 0 1 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5676229959353805e-003</threshold>
- <left_val>0.1009142026305199</left_val>
- <right_val>-0.2160304039716721</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 18 3 1 -1.</_>
- <_>
- 14 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5460801599547267e-004</threshold>
- <left_val>0.0578961782157421</left_val>
- <right_val>-0.4046111106872559</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 9 6 -1.</_>
- <_>
- 6 2 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0206989701837301</threshold>
- <left_val>0.3154363036155701</left_val>
- <right_val>-0.0807130485773087</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 12 4 -1.</_>
- <_>
- 1 2 6 2 2.</_>
- <_>
- 7 4 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0206199400126934</threshold>
- <left_val>0.2718166112899780</left_val>
- <right_val>-0.0763586163520813</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 6 4 -1.</_>
- <_>
- 5 3 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0216111298650503</threshold>
- <left_val>0.0394934490323067</left_val>
- <right_val>-0.5942965149879456</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 8 1 -1.</_>
- <_>
- 16 0 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5676742233335972e-003</threshold>
- <left_val>-0.0983536690473557</left_val>
- <right_val>0.2364927977323532</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 6 2 -1.</_>
- <_>
- 11 0 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8434796780347824e-003</threshold>
- <left_val>-0.5252342820167542</left_val>
- <right_val>0.0430999211966991</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 12 1 -1.</_>
- <_>
- 9 3 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.4260741025209427e-003</threshold>
- <left_val>0.2466513067483902</left_val>
- <right_val>-0.0941307172179222</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 6 2 -1.</_>
- <_>
- 2 7 3 1 2.</_>
- <_>
- 5 8 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9830230157822371e-003</threshold>
- <left_val>0.2674370110034943</left_val>
- <right_val>-0.0900693163275719</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 4 6 -1.</_>
- <_>
- 0 10 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7358399927616119e-003</threshold>
- <left_val>0.1594001948833466</left_val>
- <right_val>-0.1578941047191620</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 3 7 -1.</_>
- <_>
- 10 6 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0135138696059585</threshold>
- <left_val>0.4079233109951019</left_val>
- <right_val>-0.0642231181263924</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 6 13 -1.</_>
- <_>
- 11 6 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0193940103054047</threshold>
- <left_val>0.1801564991474152</left_val>
- <right_val>-0.1373140066862106</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 12 6 1 -1.</_>
- <_>
- 13 12 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2684770412743092e-003</threshold>
- <left_val>0.2908039093017578</left_val>
- <right_val>-0.0801619067788124</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 9 2 6 -1.</_>
- <_>
- 18 12 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1773589327931404e-004</threshold>
- <left_val>-0.2141298055648804</left_val>
- <right_val>0.1127343997359276</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 2 3 9 -1.</_>
- <_>
- 18 2 1 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6351119205355644e-003</threshold>
- <left_val>-0.4536595940589905</left_val>
- <right_val>0.0546250604093075</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 4 6 -1.</_>
- <_>
- 13 8 2 3 2.</_>
- <_>
- 15 11 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3652976900339127e-003</threshold>
- <left_val>0.2647292017936707</left_val>
- <right_val>-0.0943341106176376</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 12 6 -1.</_>
- <_>
- 10 2 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0277684498578310</threshold>
- <left_val>-0.1013671010732651</left_val>
- <right_val>0.2074397951364517</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 14 16 6 -1.</_>
- <_>
- 12 14 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0548912286758423</threshold>
- <left_val>0.2884030938148499</left_val>
- <right_val>-0.0753120407462120</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 19 10 1 -1.</_>
- <_>
- 11 19 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5793339591473341e-003</threshold>
- <left_val>-0.1108852997422218</left_val>
- <right_val>0.2172496020793915</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 17 1 3 -1.</_>
- <_>
- 6 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6196516854688525e-005</threshold>
- <left_val>-0.1887210011482239</left_val>
- <right_val>0.1444068998098373</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 14 10 3 -1.</_>
- <_>
- 4 15 10 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0907251425087452e-003</threshold>
- <left_val>-0.0776012316346169</left_val>
- <right_val>0.2939837872982025</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 12 12 -1.</_>
- <_>
- 6 4 12 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1044425964355469</threshold>
- <left_val>0.2013310939073563</left_val>
- <right_val>-0.1090397015213966</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 4 2 -1.</_>
- <_>
- 5 7 2 1 2.</_>
- <_>
- 7 8 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7273090826347470e-004</threshold>
- <left_val>0.1794590055942535</left_val>
- <right_val>-0.1202367022633553</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 5 3 2 -1.</_>
- <_>
- 18 5 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2412849832326174e-003</threshold>
- <left_val>0.0406881310045719</left_val>
- <right_val>-0.5460057258605957</right_val></_></_></trees>
- <stage_threshold>-1.1122100353240967</stage_threshold>
- <parent>14</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 16 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 13 6 3 -1.</_>
- <_>
- 8 14 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2965320646762848e-003</threshold>
- <left_val>-0.1215452998876572</left_val>
- <right_val>0.6442037224769592</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 13 5 3 -1.</_>
- <_>
- 8 14 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5326260365545750e-003</threshold>
- <left_val>0.5123322010040283</left_val>
- <right_val>-0.1110825985670090</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 1 18 -1.</_>
- <_>
- 13 11 1 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9183230362832546e-003</threshold>
- <left_val>-0.5061542987823486</left_val>
- <right_val>0.1150197982788086</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 10 9 2 -1.</_>
- <_>
- 9 10 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0236923396587372</threshold>
- <left_val>0.3716728091239929</left_val>
- <right_val>-0.1467268019914627</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 7 4 -1.</_>
- <_>
- 11 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0201774705201387</threshold>
- <left_val>-0.1738884001970291</left_val>
- <right_val>0.4775949120521545</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 6 8 -1.</_>
- <_>
- 3 0 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217232108116150</threshold>
- <left_val>-0.4388009011745453</left_val>
- <right_val>0.1357689946889877</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 15 3 3 -1.</_>
- <_>
- 9 16 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8369780629873276e-003</threshold>
- <left_val>-0.1251206994056702</left_val>
- <right_val>0.4678902924060822</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 17 9 3 -1.</_>
- <_>
- 9 18 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7148420922458172e-003</threshold>
- <left_val>-0.0880188569426537</left_val>
- <right_val>0.3686651885509491</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 12 3 3 -1.</_>
- <_>
- 12 13 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2625689636915922e-003</threshold>
- <left_val>-0.0853353068232536</left_val>
- <right_val>0.5164473056793213</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 3 5 -1.</_>
- <_>
- 5 1 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5618850961327553e-003</threshold>
- <left_val>-0.4450393021106720</left_val>
- <right_val>0.0917381718754768</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 14 2 3 -1.</_>
- <_>
- 10 15 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9227749435231090e-003</threshold>
- <left_val>-0.1107731014490128</left_val>
- <right_val>0.3941699862480164</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 17 2 2 -1.</_>
- <_>
- 18 17 1 1 2.</_>
- <_>
- 19 18 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5111969918943942e-004</threshold>
- <left_val>-0.3777570128440857</left_val>
- <right_val>0.1216617003083229</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 18 2 2 -1.</_>
- <_>
- 18 18 1 1 2.</_>
- <_>
- 19 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9121779769193381e-004</threshold>
- <left_val>0.0748160183429718</left_val>
- <right_val>-0.4076710045337677</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 18 2 2 -1.</_>
- <_>
- 18 18 1 1 2.</_>
- <_>
- 19 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6525629800744355e-004</threshold>
- <left_val>-0.3315171897411346</left_val>
- <right_val>0.1129112020134926</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 10 9 1 -1.</_>
- <_>
- 7 10 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0200867000967264</threshold>
- <left_val>-0.0615981183946133</left_val>
- <right_val>0.5612881779670715</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 6 5 -1.</_>
- <_>
- 5 9 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0367832481861115</threshold>
- <left_val>-0.0602513886988163</left_val>
- <right_val>0.5219249129295349</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 8 1 12 -1.</_>
- <_>
- 18 14 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3941619545221329e-003</threshold>
- <left_val>-0.3550305068492889</left_val>
- <right_val>0.1086302027106285</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 8 6 -1.</_>
- <_>
- 0 2 4 3 2.</_>
- <_>
- 4 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0151816699653864</threshold>
- <left_val>0.2273965030908585</left_val>
- <right_val>-0.1625299006700516</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 3 3 -1.</_>
- <_>
- 9 5 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6796840615570545e-003</threshold>
- <left_val>-0.0575350411236286</left_val>
- <right_val>0.4812423884868622</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 18 2 2 -1.</_>
- <_>
- 3 18 1 1 2.</_>
- <_>
- 4 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7988319450523704e-004</threshold>
- <left_val>-0.3058767020702362</left_val>
- <right_val>0.1086815968155861</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 4 3 -1.</_>
- <_>
- 6 5 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5850999411195517e-003</threshold>
- <left_val>0.3859694004058838</left_val>
- <right_val>-0.0921940729022026</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 7 4 2 -1.</_>
- <_>
- 16 7 2 1 2.</_>
- <_>
- 18 8 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0793360415846109e-003</threshold>
- <left_val>-0.1119038984179497</left_val>
- <right_val>0.3112520873546600</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 17 1 3 -1.</_>
- <_>
- 5 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3285802500322461e-005</threshold>
- <left_val>-0.2023991048336029</left_val>
- <right_val>0.1558668017387390</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 15 20 -1.</_>
- <_>
- 2 10 15 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1367873996496201</threshold>
- <left_val>-0.2167285978794098</left_val>
- <right_val>0.1442039012908936</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 11 6 4 -1.</_>
- <_>
- 8 11 3 2 2.</_>
- <_>
- 11 13 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0117292599752545</threshold>
- <left_val>0.4350377023220062</left_val>
- <right_val>-0.0748865306377411</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 16 4 3 -1.</_>
- <_>
- 8 17 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9230841211974621e-003</threshold>
- <left_val>-0.0502893291413784</left_val>
- <right_val>0.5883116126060486</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 18 2 2 -1.</_>
- <_>
- 8 18 1 1 2.</_>
- <_>
- 9 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9819121118634939e-004</threshold>
- <left_val>-0.3823240101337433</left_val>
- <right_val>0.0924511328339577</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 16 13 3 -1.</_>
- <_>
- 2 17 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7992770560085773e-003</threshold>
- <left_val>0.4848878979682922</left_val>
- <right_val>-0.0731365233659744</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 16 2 2 -1.</_>
- <_>
- 16 16 1 1 2.</_>
- <_>
- 17 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0155890271998942e-004</threshold>
- <left_val>-0.3575735986232758</left_val>
- <right_val>0.1058188006281853</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 6 3 -1.</_>
- <_>
- 10 1 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0103907696902752</threshold>
- <left_val>0.0529204681515694</left_val>
- <right_val>-0.5724965929985046</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 7 2 2 -1.</_>
- <_>
- 16 7 1 1 2.</_>
- <_>
- 17 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.4488041941076517e-004</threshold>
- <left_val>0.4496682882308960</left_val>
- <right_val>-0.0830755233764648</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 7 4 2 -1.</_>
- <_>
- 14 7 2 1 2.</_>
- <_>
- 16 8 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2651870492845774e-003</threshold>
- <left_val>-0.0966954380273819</left_val>
- <right_val>0.3130227029323578</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 14 1 -1.</_>
- <_>
- 11 0 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0170945394784212</threshold>
- <left_val>-0.0812489762902260</left_val>
- <right_val>0.3611383140087128</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 4 8 2 -1.</_>
- <_>
- 10 4 4 1 2.</_>
- <_>
- 14 5 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5973359588533640e-003</threshold>
- <left_val>-0.1133835017681122</left_val>
- <right_val>0.2223394960165024</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 3 2 -1.</_>
- <_>
- 9 2 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4527440071105957e-003</threshold>
- <left_val>0.0697504431009293</left_val>
- <right_val>-0.3672071099281311</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 11 6 3 -1.</_>
- <_>
- 12 12 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7638658434152603e-003</threshold>
- <left_val>-0.0657889619469643</left_val>
- <right_val>0.3832854032516480</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 1 4 -1.</_>
- <_>
- 1 7 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2501081265509129e-003</threshold>
- <left_val>-0.7075446844100952</left_val>
- <right_val>0.0383501984179020</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 1 18 -1.</_>
- <_>
- 1 7 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1765329185873270e-003</threshold>
- <left_val>0.1375540047883987</left_val>
- <right_val>-0.2324002981185913</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 3 2 -1.</_>
- <_>
- 11 14 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2191169448196888e-003</threshold>
- <left_val>-0.1293545067310333</left_val>
- <right_val>0.2273788005113602</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 12 2 -1.</_>
- <_>
- 0 1 6 1 2.</_>
- <_>
- 6 2 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6365579366683960e-003</threshold>
- <left_val>0.3806715011596680</left_val>
- <right_val>-0.0672468394041061</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 18 2 2 -1.</_>
- <_>
- 10 18 1 1 2.</_>
- <_>
- 11 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3844049428589642e-004</threshold>
- <left_val>-0.3112238049507141</left_val>
- <right_val>0.0838383585214615</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 4 4 -1.</_>
- <_>
- 4 5 2 2 2.</_>
- <_>
- 6 7 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1017560288310051e-003</threshold>
- <left_val>0.2606728076934815</left_val>
- <right_val>-0.1044974029064179</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 1 3 -1.</_>
- <_>
- 6 8 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3336989795789123e-003</threshold>
- <left_val>-0.0582501403987408</left_val>
- <right_val>0.4768244028091431</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 10 6 2 -1.</_>
- <_>
- 16 10 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2090239906683564e-003</threshold>
- <left_val>0.1483450978994370</left_val>
- <right_val>-0.1732946932315826</right_val></_></_></trees>
- <stage_threshold>-1.2529590129852295</stage_threshold>
- <parent>15</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 17 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 8 3 6 -1.</_>
- <_>
- 17 8 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1760931015014648e-003</threshold>
- <left_val>0.3333333134651184</left_val>
- <right_val>-0.1664234995841980</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 10 6 2 -1.</_>
- <_>
- 6 10 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0248580798506737</threshold>
- <left_val>-0.0727288722991943</left_val>
- <right_val>0.5667458176612854</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 3 7 -1.</_>
- <_>
- 7 5 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7597280032932758e-003</threshold>
- <left_val>0.4625856876373291</left_val>
