|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991 |
- <?xml version="1.0"?>
- <!--
- 25x15 Mouth detector computed with 7000 positive samples
-
- //////////////////////////////////////////////////////////////////////////
- | Contributors License Agreement
- | IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- | By downloading, copying, installing or using the software you agree
- | to this license.
- | If you do not agree to this license, do not download, install,
- | copy or use the software.
- |
- | Copyright (c) 2006, Modesto Castrillon-Santana (IUSIANI, University of
- | Las Palmas de Gran Canaria, Spain).
- | All rights reserved.
- |
- | Redistribution and use in source and binary forms, with or without
- | modification, are permitted provided that the following conditions are
- | met:
- |
- | * Redistributions of source code must retain the above copyright
- | notice, this list of conditions and the following disclaimer.
- | * Redistributions in binary form must reproduce the above
- | copyright notice, this list of conditions and the following
- | disclaimer in the documentation and/or other materials provided
- | with the distribution.
- | * The name of Contributor may not used to endorse or promote products
- | derived from this software without specific prior written permission.
- |
- | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- | CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to
- | Top
- //////////////////////////////////////////////////////////////////////////
-
- RESEARCH USE:
- If you are using any of the detectors or involved ideas please cite one of these papers:
-
- @ARTICLE{Castrillon07-jvci,
- author = "Castrill\'on Santana, M. and D\'eniz Su\'arez, O. and Hern\'andez Tejera, M. and Guerra Artal, C.",
- title = "ENCARA2: Real-time Detection of Multiple Faces at Different Resolutions in Video Streams",
- journal = "Journal of Visual Communication and Image Representation",
- year = "2007",
- vol = "18",
- issue = "2",
- month = "April",
- pages = "130-140"
- }
-
- @INPROCEEDINGS{Castrillon07-swb,
- author = "Castrill\'on Santana, M. and D\'eniz Su\'arez, O. and Hern\'andez Sosa, D. and Lorenzo Navarro, J. ",
- title = "Using Incremental Principal Component Analysis to Learn a Gender Classifier Automatically",
- booktitle = "1st Spanish Workshop on Biometrics",
- year = "2007",
- month = "June",
- address = "Girona, Spain",
- file = F
- }
-
- A comparison of this and other face related classifiers can be found in:
-
- @InProceedings{Castrillon08a-visapp,
- 'athor = "Modesto Castrill\'on-Santana and O. D\'eniz-Su\'arez, L. Ant\'on-Canal\'{\i}s and J. Lorenzo-Navarro",
- title = "Face and Facial Feature Detection Evaluation"
- booktitle = "Third International Conference on Computer Vision Theory and Applications, VISAPP08"
- year = "2008",
- month = "January"
- }
-
- More information can be found at http://mozart.dis.ulpgc.es/Gias/modesto_eng.html or in the papers.
-
- COMMERCIAL USE:
- If you have any commercial interest in this work please contact
- mcastrillon@iusiani.ulpgc.es
- -->
- <opencv_storage>
- <Boca_17stages type_id="opencv-haar-classifier">
- <size>
- 25 15</size>
- <stages>
- <_>
- <!-- stage 0 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 14 9 -1.</_>
- <_>
- 0 3 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1192855015397072</threshold>
- <left_val>0.7854182124137878</left_val>
- <right_val>-0.4541360139846802</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 1 8 14 -1.</_>
- <_>
- 17 8 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0641647726297379</threshold>
- <left_val>-0.7407680749893189</left_val>
- <right_val>0.2652035951614380</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 11 6 -1.</_>
- <_>
- 7 5 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0910761803388596</threshold>
- <left_val>-0.2063370943069458</left_val>
- <right_val>0.8400946259498596</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 15 6 -1.</_>
- <_>
- 5 4 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1129330024123192</threshold>
- <left_val>0.8284121751785278</left_val>
- <right_val>-0.1866362988948822</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 11 6 -1.</_>
- <_>
- 6 6 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0741933435201645</threshold>
- <left_val>0.8354660272598267</left_val>
- <right_val>-0.1527701020240784</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 1 6 3 -1.</_>
- <_>
- 19 1 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1404659491963685e-005</threshold>
- <left_val>-0.0716945603489876</left_val>
- <right_val>0.1858334988355637</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 15 6 -1.</_>
- <_>
- 5 2 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0996975302696228</threshold>
- <left_val>0.6870458126068115</left_val>
- <right_val>-0.1721730977296829</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 13 6 -1.</_>
- <_>
- 7 5 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0900413617491722</threshold>
- <left_val>0.7310237884521484</left_val>
- <right_val>-0.1368771940469742</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 6 5 -1.</_>
- <_>
- 8 3 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5138311320915818e-004</threshold>
- <left_val>-0.3469826877117157</left_val>
- <right_val>0.3647777140140533</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 14 4 1 -1.</_>
- <_>
- 21 14 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6144449546118267e-005</threshold>
- <left_val>-0.3085466027259827</left_val>
- <right_val>0.2320024073123932</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 3 12 -1.</_>
- <_>
- 0 7 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9363909814273939e-005</threshold>
- <left_val>-0.3819856047630310</left_val>
- <right_val>0.2404107004404068</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 10 3 4 -1.</_>
- <_>
- 22 11 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9673648104071617e-003</threshold>
- <left_val>0.0545878112316132</left_val>
- <right_val>-0.7487065792083740</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 3 4 -1.</_>
- <_>
- 0 11 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7189309261739254e-003</threshold>
- <left_val>-0.7476686835289002</left_val>
- <right_val>0.1205869019031525</right_val></_></_></trees>
- <stage_threshold>-1.4372119903564453</stage_threshold>