- <right_val>-0.0931121781468391</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 6 6 -1.</_>
- <_>
- 0 16 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8239021822810173e-003</threshold>
- <left_val>-0.2741461098194122</left_val>
- <right_val>0.1324304938316345</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 5 1 9 -1.</_>
- <_>
- 12 8 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109488395974040</threshold>
- <left_val>0.2234548032283783</left_val>
- <right_val>-0.1496544927358627</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 3 3 -1.</_>
- <_>
- 6 9 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4349008928984404e-003</threshold>
- <left_val>0.3872498869895935</left_val>
- <right_val>-0.0661217272281647</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 6 13 -1.</_>
- <_>
- 9 5 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0311562903225422</threshold>
- <left_val>0.2407827973365784</left_val>
- <right_val>-0.1140690967440605</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 8 1 10 -1.</_>
- <_>
- 19 13 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1100519914180040e-003</threshold>
- <left_val>-0.2820797860622406</left_val>
- <right_val>0.1327542960643768</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 18 6 1 -1.</_>
- <_>
- 13 18 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1762740109115839e-003</threshold>
- <left_val>0.0345859304070473</left_val>
- <right_val>-0.5137431025505066</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 6 12 -1.</_>
- <_>
- 11 7 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0279774591326714</threshold>
- <left_val>0.2392677962779999</left_val>
- <right_val>-0.1325591951608658</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 6 6 -1.</_>
- <_>
- 14 7 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0230979397892952</threshold>
- <left_val>0.3901962041854858</left_val>
- <right_val>-0.0784780085086823</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 8 3 4 -1.</_>
- <_>
- 16 8 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9731930010020733e-003</threshold>
- <left_val>0.3069106936454773</left_val>
- <right_val>-0.0706014037132263</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 11 4 2 -1.</_>
- <_>
- 6 12 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0335749033838511e-003</threshold>
- <left_val>-0.1400219053030014</left_val>
- <right_val>0.1913485974073410</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 6 8 -1.</_>
- <_>
- 3 6 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0108443703502417</threshold>
- <left_val>0.1654873043298721</left_val>
- <right_val>-0.1565777957439423</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 15 6 5 -1.</_>
- <_>
- 13 15 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0181505102664232</threshold>
- <left_val>-0.6324359178543091</left_val>
- <right_val>0.0395618192851543</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 17 4 2 -1.</_>
- <_>
- 15 18 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1052298881113529e-004</threshold>
- <left_val>-0.1851557046175003</left_val>
- <right_val>0.1340880990028381</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 11 6 1 -1.</_>
- <_>
- 15 11 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0108933402225375</threshold>
- <left_val>-0.0267302300781012</left_val>
- <right_val>0.6097180247306824</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 18 2 2 -1.</_>
- <_>
- 5 18 1 1 2.</_>
- <_>
- 6 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8780900174751878e-004</threshold>
- <left_val>-0.3006514012813568</left_val>
- <right_val>0.0731714591383934</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 4 4 -1.</_>
- <_>
- 4 8 2 2 2.</_>
- <_>
- 6 10 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5855069290846586e-003</threshold>
- <left_val>0.2621760964393616</left_val>
- <right_val>-0.0797140970826149</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 7 9 3 -1.</_>
- <_>
- 11 8 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0197592806071043</threshold>
- <left_val>-0.5903922915458679</left_val>
- <right_val>0.0406989715993404</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 10 4 -1.</_>
- <_>
- 0 3 5 2 2.</_>
- <_>
- 5 5 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0108452104032040</threshold>
- <left_val>0.1636455953121185</left_val>
- <right_val>-0.1258606016635895</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 18 6 1 -1.</_>
- <_>
- 9 18 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3183090165257454e-003</threshold>
- <left_val>-0.5747488141059876</left_val>
- <right_val>0.0376443117856979</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 3 3 -1.</_>
- <_>
- 0 9 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4913700288161635e-003</threshold>
- <left_val>0.0609134696424007</left_val>
- <right_val>-0.3022292852401733</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 8 -1.</_>
- <_>
- 0 0 3 4 2.</_>
- <_>
- 3 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0156756993383169</threshold>
- <left_val>-0.0731459110975266</left_val>
- <right_val>0.2937945127487183</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 3 8 -1.</_>
- <_>
- 8 6 1 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0110335601493716</threshold>
- <left_val>0.3931880891323090</left_val>
- <right_val>-0.0470843203365803</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 7 7 3 -1.</_>
- <_>
- 13 8 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8555756956338882e-003</threshold>
- <left_val>0.0376013815402985</left_val>
- <right_val>-0.4910849034786224</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 2 2 -1.</_>
- <_>
- 3 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9665671112015843e-004</threshold>
- <left_val>0.1795202046632767</left_val>
- <right_val>-0.1108623966574669</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 3 3 -1.</_>
- <_>
- 0 4 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0592409893870354e-003</threshold>
- <left_val>-0.4442946016788483</left_val>
- <right_val>0.0510054305195808</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 5 2 -1.</_>
- <_>
- 9 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3201179727911949e-003</threshold>
- <left_val>-0.0528410896658897</left_val>
- <right_val>0.3719710111618042</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 9 4 -1.</_>
- <_>
- 9 5 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0206828303635120</threshold>
- <left_val>0.0576671697199345</left_val>
- <right_val>-0.3690159916877747</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 12 3 -1.</_>
- <_>
- 7 10 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0998226627707481</threshold>
- <left_val>-0.0373770184814930</left_val>
- <right_val>0.5816559195518494</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 3 6 -1.</_>
- <_>
- 9 7 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5854229032993317e-003</threshold>
- <left_val>0.2850944101810455</left_val>
- <right_val>-0.0609780699014664</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 6 5 -1.</_>
- <_>
- 8 5 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0609003007411957</threshold>
- <left_val>-0.5103176832199097</left_val>
- <right_val>0.0377874001860619</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 2 3 -1.</_>
- <_>
- 0 6 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9991709161549807e-003</threshold>
- <left_val>-0.4794301092624664</left_val>
- <right_val>0.0388338901102543</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 3 4 -1.</_>
- <_>
- 10 7 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.8906438797712326e-003</threshold>
- <left_val>0.4060907959938049</left_val>
- <right_val>-0.0478696487843990</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 6 15 -1.</_>
- <_>
- 3 0 2 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0826889276504517</threshold>
- <left_val>-0.7067118287086487</left_val>
- <right_val>0.0274877492338419</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 5 -1.</_>
- <_>
- 16 1 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0060399807989597e-003</threshold>
- <left_val>0.0282084401696920</left_val>
- <right_val>-0.5290969014167786</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 3 10 -1.</_>
- <_>
- 10 2 1 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1695030890405178e-003</threshold>
- <left_val>-0.0545548610389233</left_val>
- <right_val>0.3283798098564148</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 6 12 -1.</_>
- <_>
- 10 8 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3914761152118444e-003</threshold>
- <left_val>0.0921176671981812</left_val>
- <right_val>-0.2163711041212082</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 3 4 -1.</_>
- <_>
- 16 6 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6131230406463146e-003</threshold>
- <left_val>0.1365101933479309</left_val>
- <right_val>-0.1378113031387329</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 7 2 2 -1.</_>
- <_>
- 16 7 1 1 2.</_>
- <_>
- 17 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0490659456700087e-004</threshold>
- <left_val>-0.0686371102929115</left_val>
- <right_val>0.3358106911182404</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 6 9 -1.</_>
- <_>
- 13 3 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0381065085530281</threshold>
- <left_val>0.2944543063640595</left_val>
- <right_val>-0.0682392269372940</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 17 1 3 -1.</_>
- <_>
- 7 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2450799052603543e-005</threshold>
- <left_val>-0.1675013005733490</left_val>
- <right_val>0.1217823028564453</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 4 2 -1.</_>
- <_>
- 12 2 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5837959945201874e-003</threshold>
- <left_val>-0.0920428484678268</left_val>
- <right_val>0.2134899049997330</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 1 3 -1.</_>
- <_>
- 17 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2924340553581715e-003</threshold>
- <left_val>0.0629172325134277</left_val>
- <right_val>-0.3617450892925263</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 16 9 3 -1.</_>
- <_>
- 0 17 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9146775901317596e-003</threshold>
- <left_val>0.0195340607315302</left_val>
- <right_val>-0.8101503849029541</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 2 4 -1.</_>
- <_>
- 3 6 1 2 2.</_>
- <_>
- 4 8 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7086310544982553e-003</threshold>
- <left_val>0.2552523910999298</left_val>
- <right_val>-0.0682294592261314</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 18 3 1 -1.</_>
- <_>
- 14 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1844399161636829e-003</threshold>
- <left_val>0.0233140494674444</left_val>
- <right_val>-0.8429678082466126</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 18 4 2 -1.</_>
- <_>
- 2 18 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4244330599904060e-003</threshold>
- <left_val>0.2721368968486786</left_val>
- <right_val>-0.0763952285051346</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 19 2 1 -1.</_>
- <_>
- 2 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7591470279730856e-004</threshold>
- <left_val>-0.1074284017086029</left_val>
- <right_val>0.2288897037506104</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 18 4 2 -1.</_>
- <_>
- 0 19 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0005177510902286e-004</threshold>
- <left_val>-0.2985421121120453</left_val>
- <right_val>0.0634797364473343</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 17 1 3 -1.</_>
- <_>
- 2 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5001438916660845e-004</threshold>
- <left_val>-0.2717896997928619</left_val>
- <right_val>0.0696150064468384</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 3 5 -1.</_>
- <_>
- 5 8 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8751391954720020e-003</threshold>
- <left_val>-0.0571858994662762</left_val>
- <right_val>0.3669595122337341</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 6 7 -1.</_>
- <_>
- 4 1 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0127619002014399</threshold>
- <left_val>0.0679556876420975</left_val>
- <right_val>-0.2853415012359619</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 2 8 -1.</_>
- <_>
- 3 6 1 4 2.</_>
- <_>
- 4 10 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4752789866179228e-003</threshold>
- <left_val>0.2068066000938416</left_val>
- <right_val>-0.1005939021706581</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 11 10 -1.</_>
- <_>
- 4 10 11 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1213881969451904</threshold>
- <left_val>-0.0971267968416214</left_val>
- <right_val>0.1978961974382401</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 20 2 -1.</_>
- <_>
- 10 13 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0500812791287899</threshold>
- <left_val>0.2841717898845673</left_val>
- <right_val>-0.0678799971938133</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 16 3 -1.</_>
- <_>
- 9 13 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0314549505710602</threshold>
- <left_val>-0.0894686728715897</left_val>
- <right_val>0.2129842042922974</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 4 4 -1.</_>
- <_>
- 16 4 2 2 2.</_>
- <_>
- 18 6 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8878319533541799e-003</threshold>
- <left_val>-0.1165644004940987</left_val>
- <right_val>0.1666352003812790</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 4 12 -1.</_>
- <_>
- 16 0 2 6 2.</_>
- <_>
- 18 6 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7211960665881634e-003</threshold>
- <left_val>0.2370214015245438</left_val>
- <right_val>-0.0907766073942184</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 15 3 1 -1.</_>
- <_>
- 15 15 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8076719425152987e-004</threshold>
- <left_val>0.1795192956924439</left_val>
- <right_val>-0.1079348027706146</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 12 10 -1.</_>
- <_>
- 3 9 12 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1976184993982315</threshold>
- <left_val>0.4567429125308991</left_val>
- <right_val>-0.0404801592230797</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 18 2 2 -1.</_>
- <_>
- 9 18 1 1 2.</_>
- <_>
- 10 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3846809926908463e-004</threshold>
- <left_val>-0.2373300939798355</left_val>
- <right_val>0.0759221613407135</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 18 2 2 -1.</_>
- <_>
- 9 18 1 1 2.</_>
- <_>
- 10 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1540730085689574e-004</threshold>
- <left_val>0.0816880166530609</left_val>
- <right_val>-0.2868503034114838</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 4 2 14 -1.</_>
- <_>
- 13 4 1 7 2.</_>
- <_>
- 14 11 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0101630901917815</threshold>
- <left_val>-0.0412500202655792</left_val>
- <right_val>0.4803834855556488</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 6 4 -1.</_>
- <_>
- 7 2 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2184870950877666e-003</threshold>
- <left_val>0.1745858043432236</left_val>
- <right_val>-0.1014650017023087</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 20 -1.</_>
- <_>
- 0 0 9 10 2.</_>
- <_>
- 9 10 9 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2426317036151886</threshold>
- <left_val>0.0534264817833900</left_val>
- <right_val>-0.3231852948665619</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 11 1 2 -1.</_>
- <_>
- 15 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9304101634770632e-004</threshold>
- <left_val>-0.1149917989969254</left_val>
- <right_val>0.1479393988847733</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 10 2 4 -1.</_>
- <_>
- 16 10 1 2 2.</_>
- <_>
- 17 12 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5475199110805988e-003</threshold>
- <left_val>-0.0394249781966209</left_val>
- <right_val>0.5312618017196655</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 17 2 2 -1.</_>
- <_>
- 18 17 1 1 2.</_>
- <_>
- 19 18 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1403690334409475e-004</threshold>
- <left_val>0.0697538331151009</left_val>
- <right_val>-0.2731958031654358</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 17 1 2 -1.</_>
- <_>
- 9 18 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7119462871924043e-004</threshold>
- <left_val>0.3436990082263947</left_val>
- <right_val>-0.0576990097761154</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 9 6 -1.</_>
- <_>
- 11 4 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6290069371461868e-003</threshold>
- <left_val>0.1175848990678787</left_val>
- <right_val>-0.1502013951539993</right_val></_></_></trees>
- <stage_threshold>-1.1188739538192749</stage_threshold>
- <parent>16</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 18 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 9 10 -1.</_>
- <_>
- 9 9 3 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0265134498476982</threshold>
- <left_val>0.2056864053010941</left_val>
- <right_val>-0.2647390067577362</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 5 4 -1.</_>
- <_>
- 5 2 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7727458924055099e-003</threshold>
- <left_val>-0.1119284033775330</left_val>
- <right_val>0.3257054984569550</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 11 4 -1.</_>
- <_>
- 5 9 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0322903506457806</threshold>
- <left_val>-0.0985747575759888</left_val>
- <right_val>0.3177917003631592</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 2 14 -1.</_>
- <_>
- 3 4 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8103240765631199e-003</threshold>
- <left_val>0.1521389931440353</left_val>
- <right_val>-0.1968640983104706</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 3 5 -1.</_>
- <_>
- 9 6 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109914299100637</threshold>
- <left_val>0.5140765905380249</left_val>
- <right_val>-0.0437072105705738</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 3 9 -1.</_>
- <_>
- 9 4 1 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3133831135928631e-003</threshold>
- <left_val>-0.0927810221910477</left_val>
- <right_val>0.3470247089862824</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 20 6 -1.</_>
- <_>
- 0 10 20 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0871059820055962</threshold>
- <left_val>0.0300536490976810</left_val>
- <right_val>-0.8281481862068176</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 16 6 1 -1.</_>
- <_>
- 17 16 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1799359926953912e-003</threshold>
- <left_val>-0.1292842030525208</left_val>
- <right_val>0.2064612060785294</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 18 2 2 -1.</_>
- <_>
- 17 19 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3056890182197094e-004</threshold>
- <left_val>-0.5002143979072571</left_val>
- <right_val>0.0936669930815697</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 17 6 3 -1.</_>
- <_>
- 10 17 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0136871701106429</threshold>
- <left_val>-0.7935814857482910</left_val>
- <right_val>-6.6733639687299728e-003</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 9 15 -1.</_>
- <_>
- 7 1 3 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0759174525737762</threshold>
- <left_val>0.3046964108943939</left_val>
- <right_val>-0.0796558931469917</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 3 12 -1.</_>
- <_>
- 12 5 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8559709899127483e-003</threshold>
- <left_val>0.2096146047115326</left_val>
- <right_val>-0.1273255050182343</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 15 4 3 -1.</_>
- <_>
- 0 16 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0231510065495968e-003</threshold>
- <left_val>-0.6581727862358093</left_val>
- <right_val>0.0506836399435997</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 15 1 -1.</_>
- <_>
- 5 0 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0175580400973558</threshold>
- <left_val>-0.0853826925158501</left_val>
- <right_val>0.3617455959320068</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 4 -1.</_>
- <_>
- 8 0 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0219882391393185</threshold>
- <left_val>0.0629436969757080</left_val>
- <right_val>-0.7089633941650391</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 9 3 -1.</_>
- <_>
- 5 0 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8599589131772518e-003</threshold>
- <left_val>0.1468378007411957</left_val>
- <right_val>-0.1646597981452942</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 6 3 7 -1.</_>
- <_>
- 14 6 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100308498367667</threshold>
- <left_val>0.4957993924617767</left_val>
- <right_val>-0.0271883402019739</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 4 2 -1.</_>
- <_>
- 7 7 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9560329429805279e-003</threshold>
- <left_val>0.2797777950763702</left_val>
- <right_val>-0.0779533311724663</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 18 6 1 -1.</_>
- <_>
- 8 18 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8356808945536613e-003</threshold>
- <left_val>-0.5816398262977600</left_val>
- <right_val>0.0357399396598339</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 6 2 2 -1.</_>
- <_>
- 18 7 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2647319603711367e-003</threshold>
- <left_val>-0.4994508028030396</left_val>
- <right_val>0.0469864904880524</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 7 3 -1.</_>
- <_>
- 6 5 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8412350267171860e-003</threshold>
- <left_val>0.3453283011913300</left_val>
- <right_val>-0.0688104033470154</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 3 1 -1.</_>
- <_>
- 13 7 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1718113506212831e-005</threshold>
- <left_val>0.1504171043634415</left_val>
- <right_val>-0.1414667963981628</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 2 10 -1.</_>
- <_>
- 15 1 1 5 2.</_>
- <_>
- 16 6 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2448628917336464e-003</threshold>
- <left_val>0.2272451072931290</left_val>
- <right_val>-0.0928602069616318</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 18 2 2 -1.</_>
- <_>
- 0 19 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8561151167377830e-004</threshold>
- <left_val>-0.4431901872158051</left_val>
- <right_val>0.0578124411404133</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 4 1 8 -1.</_>
- <_>
- 19 8 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2474247533828020e-004</threshold>
- <left_val>0.1395238935947418</left_val>
- <right_val>-0.1466871947050095</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 17 1 3 -1.</_>
- <_>
- 1 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2942948746494949e-004</threshold>
- <left_val>-0.2990157008171082</left_val>
- <right_val>0.0760667398571968</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 15 6 4 -1.</_>
- <_>
- 0 15 3 2 2.</_>
- <_>
- 3 17 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2605739757418633e-003</threshold>
- <left_val>-0.1612560003995895</left_val>
- <right_val>0.1395380049943924</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 0 1 18 -1.</_>
- <_>
- 19 6 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0516670197248459</threshold>
- <left_val>-0.5314283967018127</left_val>
- <right_val>0.0407195203006268</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 6 2 -1.</_>
- <_>
- 12 2 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0152856195345521</threshold>
- <left_val>-0.7820637822151184</left_val>
- <right_val>0.0271837692707777</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 12 2 -1.</_>
- <_>
- 6 8 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0690298229455948</threshold>
- <left_val>-0.0364270210266113</left_val>
- <right_val>0.7110251784324646</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 4 1 -1.</_>
- <_>
- 18 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4522749697789550e-003</threshold>
- <left_val>-0.0968905165791512</left_val>
- <right_val>0.2166842073202133</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 2 6 -1.</_>
- <_>
- 8 7 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4765590205788612e-003</threshold>
- <left_val>0.1164531037211418</left_val>
- <right_val>-0.1822797954082489</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 5 2 10 -1.</_>
- <_>
- 15 5 1 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5134819550439715e-003</threshold>
- <left_val>0.1786397993564606</left_val>
- <right_val>-0.1221496984362602</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 4 2 2 -1.</_>
- <_>
- 13 5 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5099470037966967e-003</threshold>
- <left_val>0.1808623969554901</left_val>
- <right_val>-0.1144606992602348</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 3 6 -1.</_>
- <_>
- 11 3 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7054620012640953e-003</threshold>
- <left_val>0.2510659992694855</left_val>
- <right_val>-0.0918714627623558</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 12 2 -1.</_>
- <_>
- 10 9 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0140752000734210</threshold>
- <left_val>0.1370750963687897</left_val>
- <right_val>-0.1733350008726120</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 16 4 2 -1.</_>
- <_>
- 9 17 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2400720044970512e-003</threshold>
- <left_val>0.4009298086166382</left_val>
- <right_val>-0.0475768782198429</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 14 15 4 -1.</_>
- <_>
- 5 16 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0197823699563742</threshold>
- <left_val>-0.1904035061597824</left_val>
- <right_val>0.1492341011762619</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 16 2 2 -1.</_>
- <_>
- 18 17 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6002870872616768e-003</threshold>
- <left_val>0.0469717681407928</left_val>
- <right_val>-0.4330765902996063</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 18 2 2 -1.</_>
- <_>
- 16 18 1 1 2.</_>
- <_>
- 17 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3445628145709634e-004</threshold>
- <left_val>-0.4374423027038574</left_val>
- <right_val>0.0415201894938946</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 3 8 -1.</_>
- <_>
- 7 4 1 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0174665097147226</threshold>
- <left_val>0.6581817269325256</left_val>
- <right_val>-0.0344474911689758</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 3 1 -1.</_>
- <_>
- 6 9 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0425589755177498e-003</threshold>
- <left_val>0.3965792953968048</left_val>
- <right_val>-0.0440524294972420</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 1 6 -1.</_>
- <_>
- 0 10 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6661779265850782e-003</threshold>
- <left_val>0.0587709583342075</left_val>
- <right_val>-0.3280636966228485</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 9 6 -1.</_>
- <_>
- 14 2 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0559823699295521</threshold>
- <left_val>-0.5173547267913818</left_val>
- <right_val>0.0357918404042721</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 2 6 4 -1.</_>
- <_>
- 14 2 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5066330088302493e-003</threshold>
- <left_val>0.1512386947870255</left_val>
- <right_val>-0.1252018064260483</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 2 4 -1.</_>
- <_>
- 1 9 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0114723695442081</threshold>
- <left_val>-0.6293053030967712</left_val>
- <right_val>0.0347043313086033</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 6 4 -1.</_>
- <_>
- 13 3 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0234096292406321</threshold>
- <left_val>-0.0580633506178856</left_val>
- <right_val>0.3866822123527527</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 10 2 10 -1.</_>
- <_>
- 4 10 1 5 2.</_>
- <_>
- 5 15 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3243729956448078e-003</threshold>
- <left_val>0.1875409930944443</left_val>
- <right_val>-0.0983946695923805</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 16 9 3 -1.</_>
- <_>
- 5 16 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0290392991155386</threshold>
- <left_val>-0.5448690056800842</left_val>
- <right_val>0.0409263409674168</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 3 9 -1.</_>
- <_>
- 2 2 1 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0144746499136090</threshold>
- <left_val>-0.6724839210510254</left_val>
- <right_val>0.0231288503855467</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 7 1 4 -1.</_>
- <_>
- 19 9 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2086091600358486e-003</threshold>
- <left_val>-0.4327144026756287</left_val>
- <right_val>0.0437806509435177</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 11 6 8 -1.</_>
- <_>
- 14 11 3 4 2.</_>
- <_>
- 17 15 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9382899887859821e-003</threshold>
- <left_val>-0.1087862029671669</left_val>
- <right_val>0.1934258937835693</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 12 4 6 -1.</_>
- <_>
- 15 12 2 3 2.</_>
- <_>
- 17 15 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3193930760025978e-003</threshold>
- <left_val>0.2408093065023422</left_val>
- <right_val>-0.1038080006837845</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 15 2 2 -1.</_>
- <_>
- 16 15 1 1 2.</_>
- <_>
- 17 16 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3705669445917010e-004</threshold>
- <left_val>-0.0873490720987320</left_val>
- <right_val>0.2046623975038528</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 16 2 2 -1.</_>
- <_>
- 17 16 1 1 2.</_>
- <_>
- 18 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7858079778961837e-004</threshold>
- <left_val>0.0456245802342892</left_val>
- <right_val>-0.3885467052459717</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 16 2 2 -1.</_>
- <_>
- 17 16 1 1 2.</_>
- <_>
- 18 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5342838428914547e-004</threshold>
- <left_val>-0.5507794022560120</left_val>
- <right_val>0.0358258895576000</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 2 2 -1.</_>
- <_>
- 2 3 1 1 2.</_>
- <_>
- 3 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4772121075075120e-005</threshold>
- <left_val>-0.1122523993253708</left_val>
- <right_val>0.1750351935625076</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 3 3 -1.</_>
- <_>
- 11 10 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8445889949798584e-003</threshold>
- <left_val>0.2452670037746429</left_val>
- <right_val>-0.0811325684189796</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 7 8 -1.</_>
- <_>
- 5 13 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0401284582912922</threshold>
- <left_val>-0.6312270760536194</left_val>
- <right_val>0.0269726701080799</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 16 2 2 -1.</_>
- <_>
- 7 16 1 1 2.</_>
- <_>
- 8 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7886360001284629e-004</threshold>
- <left_val>0.1985509991645813</left_val>
- <right_val>-0.1033368036150932</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 16 2 2 -1.</_>
- <_>
- 7 16 1 1 2.</_>
- <_>
- 8 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7668239888735116e-004</threshold>
- <left_val>-0.0913590118288994</left_val>
- <right_val>0.1984872072935104</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 10 3 -1.</_>
- <_>
- 14 8 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0727633833885193</threshold>
- <left_val>0.0500755794346333</left_val>
- <right_val>-0.3385263085365295</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 4 8 -1.</_>
- <_>
- 6 7 2 4 2.</_>
- <_>
- 8 11 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0101816300302744</threshold>
- <left_val>-0.0932299792766571</left_val>
- <right_val>0.2005959004163742</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 4 3 -1.</_>
- <_>
- 1 7 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4409969337284565e-003</threshold>
- <left_val>0.0646366328001022</left_val>
- <right_val>-0.2692174017429352</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 10 6 10 -1.</_>
- <_>
- 8 10 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6227488890290260e-003</threshold>
- <left_val>0.1316989064216614</left_val>
- <right_val>-0.1251484006643295</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 3 6 -1.</_>
- <_>
- 5 6 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3635610230267048e-003</threshold>
- <left_val>0.1635046005249023</left_val>
- <right_val>-0.1066593974828720</right_val></_></_></trees>
- <stage_threshold>-1.0888810157775879</stage_threshold>
- <parent>17</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 19 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 4 4 -1.</_>
- <_>
- 3 10 2 2 2.</_>
- <_>
- 5 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6991164609789848e-003</threshold>
- <left_val>0.6112532019615173</left_val>
- <right_val>-0.0662253126502037</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 4 4 -1.</_>
- <_>
- 3 10 2 2 2.</_>
- <_>
- 5 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6426531672477722e-003</threshold>
- <left_val>-1.</left_val>
- <right_val>2.7699959464371204e-003</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 4 4 -1.</_>
- <_>
- 3 10 2 2 2.</_>
- <_>
- 5 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6381865441799164e-003</threshold>
- <left_val>1.</left_val>
- <right_val>-2.9904270195402205e-004</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 8 2 6 -1.</_>
- <_>
- 15 8 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2553939856588840e-003</threshold>
- <left_val>0.2846438884735107</left_val>
- <right_val>-0.1554012000560761</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 4 4 -1.</_>
- <_>
- 3 10 2 2 2.</_>
- <_>
- 5 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6223521977663040e-003</threshold>
- <left_val>-1.</left_val>
- <right_val>0.0439991801977158</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 4 4 -1.</_>
- <_>
- 3 10 2 2 2.</_>
- <_>
- 5 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1231241822242737e-003</threshold>
- <left_val>0.8686934113502502</left_val>
- <right_val>-2.7267890982329845e-003</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 4 3 9 -1.</_>
- <_>
- 13 4 1 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6240433156490326e-003</threshold>
- <left_val>0.4535248875617981</left_val>
- <right_val>-0.0860713794827461</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 3 1 12 -1.</_>
- <_>
- 12 7 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9324144646525383e-003</threshold>
- <left_val>0.1337555944919586</left_val>
- <right_val>-0.2601251900196075</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 18 1 -1.</_>
- <_>
- 8 0 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0142078101634979</threshold>
- <left_val>0.3207764029502869</left_val>
- <right_val>-0.0972264111042023</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 10 6 -1.</_>
- <_>
- 10 0 5 3 2.</_>
- <_>
- 15 3 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0259110108017921</threshold>
- <left_val>-0.1296408027410507</left_val>
- <right_val>0.2621864974498749</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 16 2 2 -1.</_>
- <_>
- 18 17 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0531509653665125e-004</threshold>
- <left_val>-0.1240428015589714</left_val>
- <right_val>0.2106295973062515</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 4 2 -1.</_>
- <_>
- 3 5 2 1 2.</_>
- <_>
- 5 6 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4795680625829846e-005</threshold>
- <left_val>0.1197429969906807</left_val>
- <right_val>-0.2320127934217453</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 3 3 -1.</_>
- <_>
- 12 8 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8555199541151524e-003</threshold>
- <left_val>-0.0632761269807816</left_val>
- <right_val>0.4104425013065338</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 7 3 5 -1.</_>
- <_>
- 12 7 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122530404478312</threshold>
- <left_val>0.5488333106040955</left_val>
- <right_val>-0.0397311002016068</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 19 15 1 -1.</_>
- <_>
- 8 19 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9058770053088665e-003</threshold>
- <left_val>0.2419098019599915</left_val>
- <right_val>-0.0970960110425949</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 13 3 2 -1.</_>
- <_>
- 8 14 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7560980524867773e-003</threshold>
- <left_val>-0.1256967931985855</left_val>
- <right_val>0.1945665031671524</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 8 4 -1.</_>
- <_>
- 2 12 4 2 2.</_>
- <_>
- 6 14 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7662160620093346e-003</threshold>
- <left_val>0.2976570129394531</left_val>
- <right_val>-0.0968181565403938</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 16 2 2 -1.</_>
- <_>
- 16 16 1 1 2.</_>
- <_>
- 17 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8997188676148653e-004</threshold>
- <left_val>0.0621884018182755</left_val>
- <right_val>-0.4204089939594269</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 3 2 -1.</_>
- <_>
- 8 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3579880837351084e-003</threshold>
- <left_val>0.0474981404840946</left_val>
- <right_val>-0.6321688294410706</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 2 5 -1.</_>
- <_>
- 7 7 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0167455393821001</threshold>
- <left_val>0.7109813094139099</left_val>
- <right_val>-0.0391573496162891</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 0 2 17 -1.</_>
- <_>
- 19 0 1 17 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5409899689257145e-003</threshold>
- <left_val>-0.3504317104816437</left_val>
- <right_val>0.0706169530749321</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 16 1 3 -1.</_>
- <_>
- 16 17 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0016340315341949e-004</threshold>
- <left_val>0.0919024571776390</left_val>
- <right_val>-0.2461867034435272</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 8 3 7 -1.</_>
- <_>
- 15 8 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0149189904332161</threshold>
- <left_val>-0.0519094504415989</left_val>
- <right_val>0.5663604140281677</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 17 2 2 -1.</_>
- <_>
- 10 17 1 1 2.</_>
- <_>
- 11 18 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8153079114854336e-004</threshold>
- <left_val>0.0646595582365990</left_val>
- <right_val>-0.3659060895442963</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 1 3 -1.</_>
- <_>
- 4 10 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0211321427486837e-004</threshold>
- <left_val>0.1792656928300858</left_val>
- <right_val>-0.1141066029667854</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 10 2 3 -1.</_>
- <_>
- 18 11 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8521419628523290e-004</threshold>
- <left_val>0.1034561991691589</left_val>
- <right_val>-0.2007246017456055</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 3 10 -1.</_>
- <_>
- 13 1 1 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0837132409214973e-003</threshold>
- <left_val>-0.0660734623670578</left_val>
- <right_val>0.3028424978256226</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 12 9 1 -1.</_>
- <_>
- 11 12 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0228049699217081</threshold>
- <left_val>0.5296235084533691</left_val>
- <right_val>-0.0401189997792244</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 18 2 2 -1.</_>
- <_>
- 5 18 1 1 2.</_>
- <_>
- 6 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9440450705587864e-004</threshold>
- <left_val>0.0818548202514648</left_val>
- <right_val>-0.2466336041688919</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 6 1 9 -1.</_>
- <_>
- 19 9 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0128480903804302</threshold>
- <left_val>-0.3497331142425537</left_val>
- <right_val>0.0569162294268608</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 2 4 -1.</_>
- <_>
- 4 7 1 2 2.</_>
- <_>
- 5 9 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0937290498986840e-003</threshold>
- <left_val>0.2336868047714233</left_val>
- <right_val>-0.0916048064827919</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 6 14 -1.</_>
- <_>
- 3 4 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0032650316134095e-003</threshold>
- <left_val>0.1185218021273613</left_val>
- <right_val>-0.1846919059753418</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 9 3 -1.</_>
- <_>
- 13 5 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0446884296834469</threshold>
- <left_val>-0.6436246037483215</left_val>
- <right_val>0.0303632691502571</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 7 2 6 -1.</_>
- <_>
- 18 9 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.1657543778419495e-003</threshold>
- <left_val>0.0436746589839458</left_val>
- <right_val>-0.4300208985805512</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 2 7 -1.</_>
- <_>
- 6 6 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0117178102955222</threshold>
- <left_val>0.4178147912025452</left_val>
- <right_val>-0.0482336990535259</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 4 6 8 -1.</_>
- <_>
- 13 4 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0842771306633949</threshold>
- <left_val>0.0534612797200680</left_val>
- <right_val>-0.3795219063758850</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 2 9 -1.</_>
- <_>
- 0 11 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0142118399962783</threshold>
- <left_val>0.0449009388685226</left_val>
- <right_val>-0.4298149943351746</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 5 3 -1.</_>
- <_>
- 0 8 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5028340276330709e-003</threshold>
- <left_val>0.0822276398539543</left_val>
- <right_val>-0.2470639944076538</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 7 2 -1.</_>
- <_>
- 8 2 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100035797804594</threshold>
- <left_val>-0.0572216697037220</left_val>
- <right_val>0.3460937142372131</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 3 5 -1.</_>
- <_>
- 8 5 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0706320479512215e-003</threshold>
- <left_val>0.4505808949470520</left_val>
- <right_val>-0.0427953191101551</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 2 1 2 -1.</_>
- <_>
- 19 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3141620224341750e-004</threshold>
- <left_val>0.1833691000938416</left_val>
- <right_val>-0.1075994968414307</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 10 11 -1.</_>
- <_>
- 11 7 5 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1972327977418900</threshold>
- <left_val>-0.0303638298064470</left_val>
- <right_val>0.6642342805862427</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 19 6 1 -1.</_>
- <_>
- 11 19 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1258801035583019e-003</threshold>
- <left_val>-0.8922504782676697</left_val>
- <right_val>0.0256699901074171</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 1 -1.</_>
- <_>
- 7 0 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6921341717243195e-003</threshold>
- <left_val>-0.0707643702626228</left_val>
- <right_val>0.2821052968502045</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 6 5 -1.</_>
- <_>
- 6 1 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9262127876281738e-003</threshold>
- <left_val>0.0710782334208488</left_val>
- <right_val>-0.3023256063461304</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 12 12 6 -1.</_>
- <_>
- 10 12 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0572860091924667</threshold>
- <left_val>0.0509741306304932</left_val>
- <right_val>-0.3919695019721985</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 13 2 3 -1.</_>
- <_>
- 16 14 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7920880131423473e-003</threshold>
- <left_val>0.0338419415056705</left_val>
- <right_val>-0.5101628899574280</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 14 4 2 -1.</_>
- <_>
- 7 15 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4508679741993546e-003</threshold>
- <left_val>0.3087914884090424</left_val>
- <right_val>-0.0638450831174850</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 14 2 2 -1.</_>
- <_>
- 7 15 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8390132188796997e-004</threshold>
- <left_val>-0.1302956938743591</left_val>
- <right_val>0.1460441052913666</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 2 4 -1.</_>
- <_>
- 3 10 1 2 2.</_>
- <_>
- 4 12 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7221809830516577e-003</threshold>
- <left_val>0.2915700972080231</left_val>
- <right_val>-0.0685495585203171</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 6 -1.</_>
- <_>
- 0 5 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0109482500702143</threshold>
- <left_val>0.0343514084815979</left_val>
- <right_val>-0.4770225882530212</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 2 2 -1.</_>
- <_>
- 1 10 1 1 2.</_>
- <_>
- 2 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7176309484057128e-005</threshold>
- <left_val>0.1605526953935623</left_val>
- <right_val>-0.1169084012508392</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 4 3 -1.</_>
- <_>
- 16 5 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4884208366274834e-003</threshold>
- <left_val>-0.4341588914394379</left_val>
- <right_val>0.0461062416434288</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 2 4 -1.</_>
- <_>
- 5 10 1 2 2.</_>
- <_>
- 6 12 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0975250992923975e-003</threshold>
- <left_val>0.3794333934783936</left_val>
- <right_val>-0.0568605512380600</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 11 13 2 -1.</_>
- <_>
- 5 12 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4182081259787083e-003</threshold>
- <left_val>-0.1585821062326431</left_val>
- <right_val>0.1233541965484619</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 3 11 -1.</_>
- <_>
- 11 2 1 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0118312397971749</threshold>
- <left_val>-0.0409292913973331</left_val>
- <right_val>0.4587895870208740</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 4 4 -1.</_>
- <_>
- 10 4 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0135404998436570</threshold>
- <left_val>-0.0537255592644215</left_val>
- <right_val>0.3505612015724182</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 6 2 -1.</_>
- <_>
- 10 8 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5932150892913342e-003</threshold>
- <left_val>0.1101052016019821</left_val>
- <right_val>-0.1675221025943756</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 3 3 -1.</_>
- <_>
- 12 2 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6856270376592875e-003</threshold>
- <left_val>0.0665743574500084</left_val>
- <right_val>-0.3083502054214478</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 18 14 2 -1.</_>
- <_>
- 6 18 7 1 2.</_>
- <_>
- 13 19 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6524690911173820e-003</threshold>
- <left_val>0.0663184821605682</left_val>
- <right_val>-0.2786133885383606</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 7 1 12 -1.</_>
- <_>
- 17 11 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7341729775071144e-003</threshold>
- <left_val>0.1971835941076279</left_val>
- <right_val>-0.1078291982412338</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 10 3 -1.</_>
- <_>
- 10 6 10 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0944271497428417e-003</threshold>
- <left_val>0.0853374898433685</left_val>
- <right_val>-0.2484700977802277</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 3 3 -1.</_>
- <_>
- 7 1 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9162371065467596e-003</threshold>
- <left_val>-0.4747635126113892</left_val>
- <right_val>0.0335664898157120</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 3 1 -1.</_>
- <_>
- 14 8 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0121419113129377e-003</threshold>
- <left_val>-0.0475753806531429</left_val>
- <right_val>0.4258680045604706</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 14 2 6 -1.</_>
- <_>
- 10 16 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1694869976490736e-003</threshold>
- <left_val>-0.1051945015788078</left_val>
- <right_val>0.1716345995664597</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 12 14 -1.</_>
- <_>
- 8 1 4 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2232756018638611</threshold>
- <left_val>-0.0143702095374465</left_val>
- <right_val>0.9248365163803101</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 6 14 -1.</_>
- <_>
- 16 1 2 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0955850481987000</threshold>
- <left_val>-0.7420663833618164</left_val>
- <right_val>0.0278189703822136</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 16 2 2 -1.</_>
- <_>
- 3 16 1 1 2.</_>
- <_>
- 4 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4773729566950351e-005</threshold>
- <left_val>-0.1276578009128571</left_val>
- <right_val>0.1292666941881180</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 16 2 2 -1.</_>
- <_>
- 0 17 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2459770308341831e-005</threshold>
- <left_val>-0.1651857942342758</left_val>
- <right_val>0.1003680974245071</right_val></_></_></trees>
- <stage_threshold>-1.0408929586410522</stage_threshold>
- <parent>18</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 20 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 6 4 6 -1.</_>
- <_>
- 15 6 2 3 2.</_>
- <_>
- 17 9 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5778270363807678e-003</threshold>
- <left_val>0.3381525874137878</left_val>
- <right_val>-0.1528190970420837</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 5 2 2 -1.</_>
- <_>
- 12 6 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0922809597104788e-003</threshold>
- <left_val>0.2228236943483353</left_val>
- <right_val>-0.1930849999189377</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 6 13 -1.</_>
- <_>
- 9 6 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0297595895826817</threshold>
- <left_val>0.2595987021923065</left_val>
- <right_val>-0.1540940999984741</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 6 5 -1.</_>
- <_>
- 3 9 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0131475403904915</threshold>
- <left_val>0.1903381049633026</left_val>
- <right_val>-0.1654399931430817</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 3 4 -1.</_>
- <_>
- 0 7 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4396329643204808e-003</threshold>
- <left_val>0.2007171064615250</left_val>
- <right_val>-0.1233894005417824</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 16 2 -1.</_>
- <_>
- 4 1 8 1 2.</_>
- <_>
- 12 2 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5928250290453434e-003</threshold>
- <left_val>0.2398552000522614</left_val>
- <right_val>-0.1292214989662170</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 18 4 2 -1.</_>
- <_>
- 1 18 2 1 2.</_>
- <_>
- 3 19 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5314699849113822e-003</threshold>
- <left_val>-0.4901489913463593</left_val>
- <right_val>0.1027503013610840</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 3 4 -1.</_>
- <_>
- 8 7 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2372139655053616e-003</threshold>
- <left_val>0.3121463954448700</left_val>
- <right_val>-0.1140562966465950</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 9 3 -1.</_>
- <_>
- 6 4 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0333646498620510</threshold>
- <left_val>-0.4952087998390198</left_val>
- <right_val>0.0513284504413605</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 6 10 -1.</_>
- <_>
- 6 6 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0228276997804642</threshold>
- <left_val>0.3255882859230042</left_val>
- <right_val>-0.0650893077254295</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 8 10 -1.</_>
- <_>
- 13 0 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0861990973353386</threshold>
- <left_val>-0.6764633059501648</left_val>
- <right_val>0.0269856993108988</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 1 -1.</_>
- <_>
- 12 0 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1065981127321720e-003</threshold>
- <left_val>0.2245243042707443</left_val>
- <right_val>-0.1261022984981537</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 8 16 -1.</_>
- <_>
- 6 2 4 8 2.</_>
- <_>
- 10 10 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0391201488673687</threshold>
- <left_val>0.1132939979434013</left_val>
- <right_val>-0.2686063051223755</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 10 2 10 -1.</_>
- <_>
- 14 10 1 5 2.</_>
- <_>
- 15 15 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5082739777863026e-003</threshold>
- <left_val>-0.1135995984077454</left_val>
- <right_val>0.2564977109432221</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 11 1 2 -1.</_>
- <_>
- 12 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9289898490533233e-004</threshold>
- <left_val>-0.1494296938180924</left_val>
- <right_val>0.1640983968973160</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 3 8 -1.</_>
- <_>
- 17 0 1 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1766850305721164e-004</threshold>
- <left_val>0.0999056920409203</left_val>
- <right_val>-0.2196796983480454</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 6 10 -1.</_>
- <_>
- 17 0 3 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0218036007136106</threshold>
- <left_val>-0.3171172142028809</left_val>
- <right_val>0.0828895866870880</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 3 5 -1.</_>
- <_>
- 17 0 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2962779514491558e-003</threshold>
- <left_val>-0.3804872930049896</left_val>
- <right_val>0.0608193799853325</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 11 2 -1.</_>
- <_>
- 4 6 11 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4196270387619734e-003</threshold>
- <left_val>-0.0960130169987679</left_val>
- <right_val>0.2854058146476746</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 2 1 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4187481398694217e-004</threshold>
- <left_val>0.2212793976068497</left_val>
- <right_val>-0.0974349081516266</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 3 -1.</_>
- <_>
- 0 1 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4523929934948683e-003</threshold>
- <left_val>0.0375531204044819</left_val>
- <right_val>-0.5796905159950256</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 6 11 -1.</_>
- <_>
- 13 6 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0218346007168293</threshold>
- <left_val>0.2956213951110840</left_val>
- <right_val>-0.0800483003258705</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 1 -1.</_>
- <_>
- 15 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1309500152710825e-004</threshold>
- <left_val>0.2281450927257538</left_val>
- <right_val>-0.1011418998241425</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 7 1 2 -1.</_>
- <_>
- 19 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6166249988600612e-003</threshold>
- <left_val>-0.5054119825363159</left_val>
- <right_val>0.0447645410895348</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 3 9 -1.</_>
- <_>
- 18 0 1 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5959609821438789e-003</threshold>
- <left_val>0.0459865406155586</left_val>
- <right_val>-0.4119768142700195</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 3 4 -1.</_>
- <_>
- 13 7 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8601809646934271e-003</threshold>
- <left_val>-0.0865631699562073</left_val>
- <right_val>0.2480999976396561</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 14 2 -1.</_>
- <_>
- 0 1 7 1 2.</_>
- <_>
- 7 2 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0622231103479862e-003</threshold>
- <left_val>-0.0755573734641075</left_val>
- <right_val>0.2843326032161713</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 3 2 -1.</_>
- <_>
- 4 1 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7097420059144497e-003</threshold>
- <left_val>-0.3529582023620606</left_val>
- <right_val>0.0584104992449284</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 15 2 -1.</_>
- <_>
- 9 0 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0165155790746212</threshold>
- <left_val>-0.0804869532585144</left_val>
- <right_val>0.2353743016719818</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 6 1 -1.</_>
- <_>
- 12 2 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8465100117027760e-003</threshold>
- <left_val>0.0418952181935310</left_val>
- <right_val>-0.4844304919242859</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 6 11 -1.</_>
- <_>
- 11 4 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0311671700328588</threshold>
- <left_val>0.1919230967760086</left_val>
- <right_val>-0.1026815995573998</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 16 2 4 -1.</_>
- <_>
- 2 18 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1892281519249082e-004</threshold>
- <left_val>-0.2108577042818070</left_val>
- <right_val>0.0938869267702103</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 17 6 3 -1.</_>
- <_>
- 8 17 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0119463102892041</threshold>
- <left_val>0.0390961691737175</left_val>
- <right_val>-0.6224862933158875</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 6 2 -1.</_>
- <_>
- 9 9 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5677200220525265e-003</threshold>
- <left_val>0.1593683958053589</left_val>
- <right_val>-0.1225078031420708</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 9 2 -1.</_>
- <_>
- 9 8 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0537474118173122</threshold>
- <left_val>-0.5562217831611633</left_val>
- <right_val>0.0411900095641613</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 2 10 -1.</_>
- <_>
- 6 6 1 5 2.</_>
- <_>
- 7 11 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0155135300010443</threshold>
- <left_val>-0.0398268811404705</left_val>
- <right_val>0.6240072846412659</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 2 3 -1.</_>
- <_>
- 0 12 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5246650436893106e-003</threshold>
- <left_val>0.0701386779546738</left_val>
- <right_val>-0.3078907132148743</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 15 4 1 -1.</_>
- <_>
- 13 15 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8315100139006972e-004</threshold>
- <left_val>0.1788765937089920</left_val>
- <right_val>-0.1095862016081810</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 17 1 2 -1.</_>
- <_>
- 6 18 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7374739293009043e-003</threshold>
- <left_val>0.0274785906076431</left_val>
- <right_val>-0.8848956823348999</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 20 -1.</_>
- <_>
- 2 0 2 20 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0657877177000046</threshold>
- <left_val>-0.4643214046955109</left_val>
- <right_val>0.0350371487438679</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 2 2 -1.</_>
- <_>
- 4 10 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2409730115905404e-003</threshold>
- <left_val>-0.0964792370796204</left_val>
- <right_val>0.2877922058105469</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 3 5 -1.</_>
- <_>
- 5 7 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.1398809561505914e-004</threshold>
- <left_val>0.1151171997189522</left_val>
- <right_val>-0.1676616072654724</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 12 6 2 -1.</_>
- <_>
- 5 12 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0239018201828003</threshold>
- <left_val>-0.0326031893491745</left_val>
- <right_val>0.6001734733581543</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 15 7 4 -1.</_>
- <_>
- 6 17 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0275566000491381</threshold>
- <left_val>-0.0661373436450958</left_val>
- <right_val>0.2999447882175446</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 16 2 2 -1.</_>
- <_>
- 17 16 1 1 2.</_>
- <_>
- 18 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8070970913395286e-004</threshold>
- <left_val>-0.3388118147850037</left_val>
- <right_val>0.0644507706165314</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 16 -1.</_>
- <_>
- 16 1 1 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3335429830476642e-003</threshold>
- <left_val>0.1458866000175476</left_val>
- <right_val>-0.1321762055158615</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 16 6 3 -1.</_>
- <_>
- 8 16 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3507990241050720e-003</threshold>
- <left_val>-0.5117782950401306</left_val>
- <right_val>0.0349694713950157</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 14 3 2 -1.</_>
- <_>
- 15 15 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6215229928493500e-003</threshold>
- <left_val>0.0232495293021202</left_val>
- <right_val>-0.6961941123008728</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 16 1 2 -1.</_>
- <_>
- 12 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3407860832521692e-005</threshold>
- <left_val>0.2372737973928452</left_val>
- <right_val>-0.0869107097387314</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 4 4 -1.</_>
- <_>
- 0 2 2 2 2.</_>
- <_>
- 2 4 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5332329785451293e-003</threshold>
- <left_val>0.1922841072082520</left_val>
- <right_val>-0.1042239964008331</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 6 4 -1.</_>
- <_>
- 1 1 3 2 2.</_>
- <_>
- 4 3 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3135890737175941e-003</threshold>
- <left_val>-0.0962195470929146</left_val>
- <right_val>0.2560121119022369</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 18 1 2 -1.</_>
- <_>
- 1 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3042880638968199e-004</threshold>
- <left_val>-0.3156475126743317</left_val>
- <right_val>0.0588385984301567</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 2 3 -1.</_>
- <_>
- 4 8 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8411828726530075e-003</threshold>
- <left_val>-0.6634092926979065</left_val>
- <right_val>0.0245009995996952</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 9 14 -1.</_>
- <_>
- 1 7 9 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1710374057292938</threshold>
- <left_val>0.0338314995169640</left_val>
- <right_val>-0.4561594128608704</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 2 6 -1.</_>
- <_>
- 4 9 1 3 2.</_>
- <_>
- 5 12 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6011140542104840e-003</threshold>
- <left_val>0.2157489061355591</left_val>
- <right_val>-0.0836225301027298</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 4 3 -1.</_>
- <_>
- 5 9 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0105357803404331</threshold>
- <left_val>0.2455231994390488</left_val>
- <right_val>-0.0823844894766808</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 2 4 -1.</_>
- <_>
- 0 11 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8351638726890087e-003</threshold>
- <left_val>-0.4780732989311218</left_val>
- <right_val>0.0440862216055393</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 6 3 10 -1.</_>
- <_>
- 17 6 1 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0187061093747616</threshold>
- <left_val>-0.6002402901649475</left_val>
- <right_val>0.0214100405573845</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 2 1 -1.</_>
- <_>
- 17 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3307439237833023e-004</threshold>
- <left_val>0.2432359009981155</left_val>
- <right_val>-0.0741657167673111</right_val></_></_></trees>
- <stage_threshold>-1.0566600561141968</stage_threshold>
- <parent>19</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 21 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 4 4 -1.</_>
- <_>
- 5 9 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0106462296098471</threshold>
- <left_val>-0.1386138945817947</left_val>
- <right_val>0.2649407088756561</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 11 9 2 -1.</_>
- <_>
- 13 11 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0352982692420483</threshold>
- <left_val>-0.0758217275142670</left_val>
- <right_val>0.3902106881141663</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 10 2 2 -1.</_>
- <_>
- 15 10 1 1 2.</_>
- <_>
- 16 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5638387352228165e-004</threshold>
- <left_val>-0.0955214425921440</left_val>
- <right_val>0.2906199991703033</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 6 6 14 -1.</_>
- <_>
- 10 13 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0924977064132690</threshold>
- <left_val>-0.2770423889160156</left_val>
- <right_val>0.0794747024774551</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 7 3 5 -1.</_>
- <_>
- 15 7 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9340879991650581e-003</threshold>
- <left_val>0.2298953980207443</left_val>
- <right_val>-0.0785500109195709</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 11 12 3 -1.</_>
- <_>
- 10 11 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0865358486771584</threshold>
- <left_val>0.4774481058120728</left_val>
- <right_val>-6.8231220357120037e-003</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 16 1 2 -1.</_>
- <_>
- 17 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4699288739357144e-005</threshold>
- <left_val>-0.2264260947704315</left_val>
- <right_val>0.0881921127438545</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 5 4 -1.</_>
- <_>
- 8 7 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0365925207734108</threshold>
- <left_val>0.2735387086868286</left_val>
- <right_val>-0.0986067429184914</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 4 2 -1.</_>
- <_>
- 11 7 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6469118893146515e-003</threshold>
- <left_val>-0.0440839789807796</left_val>
- <right_val>0.3144528865814209</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 8 2 -1.</_>
- <_>
- 3 4 4 1 2.</_>
- <_>
- 7 5 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4271810911595821e-003</threshold>
- <left_val>0.2382272928953171</left_val>
- <right_val>-0.0867842733860016</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 6 6 -1.</_>
- <_>
- 2 8 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1882481202483177e-003</threshold>
- <left_val>0.1504276990890503</left_val>
- <right_val>-0.1267210990190506</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 6 2 -1.</_>
- <_>
- 7 5 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5530400238931179e-003</threshold>
- <left_val>-0.0559450201690197</left_val>
- <right_val>0.3650163114070892</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 6 3 -1.</_>
- <_>
- 9 3 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145624103024602</threshold>
- <left_val>0.0363977700471878</left_val>
- <right_val>-0.5355919003486633</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 17 3 3 -1.</_>
- <_>
- 2 18 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8677567469421774e-005</threshold>
- <left_val>-0.1747962981462479</left_val>
- <right_val>0.1106870993971825</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 6 1 -1.</_>
- <_>
- 5 10 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9744901955127716e-003</threshold>
- <left_val>0.3107787072658539</left_val>
- <right_val>-0.0665302276611328</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 6 2 -1.</_>
- <_>
- 9 2 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8691250160336494e-003</threshold>
- <left_val>-0.3190149068832398</left_val>
- <right_val>0.0639318302273750</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 11 9 1 -1.</_>
- <_>
- 7 11 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0111403102055192</threshold>
- <left_val>0.2436479032039642</left_val>
- <right_val>-0.0809351801872253</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 11 12 -1.</_>
- <_>
- 7 13 11 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0586435310542583</threshold>
- <left_val>-0.7608326077461243</left_val>
- <right_val>0.0308096297085285</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 4 -1.</_>
- <_>
- 4 2 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6097282320261002e-003</threshold>
- <left_val>-0.4531502127647400</left_val>
- <right_val>0.0298790596425533</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 9 3 -1.</_>
- <_>
- 12 7 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3032103031873703e-003</threshold>
- <left_val>0.1451337933540344</left_val>
- <right_val>-0.1103316992521286</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 11 2 6 -1.</_>
- <_>
- 15 11 1 3 2.</_>
- <_>
- 16 14 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3253629440441728e-003</threshold>
- <left_val>-0.0976989567279816</left_val>
- <right_val>0.1964644044637680</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 5 3 -1.</_>
- <_>
- 0 6 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9800761044025421e-003</threshold>
- <left_val>0.0336480811238289</left_val>
- <right_val>-0.3979220986366272</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 6 12 -1.</_>
- <_>
- 10 1 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6542161405086517e-003</threshold>
- <left_val>0.0908419936895370</left_val>
- <right_val>-0.1596754938364029</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 7 15 13 -1.</_>
- <_>
- 8 7 5 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3892059028148651</threshold>
- <left_val>-0.6657109260559082</left_val>
- <right_val>0.0190288294106722</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 9 9 -1.</_>
- <_>
- 0 12 9 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1001966968178749</threshold>
- <left_val>-0.5755926966667175</left_val>
- <right_val>0.0242827795445919</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 3 8 -1.</_>
- <_>
- 17 0 1 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3541211895644665e-004</threshold>
- <left_val>0.0879198014736176</left_val>
- <right_val>-0.1619534045457840</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 4 2 -1.</_>
- <_>
- 18 2 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4802639856934547e-003</threshold>
- <left_val>0.2606449127197266</left_val>
- <right_val>-0.0602008104324341</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 6 5 -1.</_>
- <_>
- 16 0 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4000425413250923e-003</threshold>
- <left_val>-0.1097972989082336</left_val>
- <right_val>0.1570730954408646</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 2 -1.</_>
- <_>
- 16 1 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3786011151969433e-003</threshold>
- <left_val>0.0360582396388054</left_val>
- <right_val>-0.4727719128131867</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 3 2 -1.</_>
- <_>
- 12 8 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3831682093441486e-003</threshold>
- <left_val>-0.0357563607394695</left_val>
- <right_val>0.4949859082698822</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 2 12 -1.</_>
- <_>
- 1 8 1 6 2.</_>
- <_>
- 2 14 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2115620560944080e-003</threshold>
- <left_val>-0.1012556031346321</left_val>
- <right_val>0.1574798971414566</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 6 12 -1.</_>
- <_>
- 2 1 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0782096683979034</threshold>
- <left_val>-0.7662708163261414</left_val>
- <right_val>0.0229658298194408</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 17 1 3 -1.</_>
- <_>
- 19 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3303989261621609e-005</threshold>
- <left_val>-0.1341435015201569</left_val>
- <right_val>0.1111491993069649</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 3 10 -1.</_>
- <_>
- 12 3 1 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6419155597686768e-003</threshold>
- <left_val>0.2506802976131439</left_val>
- <right_val>-0.0666081383824348</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 9 8 -1.</_>
- <_>
- 11 1 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0710926726460457</threshold>
- <left_val>-0.4005681872367859</left_val>
- <right_val>0.0402977913618088</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 16 2 2 -1.</_>
- <_>
- 18 16 1 1 2.</_>
- <_>
- 19 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5171560011804104e-004</threshold>
- <left_val>0.0418611802160740</left_val>
- <right_val>-0.3296119868755341</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 16 2 2 -1.</_>
- <_>
- 18 16 1 1 2.</_>
- <_>
- 19 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3458150574006140e-004</threshold>
- <left_val>-0.2602983117103577</left_val>
- <right_val>0.0678927376866341</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 13 2 6 -1.</_>
- <_>
- 6 15 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1451421566307545e-003</threshold>
- <left_val>0.2396769970655441</left_val>
- <right_val>-0.0720933377742767</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 14 2 2 -1.</_>
- <_>
- 9 15 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1754500232636929e-003</threshold>
- <left_val>-0.0712352693080902</left_val>
- <right_val>0.2412845045328140</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 10 2 4 -1.</_>
- <_>
- 14 10 1 2 2.</_>
- <_>
- 15 12 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5184490047395229e-003</threshold>
- <left_val>0.5032023787498474</left_val>
- <right_val>-0.0296866800636053</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 15 2 2 -1.</_>
- <_>
- 0 15 1 1 2.</_>
- <_>
- 1 16 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0242869979701936e-004</threshold>
- <left_val>0.2487905025482178</left_val>
- <right_val>-0.0567585788667202</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 2 2 -1.</_>
- <_>
- 6 7 1 1 2.</_>
- <_>
- 7 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3125919504091144e-003</threshold>
- <left_val>0.3174780011177063</left_val>
- <right_val>-0.0418458618223667</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 18 2 2 -1.</_>
- <_>
- 11 18 1 1 2.</_>
- <_>
- 12 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7123570907860994e-004</threshold>
- <left_val>-0.2704207003116608</left_val>
- <right_val>0.0568289905786514</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 4 -1.</_>
- <_>
- 0 0 3 2 2.</_>
- <_>
- 3 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3241777718067169e-003</threshold>
- <left_val>0.2755667865276337</left_val>
- <right_val>-0.0542529709637165</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 6 6 -1.</_>
- <_>
- 6 1 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168517101556063</threshold>
- <left_val>-0.3485291004180908</left_val>
- <right_val>0.0453689992427826</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 13 5 4 -1.</_>
- <_>
- 15 15 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0299021005630493</threshold>
- <left_val>0.0316210798919201</left_val>
- <right_val>-0.4311437010765076</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 17 6 1 -1.</_>
- <_>
- 9 17 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8902660124003887e-003</threshold>
- <left_val>0.0380299612879753</left_val>
- <right_val>-0.3702709972858429</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 19 4 1 -1.</_>
- <_>
- 18 19 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9242949783802032e-003</threshold>
- <left_val>0.2480027973651886</left_val>
- <right_val>-0.0593332983553410</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 16 4 4 -1.</_>
- <_>
- 18 16 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9354149959981441e-003</threshold>
- <left_val>-0.0830684006214142</left_val>
- <right_val>0.2204380929470062</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 9 4 -1.</_>
- <_>
- 10 8 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0820756033062935</threshold>
- <left_val>-0.0194134395569563</left_val>
- <right_val>0.6908928751945496</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 18 2 2 -1.</_>
- <_>
- 16 18 1 1 2.</_>
- <_>
- 17 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4699489586055279e-004</threshold>
- <left_val>-0.2466056942939758</left_val>
- <right_val>0.0647764503955841</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 2 4 -1.</_>
- <_>
- 2 9 1 2 2.</_>
- <_>
- 3 11 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8365769647061825e-003</threshold>
- <left_val>0.2883616089820862</left_val>
- <right_val>-0.0533904582262039</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 8 4 -1.</_>
- <_>
- 0 3 4 2 2.</_>
- <_>
- 4 5 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9553811550140381e-003</threshold>
- <left_val>0.1274082958698273</left_val>
- <right_val>-0.1255941987037659</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 8 1 -1.</_>
- <_>
- 4 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3086621016263962e-003</threshold>
- <left_val>0.2347811013460159</left_val>
- <right_val>-0.0716764926910400</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 8 9 -1.</_>
- <_>
- 4 5 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1087991967797279</threshold>
- <left_val>-0.2599223852157593</left_val>
- <right_val>0.0586897395551205</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 18 6 2 -1.</_>
- <_>
- 9 18 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6786450594663620e-003</threshold>
- <left_val>-0.7072042822837830</left_val>
- <right_val>0.0187492594122887</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 1 12 -1.</_>
- <_>
- 0 8 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0271368306130171</threshold>
- <left_val>-0.5838422775268555</left_val>
- <right_val>0.0216841306537390</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 13 1 6 -1.</_>
- <_>
- 19 15 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5389778465032578e-003</threshold>
- <left_val>-0.5974891185760498</left_val>
- <right_val>0.0214803107082844</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 6 8 -1.</_>
- <_>
- 4 8 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120956301689148</threshold>
- <left_val>0.1326903998851776</left_val>
- <right_val>-0.0997227206826210</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 9 17 -1.</_>
- <_>
- 3 0 3 17 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1677609980106354</threshold>
- <left_val>-0.5665506720542908</left_val>
- <right_val>0.0321230888366699</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 6 8 -1.</_>
- <_>
- 9 9 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0132625503465533</threshold>
- <left_val>0.1149559020996094</left_val>
- <right_val>-0.1173838973045349</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 9 4 -1.</_>
- <_>
- 8 10 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0767445191740990</threshold>
- <left_val>-0.0314132310450077</left_val>
- <right_val>0.5993549227714539</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 3 -1.</_>
- <_>
- 5 1 8 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0785229541361332e-003</threshold>
- <left_val>-0.0529119409620762</left_val>
- <right_val>0.2334239929914475</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 6 4 4 -1.</_>
- <_>
- 16 6 2 2 2.</_>
- <_>
- 18 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1800279393792152e-003</threshold>
- <left_val>-0.0777343884110451</left_val>
- <right_val>0.1765290945768356</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 2 8 -1.</_>
- <_>
- 17 4 1 4 2.</_>
- <_>
- 18 8 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7729829996824265e-003</threshold>
- <left_val>0.1959162950515747</left_val>
- <right_val>-0.0797521993517876</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 16 1 3 -1.</_>
- <_>
- 2 17 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8560940194875002e-004</threshold>
- <left_val>-0.2880037128925324</left_val>
- <right_val>0.0490471199154854</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 16 1 3 -1.</_>
- <_>
- 2 17 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6554320831783116e-004</threshold>
- <left_val>0.0679228976368904</left_val>
- <right_val>-0.2249943017959595</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 1 3 -1.</_>
- <_>
- 11 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6938671362586319e-004</threshold>
- <left_val>0.1658217012882233</left_val>
- <right_val>-0.0897440984845161</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 9 7 -1.</_>
- <_>
- 14 2 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0786842331290245</threshold>
- <left_val>0.0260816793888807</left_val>
- <right_val>-0.5569373965263367</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 3 6 -1.</_>
- <_>
- 11 2 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3774810880422592e-004</threshold>
- <left_val>0.1403687000274658</left_val>
- <right_val>-0.1180030032992363</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 15 2 -1.</_>
- <_>
- 5 10 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0239578299224377</threshold>
- <left_val>0.0304707400500774</left_val>
- <right_val>-0.4615997970104218</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 16 6 2 -1.</_>
- <_>
- 8 17 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6239080578088760e-003</threshold>
- <left_val>0.2632707953453064</left_val>
- <right_val>-0.0567653700709343</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 16 10 2 -1.</_>
- <_>
- 9 16 5 1 2.</_>
- <_>
- 14 17 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0819748584181070e-004</threshold>
- <left_val>0.1546245962381363</left_val>
- <right_val>-0.1108706966042519</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 17 2 2 -1.</_>
- <_>
- 9 17 1 1 2.</_>
- <_>
- 10 18 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9806248969398439e-004</threshold>
- <left_val>0.0556303709745407</left_val>
- <right_val>-0.2833195924758911</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 15 6 4 -1.</_>
- <_>
- 10 15 3 2 2.</_>
- <_>
- 13 17 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0506449509412050e-003</threshold>
- <left_val>-0.0916048362851143</left_val>
- <right_val>0.1758553981781006</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 15 12 -1.</_>
- <_>
- 9 5 5 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0267425496131182</threshold>
- <left_val>0.0620030313730240</left_val>
- <right_val>-0.2448700070381165</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 2 3 -1.</_>
- <_>
- 11 14 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1497008856385946e-003</threshold>
- <left_val>0.2944929897785187</left_val>
- <right_val>-0.0532181486487389</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 13 7 3 -1.</_>
- <_>
- 8 14 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6671658530831337e-003</threshold>
- <left_val>-0.0642982423305511</left_val>
- <right_val>0.2490568011999130</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 1 2 -1.</_>
- <_>
- 1 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8317902332637459e-005</threshold>
- <left_val>-0.1681963056325913</left_val>
- <right_val>0.0965485796332359</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 18 2 2 -1.</_>
- <_>
- 16 18 1 1 2.</_>
- <_>
- 17 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7600439605303109e-004</threshold>
- <left_val>0.0653080120682716</left_val>
- <right_val>-0.2426788061857224</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 19 18 1 -1.</_>
- <_>
- 7 19 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1861608624458313e-003</threshold>
- <left_val>-0.0979885831475258</left_val>
- <right_val>0.1805288940668106</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 17 6 1 -1.</_>
- <_>
- 4 17 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1808340679854155e-003</threshold>
- <left_val>0.1923127025365830</left_val>
- <right_val>-0.0941239297389984</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 1 12 -1.</_>
- <_>
- 1 9 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0217304006218910</threshold>
- <left_val>0.0355785116553307</left_val>
- <right_val>-0.4508853852748871</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 3 6 -1.</_>
- <_>
- 0 11 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0147802699357271</threshold>
- <left_val>-0.4392701089382172</left_val>
- <right_val>0.0317355915904045</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 3 10 -1.</_>
- <_>
- 6 4 1 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6145891062915325e-003</threshold>
- <left_val>0.1981147974729538</left_val>
- <right_val>-0.0777014195919037</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 17 2 1 -1.</_>
- <_>
- 7 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8892709631472826e-003</threshold>
- <left_val>0.0199624393135309</left_val>
- <right_val>-0.7204172015190125</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 6 12 -1.</_>
- <_>
- 3 0 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3822480104863644e-003</threshold>
- <left_val>0.0984669476747513</left_val>
- <right_val>-0.1488108038902283</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 9 2 -1.</_>
- <_>
- 7 7 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9505911991000175e-003</threshold>
- <left_val>0.1159323006868362</left_val>
- <right_val>-0.1279197037220001</right_val></_></_></trees>
- <stage_threshold>-0.9769343137741089</stage_threshold>
- <parent>20</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 22 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 11 9 1 -1.</_>
- <_>
- 9 11 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0193955395370722</threshold>
- <left_val>0.4747475087642670</left_val>
- <right_val>-0.1172109022736549</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 10 2 10 -1.</_>
- <_>
- 17 15 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0131189199164510</threshold>
- <left_val>-0.2555212974548340</left_val>
- <right_val>0.1637880057096481</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 10 2 10 -1.</_>
- <_>
- 4 10 1 5 2.</_>
- <_>
- 5 15 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1606801571324468e-004</threshold>
- <left_val>0.1945261955261231</left_val>
- <right_val>-0.1744889020919800</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 3 3 12 -1.</_>
- <_>
- 13 3 1 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0131841599941254</threshold>
- <left_val>0.4418145120143890</left_val>
- <right_val>-0.0900487527251244</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 4 6 -1.</_>
- <_>
- 15 3 2 3 2.</_>
- <_>
- 17 6 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4657081123441458e-003</threshold>
- <left_val>-0.1347709000110626</left_val>
- <right_val>0.1805634051561356</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 3 3 -1.</_>
- <_>
- 13 8 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2980200164020061e-003</threshold>
- <left_val>-0.0541649796068668</left_val>
- <right_val>0.3603338003158569</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 14 2 4 -1.</_>
- <_>
- 4 16 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6879989998415112e-003</threshold>
- <left_val>-0.1999794989824295</left_val>
- <right_val>0.1202159970998764</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 16 1 3 -1.</_>
- <_>
- 6 17 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6039709812030196e-004</threshold>
- <left_val>0.1052414029836655</left_val>
- <right_val>-0.2411606013774872</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 2 3 -1.</_>
- <_>
- 2 1 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5276849735528231e-003</threshold>
- <left_val>0.2813552916049957</left_val>
- <right_val>-0.0689648166298866</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 4 1 -1.</_>
- <_>
- 2 2 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5033570602536201e-003</threshold>
- <left_val>-0.0825195834040642</left_val>
- <right_val>0.4071359038352966</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 17 12 3 -1.</_>
- <_>
- 12 17 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7337161377072334e-003</threshold>
- <left_val>0.1972700953483582</left_val>
- <right_val>-0.1171014010906220</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 16 6 4 -1.</_>
- <_>
- 11 16 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0115571497008204</threshold>
- <left_val>-0.5606111288070679</left_val>
- <right_val>0.0681709572672844</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 3 6 -1.</_>
- <_>
- 4 9 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0274457205086946</threshold>
- <left_val>0.4971862137317658</left_val>
- <right_val>-0.0623801499605179</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 12 9 -1.</_>
- <_>
- 6 5 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0528257787227631</threshold>
- <left_val>0.1692122071981430</left_val>
- <right_val>-0.1309355050325394</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 14 20 -1.</_>
- <_>
- 6 0 7 10 2.</_>
- <_>
- 13 10 7 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2984969913959503</threshold>
- <left_val>-0.6464967131614685</left_val>
- <right_val>0.0400768183171749</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 16 2 2 -1.</_>
- <_>
- 15 16 1 1 2.</_>
- <_>
- 16 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6307269581593573e-004</threshold>
- <left_val>0.2512794137001038</left_val>
- <right_val>-0.0894948393106461</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 16 2 2 -1.</_>
- <_>
- 15 16 1 1 2.</_>
- <_>
- 16 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3261709429789335e-004</threshold>
- <left_val>-0.0868439897894859</left_val>
- <right_val>0.2383197993040085</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 8 1 3 -1.</_>
- <_>
- 19 9 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3631360090803355e-004</threshold>
- <left_val>0.1155446022748947</left_val>
- <right_val>-0.1893634945154190</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 4 1 2 -1.</_>
- <_>
- 13 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0742209162563086e-003</threshold>
- <left_val>-0.0485948510468006</left_val>
- <right_val>0.5748599171638489</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 4 2 -1.</_>
- <_>
- 0 5 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0308889262378216e-003</threshold>
- <left_val>-0.5412080883979797</left_val>
- <right_val>0.0487437509000301</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 5 1 6 -1.</_>
- <_>
- 19 7 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2652270793914795e-003</threshold>
- <left_val>0.0264945197850466</left_val>
- <right_val>-0.6172845959663391</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 17 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0042760297656059e-004</threshold>
- <left_val>-0.1176863014698029</left_val>
- <right_val>0.1633386015892029</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 1 3 -1.</_>
- <_>
- 13 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6470040427520871e-003</threshold>
- <left_val>-0.0599549189209938</left_val>
- <right_val>0.3517970144748688</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 17 1 3 -1.</_>
- <_>
- 17 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5642538568936288e-004</threshold>
- <left_val>-0.3442029953002930</left_val>
- <right_val>0.0649482533335686</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 8 8 -1.</_>
- <_>
- 5 4 4 4 2.</_>
- <_>
- 9 8 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0309358704835176</threshold>
- <left_val>0.1997970044612885</left_val>
- <right_val>-0.0976936966180801</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 2 2 -1.</_>
- <_>
- 1 2 1 1 2.</_>
- <_>
- 2 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3578772824257612e-004</threshold>
- <left_val>-0.3148139119148254</left_val>
- <right_val>0.0594250410795212</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 8 6 -1.</_>
- <_>
- 0 0 4 3 2.</_>
- <_>
- 4 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0118621801957488</threshold>
- <left_val>0.2004369050264359</left_val>
- <right_val>-0.0894475430250168</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 4 2 -1.</_>
- <_>
- 6 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1508930996060371e-003</threshold>
- <left_val>-0.0390060618519783</left_val>
- <right_val>0.5332716107368469</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 3 3 -1.</_>
- <_>
- 1 1 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0059191156178713e-003</threshold>
- <left_val>-0.2846972048282623</left_val>
- <right_val>0.0707236081361771</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 7 2 -1.</_>
- <_>
- 6 2 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6412389017641544e-003</threshold>
- <left_val>-0.1066031977534294</left_val>
- <right_val>0.2494480013847351</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 6 12 6 -1.</_>
- <_>
- 6 6 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1346742957830429</threshold>
- <left_val>0.4991008043289185</left_val>
- <right_val>-0.0403322204947472</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 16 9 2 -1.</_>
- <_>
- 4 16 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2547659464180470e-003</threshold>
- <left_val>0.1685169041156769</left_val>
- <right_val>-0.1111928001046181</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 15 6 4 -1.</_>
- <_>
- 9 15 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3842289596796036e-003</threshold>
- <left_val>0.0861394926905632</left_val>
- <right_val>-0.2743177115917206</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 15 12 1 -1.</_>
- <_>
- 12 15 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3361168615520000e-003</threshold>
- <left_val>0.2487521022558212</left_val>
- <right_val>-0.0959191620349884</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 17 1 3 -1.</_>
- <_>
- 17 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4666912658140063e-004</threshold>
- <left_val>0.0674315765500069</left_val>
- <right_val>-0.3375408053398132</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 15 2 2 -1.</_>
- <_>
- 17 15 1 1 2.</_>
- <_>
- 18 16 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2983769304119051e-004</threshold>
- <left_val>-0.0839030519127846</left_val>
- <right_val>0.2458409965038300</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 13 3 3 -1.</_>
- <_>
- 3 14 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7039071582257748e-003</threshold>
- <left_val>0.0290793292224407</left_val>
- <right_val>-0.6905593872070313</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 17 1 3 -1.</_>
- <_>
- 10 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0734888645820320e-005</threshold>
- <left_val>-0.1569671928882599</left_val>
- <right_val>0.1196542978286743</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 14 8 -1.</_>
- <_>
- 11 0 7 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2033555954694748</threshold>
- <left_val>-0.6950634717941284</left_val>
- <right_val>0.0275075193494558</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 12 2 -1.</_>
- <_>
- 6 0 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4939414411783218e-003</threshold>
- <left_val>-0.0874493718147278</left_val>
- <right_val>0.2396833002567291</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 4 3 -1.</_>
- <_>
- 4 0 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4055240210145712e-003</threshold>
- <left_val>0.2115096002817154</left_val>
- <right_val>-0.1314893066883087</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 1 2 -1.</_>
- <_>
- 13 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1342419747961685e-004</threshold>
- <left_val>0.1523378938436508</left_val>
- <right_val>-0.1272590011358261</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 3 6 -1.</_>
- <_>
- 8 5 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0149922100827098</threshold>
- <left_val>-0.0341279692947865</left_val>
- <right_val>0.5062407255172730</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 2 2 2 -1.</_>
- <_>
- 18 2 1 1 2.</_>
- <_>
- 19 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4068200774490833e-004</threshold>
- <left_val>0.0487647503614426</left_val>
- <right_val>-0.4022532105445862</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 2 14 -1.</_>
- <_>
- 16 1 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2459447868168354e-003</threshold>
- <left_val>0.2155476063489914</left_val>
- <right_val>-0.0871269926428795</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 6 2 2 -1.</_>
- <_>
- 15 6 1 1 2.</_>
- <_>
- 16 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8655109498649836e-004</threshold>
- <left_val>-0.0754187181591988</left_val>
- <right_val>0.2640590965747833</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 6 3 -1.</_>
- <_>
- 5 1 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0167514607310295</threshold>
- <left_val>-0.6772903203964233</left_val>
- <right_val>0.0329187288880348</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 16 2 2 -1.</_>
- <_>
- 7 16 1 1 2.</_>
- <_>
- 8 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6301678735762835e-004</threshold>
- <left_val>0.2272586971521378</left_val>
- <right_val>-0.0905348733067513</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 17 2 2 -1.</_>
- <_>
- 5 17 1 1 2.</_>
- <_>
- 6 18 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3398610432632267e-004</threshold>
- <left_val>0.0558943785727024</left_val>
- <right_val>-0.3559266924858093</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 10 6 10 -1.</_>
- <_>
- 11 10 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0201501492410898</threshold>
- <left_val>0.1916276067495346</left_val>
- <right_val>-0.0949299708008766</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 17 6 3 -1.</_>
- <_>
- 12 17 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0144521296024323</threshold>
- <left_val>-0.6851034164428711</left_val>
- <right_val>0.0254221707582474</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 5 2 10 -1.</_>
- <_>
- 14 10 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0211497396230698</threshold>
- <left_val>0.3753319084644318</left_val>
- <right_val>-0.0514965802431107</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 12 6 2 -1.</_>
- <_>
- 11 13 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0211377702653408</threshold>
- <left_val>0.0290830805897713</left_val>
- <right_val>-0.8943036794662476</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 1 3 -1.</_>
- <_>
- 8 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1524349683895707e-003</threshold>
- <left_val>-0.0696949362754822</left_val>
- <right_val>0.2729980051517487</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 15 2 2 -1.</_>
- <_>
- 12 15 1 1 2.</_>
- <_>
- 13 16 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9070580310653895e-004</threshold>
- <left_val>0.1822811961174011</left_val>
- <right_val>-0.0983670726418495</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 6 4 -1.</_>
- <_>
- 6 8 3 2 2.</_>
- <_>
- 9 10 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0363496318459511</threshold>
- <left_val>-0.8369309902191162</left_val>
- <right_val>0.0250557605177164</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 3 5 -1.</_>
- <_>
- 8 5 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0632075443863869e-003</threshold>
- <left_val>0.4146350026130676</left_val>
- <right_val>-0.0544134490191936</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 7 3 -1.</_>
- <_>
- 0 6 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0535490475594997e-003</threshold>
- <left_val>-0.1975031048059464</left_val>
- <right_val>0.1050689965486527</right_val></_></_></trees>
- <stage_threshold>-1.0129359960556030</stage_threshold>
- <parent>21</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 23 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 6 6 -1.</_>
- <_>
- 9 9 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0227170195430517</threshold>
- <left_val>0.2428855001926422</left_val>
- <right_val>-0.1474552005529404</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 8 8 -1.</_>
- <_>
- 5 11 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0255059506744146</threshold>
- <left_val>-0.2855173945426941</left_val>
- <right_val>0.1083720996975899</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 2 6 -1.</_>
- <_>
- 4 9 1 3 2.</_>
- <_>
- 5 12 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6640091091394424e-003</threshold>
- <left_val>0.2927573025226593</left_val>
- <right_val>-0.1037271022796631</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 11 6 1 -1.</_>
- <_>
- 12 11 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8115289062261581e-003</threshold>
- <left_val>0.2142689973115921</left_val>
- <right_val>-0.1381113976240158</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 6 6 11 -1.</_>
- <_>
- 15 6 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0167326908558607</threshold>
- <left_val>0.2655026018619537</left_val>
- <right_val>-0.0439113304018974</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 17 2 2 -1.</_>
- <_>
- 8 17 1 1 2.</_>
- <_>
- 9 18 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9277010839432478e-004</threshold>
- <left_val>0.0211045593023300</left_val>
- <right_val>-0.4297136068344116</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 12 12 1 -1.</_>
- <_>
- 8 12 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0366911105811596</threshold>
- <left_val>0.5399242043495178</left_val>
- <right_val>-0.0436488017439842</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 17 3 2 -1.</_>
- <_>
- 11 18 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2615970335900784e-003</threshold>
- <left_val>-0.1293386965990067</left_val>
- <right_val>0.1663877069950104</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 17 6 1 -1.</_>
- <_>
- 10 17 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4106856957077980e-003</threshold>
- <left_val>-0.9469841122627258</left_val>
- <right_val>0.0214658491313457</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 14 6 -1.</_>
- <_>
- 4 3 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0649027228355408</threshold>
- <left_val>-0.0717277601361275</left_val>
- <right_val>0.2661347985267639</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 12 -1.</_>
- <_>
- 14 8 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0303050000220537</threshold>
- <left_val>-0.0827824920415878</left_val>
- <right_val>0.2769432067871094</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 13 3 2 -1.</_>
- <_>
- 12 14 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5875340215861797e-003</threshold>
- <left_val>-0.1296616941690445</left_val>
- <right_val>0.1775663048028946</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 6 1 -1.</_>
- <_>
- 8 1 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0240451022982597e-003</threshold>
- <left_val>-0.6424317955970764</left_val>
- <right_val>0.0399432107806206</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 6 6 1 -1.</_>
- <_>
- 12 6 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0099769569933414e-003</threshold>
- <left_val>0.1417661011219025</left_val>
- <right_val>-0.1165997013449669</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 19 2 1 -1.</_>
- <_>
- 4 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1179071558872238e-005</threshold>
- <left_val>0.1568766981363297</left_val>
- <right_val>-0.1112734004855156</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 16 2 2 -1.</_>
- <_>
- 18 16 1 1 2.</_>
- <_>
- 19 17 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7293151146732271e-004</threshold>
- <left_val>-0.3355455994606018</left_val>
- <right_val>0.0459777303040028</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 3 7 -1.</_>
- <_>
- 17 11 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7178079579025507e-003</threshold>
- <left_val>0.1695290952920914</left_val>
- <right_val>-0.1057806983590126</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 5 1 6 -1.</_>
- <_>
- 19 8 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0133331697434187</threshold>
- <left_val>-0.5825781226158142</left_val>
- <right_val>0.0309784300625324</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 4 3 -1.</_>
- <_>
- 9 9 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8783430568873882e-003</threshold>
- <left_val>0.1426687985658646</left_val>
- <right_val>-0.1113125979900360</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 8 4 4 -1.</_>
- <_>
- 16 8 2 2 2.</_>
- <_>
- 18 10 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5765981562435627e-003</threshold>
- <left_val>0.2756136059761047</left_val>
- <right_val>-0.0531003288924694</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 2 2 -1.</_>
- <_>
- 2 8 1 1 2.</_>
- <_>
- 3 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7210381277836859e-005</threshold>
- <left_val>0.1324024051427841</left_val>
- <right_val>-0.1116779968142510</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 6 4 -1.</_>
- <_>
- 3 5 3 2 2.</_>
- <_>
- 6 7 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0219685398042202</threshold>
- <left_val>-0.0269681606441736</left_val>
- <right_val>0.5006716847419739</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 8 16 -1.</_>
- <_>
- 2 3 4 8 2.</_>
- <_>
- 6 11 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0274457503110170</threshold>
- <left_val>-0.2408674061298370</left_val>
- <right_val>0.0604782700538635</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 17 1 3 -1.</_>
- <_>
- 17 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8305849456228316e-005</threshold>
- <left_val>-0.1333488970994949</left_val>
- <right_val>0.1012346968054771</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 8 11 -1.</_>
- <_>
- 11 2 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0701906830072403</threshold>
- <left_val>-0.0548637807369232</left_val>
- <right_val>0.2480994015932083</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 6 14 -1.</_>
- <_>
- 16 3 3 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0719021335244179</threshold>
- <left_val>-0.3784669041633606</left_val>
- <right_val>0.0422109998762608</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 2 -1.</_>
- <_>
- 6 9 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1078097969293594</threshold>
- <left_val>-0.3748658895492554</left_val>
- <right_val>0.0428334400057793</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 10 14 3 -1.</_>
- <_>
- 6 11 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4364200178533792e-003</threshold>
- <left_val>0.0804763585329056</left_val>
- <right_val>-0.1726378947496414</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 9 9 3 -1.</_>
- <_>
- 13 9 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0682891905307770</threshold>
- <left_val>-0.0355957895517349</left_val>
- <right_val>0.4076131880283356</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 4 6 -1.</_>
- <_>
- 3 5 2 3 2.</_>
- <_>
- 5 8 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8037179298698902e-003</threshold>
- <left_val>0.1923379004001617</left_val>
- <right_val>-0.0823680236935616</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 7 3 7 -1.</_>
- <_>
- 4 7 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6193489581346512e-004</threshold>
- <left_val>0.1305712014436722</left_val>
- <right_val>-0.1435514986515045</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 11 6 -1.</_>
- <_>
- 2 10 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0582766495645046</threshold>
- <left_val>-0.3012543916702271</left_val>
- <right_val>0.0528196506202221</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 6 3 -1.</_>
- <_>
- 8 10 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1205718666315079e-003</threshold>
- <left_val>0.2204390019178391</left_val>
- <right_val>-0.0756917521357536</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 3 11 -1.</_>
- <_>
- 4 3 1 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0135943097993732</threshold>
- <left_val>-0.3904936015605927</left_val>
- <right_val>0.0418571084737778</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 19 6 1 -1.</_>
- <_>
- 3 19 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3626200379803777e-003</threshold>
- <left_val>-0.0953634232282639</left_val>
- <right_val>0.1497032046318054</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 18 1 2 -1.</_>
- <_>
- 18 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5074219845701009e-004</threshold>
- <left_val>-0.2394558042287827</left_val>
- <right_val>0.0647983327507973</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 12 6 -1.</_>
- <_>
- 8 0 6 3 2.</_>
- <_>
- 14 3 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0774142593145370</threshold>
- <left_val>0.5594198107719421</left_val>
- <right_val>-0.0245168805122375</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 5 1 3 -1.</_>
- <_>
- 19 6 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.2117872554808855e-004</threshold>
- <left_val>0.0549288615584373</left_val>
- <right_val>-0.2793481051921845</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 2 1 -1.</_>
- <_>
- 6 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0250780032947659e-003</threshold>
- <left_val>-0.0621673092246056</left_val>
- <right_val>0.2497636973857880</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 11 2 1 -1.</_>
- <_>
- 14 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1174750812351704e-004</threshold>
- <left_val>0.2343793958425522</left_val>
- <right_val>-0.0657258108258247</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 15 13 -1.</_>
- <_>
- 8 6 5 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0834310203790665</threshold>
- <left_val>0.0509548000991344</left_val>
- <right_val>-0.3102098107337952</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 6 2 -1.</_>
- <_>
- 6 3 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.2014456167817116e-003</threshold>
- <left_val>-0.3924253880977631</left_val>
- <right_val>0.0329269506037235</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 18 1 2 -1.</_>
- <_>
- 0 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9086650465615094e-004</threshold>
- <left_val>-0.3103975057601929</left_val>
- <right_val>0.0497118197381496</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 2 6 -1.</_>
- <_>
- 8 8 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7576898038387299e-003</threshold>
- <left_val>-0.0440407507121563</left_val>
- <right_val>0.3643135130405426</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 6 19 -1.</_>
- <_>
- 5 0 2 19 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1246609017252922</threshold>
- <left_val>-0.8195707798004150</left_val>
- <right_val>0.0191506408154964</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 6 5 -1.</_>
- <_>
- 5 1 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0132425501942635</threshold>
- <left_val>0.0389888398349285</left_val>
- <right_val>-0.3323068022727966</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 14 3 6 -1.</_>
- <_>
- 17 16 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6770128905773163e-003</threshold>
- <left_val>-0.3579013943672180</left_val>
- <right_val>0.0404602102935314</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 13 2 6 -1.</_>
- <_>
- 18 13 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7479929849505424e-003</threshold>
- <left_val>0.2525390088558197</left_val>
- <right_val>-0.0564278215169907</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 18 2 2 -1.</_>
- <_>
- 18 18 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2659651525318623e-004</threshold>
- <left_val>-0.0719886571168900</left_val>
- <right_val>0.2278047949075699</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 14 9 4 -1.</_>
- <_>
- 14 14 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0501534007489681</threshold>
- <left_val>-0.6303647160530090</left_val>
- <right_val>0.0274620503187180</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 8 4 6 -1.</_>
- <_>
- 15 8 2 3 2.</_>
- <_>
- 17 11 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4203149415552616e-003</threshold>
- <left_val>-0.0666107162833214</left_val>
- <right_val>0.2778733968734741</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 16 1 3 -1.</_>
- <_>
- 1 17 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7951780511066318e-004</threshold>
- <left_val>-0.3632706105709076</left_val>
- <right_val>0.0427954308688641</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 3 14 -1.</_>
- <_>
- 8 0 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9305750029161572e-003</threshold>
- <left_val>0.1419623047113419</left_val>
- <right_val>-0.1075998023152351</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 2 1 -1.</_>
- <_>
- 13 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8132671033963561e-004</threshold>
- <left_val>0.2159176021814346</left_val>
- <right_val>-0.0702026635408401</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 6 5 -1.</_>
- <_>
- 10 9 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0709903463721275</threshold>
- <left_val>0.4526660144329071</left_val>
- <right_val>-0.0407504811882973</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 5 4 9 -1.</_>
- <_>
- 17 5 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0533680804073811</threshold>
- <left_val>-0.6767405867576599</left_val>
- <right_val>0.0192883405834436</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 6 6 -1.</_>
- <_>
- 13 0 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0200648494064808</threshold>
- <left_val>-0.4336543083190918</left_val>
- <right_val>0.0318532884120941</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 15 2 2 -1.</_>
- <_>
- 16 15 1 1 2.</_>
- <_>
- 17 16 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1976360110566020e-003</threshold>
- <left_val>-0.0265598706901073</left_val>
- <right_val>0.5079718232154846</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 15 2 2 -1.</_>
- <_>
- 16 15 1 1 2.</_>
- <_>
- 17 16 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2697300300933421e-004</threshold>
- <left_val>0.1801259964704514</left_val>
- <right_val>-0.0836065486073494</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 2 18 -1.</_>
- <_>
- 13 11 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0152626996859908</threshold>
- <left_val>-0.2023892998695374</left_val>
- <right_val>0.0674220174551010</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 8 10 -1.</_>
- <_>
- 8 9 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2081176936626434</threshold>
- <left_val>0.6694386005401611</left_val>
- <right_val>-0.0224521104246378</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 2 3 -1.</_>
- <_>
- 8 4 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5514369588345289e-003</threshold>
- <left_val>-0.0751218423247337</left_val>
- <right_val>0.1732691973447800</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 6 9 -1.</_>
- <_>
- 11 4 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0529240109026432</threshold>
- <left_val>0.2499251961708069</left_val>
- <right_val>-0.0628791674971581</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 4 5 6 -1.</_>
- <_>
- 15 6 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0216488502919674</threshold>
- <left_val>-0.2919428050518036</left_val>
- <right_val>0.0526144914329052</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 18 2 2 -1.</_>
- <_>
- 12 18 1 1 2.</_>
- <_>
- 13 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2905069636180997e-004</threshold>
- <left_val>-0.2211730033159256</left_val>
- <right_val>0.0631683394312859</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 17 1 3 -1.</_>
- <_>
- 1 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0170070608146489e-005</threshold>
- <left_val>-0.1151070967316628</left_val>
- <right_val>0.1161144003272057</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 19 2 1 -1.</_>
- <_>
- 13 19 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6416069411206990e-004</threshold>
- <left_val>0.1587152034044266</left_val>
- <right_val>-0.0826006010174751</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 10 6 6 -1.</_>
- <_>
- 10 10 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120032895356417</threshold>
- <left_val>0.1221809014678001</left_val>
- <right_val>-0.1122969985008240</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 6 5 -1.</_>
- <_>
- 16 2 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0177841000258923</threshold>
- <left_val>-0.3507278859615326</left_val>
- <right_val>0.0313419215381145</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 2 6 -1.</_>
- <_>
- 9 7 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3457582145929337e-003</threshold>
- <left_val>0.1307806968688965</left_val>
- <right_val>-0.1057441011071205</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 15 2 2 -1.</_>
- <_>
- 2 15 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9523242311552167e-004</threshold>
- <left_val>0.1720467060804367</left_val>
- <right_val>-0.0860019922256470</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 17 1 3 -1.</_>
- <_>
- 18 18 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1029590172693133e-004</threshold>
- <left_val>-0.2843317091464996</left_val>
- <right_val>0.0518171191215515</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 14 4 6 -1.</_>
- <_>
- 10 16 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0170537102967501</threshold>
- <left_val>0.3924242854118347</left_val>
- <right_val>-0.0401432700455189</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 3 2 -1.</_>
- <_>
- 10 7 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6504959464073181e-003</threshold>
- <left_val>-0.0318375602364540</left_val>
- <right_val>0.4123769998550415</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 6 2 -1.</_>
- <_>
- 6 9 3 1 2.</_>
- <_>
- 9 10 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103587601333857</threshold>
- <left_val>-0.5699319839477539</left_val>
- <right_val>0.0292483791708946</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 1 12 -1.</_>
- <_>
- 0 6 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0221962407231331</threshold>
- <left_val>-0.4560528993606567</left_val>
- <right_val>0.0262859892100096</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 15 1 -1.</_>
- <_>
- 9 0 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0536029525101185e-003</threshold>
- <left_val>0.1599832028150559</left_val>
- <right_val>-0.0915948599576950</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 8 2 -1.</_>
- <_>
- 9 0 4 1 2.</_>
- <_>
- 13 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7094299700111151e-004</threshold>
- <left_val>-0.1407632976770401</left_val>
- <right_val>0.1028741970658302</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 2 8 1 -1.</_>
- <_>
- 16 2 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2152599412947893e-003</threshold>
- <left_val>0.1659359931945801</left_val>
- <right_val>-0.0852739885449409</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 10 6 -1.</_>
- <_>
- 7 3 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0280848909169436</threshold>
- <left_val>0.2702234089374542</left_val>
- <right_val>-0.0558738112449646</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 6 2 3 -1.</_>
- <_>
- 18 7 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1515151020139456e-003</threshold>
- <left_val>0.0424728915095329</left_val>
- <right_val>-0.3200584948062897</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 12 2 2 -1.</_>
- <_>
- 4 12 1 1 2.</_>
- <_>
- 5 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9733829433098435e-004</threshold>
- <left_val>0.1617716997861862</left_val>
- <right_val>-0.0851155892014503</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 6 2 -1.</_>
- <_>
- 8 6 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0166947804391384</threshold>
- <left_val>-0.4285877048969269</left_val>
- <right_val>0.0305416099727154</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 9 6 -1.</_>
- <_>
- 3 9 3 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1198299005627632</threshold>
- <left_val>-0.0162772908806801</left_val>
- <right_val>0.7984678149223328</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 18 2 2 -1.</_>
- <_>
- 18 18 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5499420482665300e-004</threshold>
- <left_val>0.1593593955039978</left_val>
- <right_val>-0.0832728818058968</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 6 16 -1.</_>
- <_>
- 13 2 2 16 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0182262696325779</threshold>
- <left_val>0.1952728033065796</left_val>
- <right_val>-0.0739398896694183</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 15 13 -1.</_>
- <_>
- 7 4 5 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0238600922748446e-004</threshold>
- <left_val>0.0791018083691597</left_val>
- <right_val>-0.2080612927675247</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 3 10 -1.</_>
- <_>
- 17 2 1 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0892060496844351e-004</threshold>
- <left_val>0.1003663018345833</left_val>
- <right_val>-0.1512821018695831</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 10 2 1 -1.</_>
- <_>
- 7 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.5368112670257688e-004</threshold>
- <left_val>-0.0730116665363312</left_val>
- <right_val>0.2175202071666718</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 18 16 -1.</_>
- <_>
- 10 1 9 16 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4308179914951325</threshold>
- <left_val>-0.0274506993591785</left_val>
- <right_val>0.5706158280372620</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 4 3 15 -1.</_>
- <_>
- 15 4 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3564831614494324e-004</threshold>
- <left_val>0.1158754006028175</left_val>
- <right_val>-0.1279056072235107</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 13 1 2 -1.</_>
- <_>
- 19 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4430730263702571e-005</threshold>
- <left_val>-0.1681662946939468</left_val>
- <right_val>0.0804499834775925</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 6 5 8 -1.</_>
- <_>
- 2 10 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0553456507623196</threshold>
- <left_val>0.4533894956111908</left_val>
- <right_val>-0.0312227793037891</right_val></_></_></trees>
- <stage_threshold>-0.9774749279022217</stage_threshold>
- <parent>22</parent>
- <next>-1</next></_></stages></haarcascade_frontaleye>
- </opencv_storage>
|