- <parent>-1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 1 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 15 8 -1.</_>
- <_>
- 5 2 15 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1006335020065308</threshold>
- <left_val>0.7848083972930908</left_val>
- <right_val>-0.3866829872131348</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 0 5 9 -1.</_>
- <_>
- 20 3 5 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0366767607629299</threshold>
- <left_val>0.5453233718872070</left_val>
- <right_val>-0.4012677967548370</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 13 4 -1.</_>
- <_>
- 6 4 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0815562233328819</threshold>
- <left_val>-0.1315398067235947</left_val>
- <right_val>0.8084958195686340</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 15 6 -1.</_>
- <_>
- 7 4 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1064186021685600</threshold>
- <left_val>0.6782389879226685</left_val>
- <right_val>-0.2083356976509094</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 4 12 -1.</_>
- <_>
- 2 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0156307406723499</threshold>
- <left_val>-0.3749788105487824</left_val>
- <right_val>0.3150509893894196</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 14 6 -1.</_>
- <_>
- 6 3 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0711290463805199</threshold>
- <left_val>-0.1557385027408600</left_val>
- <right_val>0.7050542831420898</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 9 6 -1.</_>
- <_>
- 8 5 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0736639127135277</threshold>
- <left_val>-0.1547683030366898</left_val>
- <right_val>0.6715884804725647</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 4 6 -1.</_>
- <_>
- 21 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0592950275167823e-004</threshold>
- <left_val>0.1365388035774231</left_val>
- <right_val>-0.2670182883739471</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 1 3 -1.</_>
- <_>
- 1 13 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9239520188421011e-003</threshold>
- <left_val>-0.7261438965797424</left_val>
- <right_val>0.1364576965570450</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 12 1 3 -1.</_>
- <_>
- 23 13 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3057300131767988e-003</threshold>
- <left_val>0.0706136971712112</left_val>
- <right_val>-0.6423184275627136</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 1 3 -1.</_>
- <_>
- 1 13 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8073299434036016e-003</threshold>
- <left_val>0.1355642974376679</left_val>
- <right_val>-0.7050786018371582</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 11 8 -1.</_>
- <_>
- 7 9 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0664333626627922</threshold>
- <left_val>0.6158788204193115</left_val>
- <right_val>-0.1400263011455536</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 9 6 -1.</_>
- <_>
- 8 6 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0689277201890945</threshold>
- <left_val>0.6765924096107483</left_val>
- <right_val>-0.1224988028407097</right_val></_></_></trees>
- <stage_threshold>-1.5416599512100220</stage_threshold>
- <parent>0</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 2 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 15 9 -1.</_>
- <_>
- 1 3 15 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1822655051946640</threshold>
- <left_val>0.5961514711380005</left_val>
- <right_val>-0.3195483088493347</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 11 15 -1.</_>
- <_>
- 9 5 11 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2893281877040863</threshold>
- <left_val>-0.0240151602774858</left_val>
- <right_val>0.3762707114219666</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 3 4 -1.</_>
- <_>
- 0 9 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2456621304154396e-003</threshold>
- <left_val>-0.7117397785186768</left_val>
- <right_val>0.1214720010757446</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 12 6 -1.</_>
- <_>
- 7 12 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0545681491494179</threshold>
- <left_val>-0.1822118014097214</left_val>
- <right_val>0.4597271978855133</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 2 6 -1.</_>
- <_>
- 0 7 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4434829615056515e-003</threshold>
- <left_val>-0.5354676842689514</left_val>
- <right_val>0.1655835956335068</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 2 11 -1.</_>
- <_>
- 14 0 1 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0204923897981644</threshold>
- <left_val>-0.8770608901977539</left_val>
- <right_val>-0.0151639897376299</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 2 6 -1.</_>
- <_>
- 0 11 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8007471486926079e-003</threshold>
- <left_val>-0.5431423187255859</left_val>
- <right_val>0.1356130987405777</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 24 12 -1.</_>
- <_>
- 13 0 12 6 2.</_>
- <_>
- 1 6 12 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1226660013198853</threshold>
- <left_val>0.1124472022056580</left_val>
- <right_val>-0.6574401855468750</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 3 4 -1.</_>
- <_>
- 0 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5254979088203982e-005</threshold>
- <left_val>0.1536739021539688</left_val>
- <right_val>-0.3841981887817383</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 14 6 -1.</_>
- <_>
- 7 5 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1131860986351967</threshold>
- <left_val>0.4927195906639099</left_val>
- <right_val>-0.1094276010990143</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 15 4 -1.</_>
- <_>
- 5 5 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0792956873774529</threshold>
- <left_val>-0.1647461056709290</left_val>
- <right_val>0.4720517992973328</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 13 12 1 -1.</_>
- <_>
- 12 13 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0148729300126433</threshold>
- <left_val>0.0740143731236458</left_val>
- <right_val>-0.5926275849342346</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 12 6 -1.</_>
- <_>
- 8 3 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0538397915661335</threshold>
- <left_val>-0.2111544013023377</left_val>
- <right_val>0.3537890911102295</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 2 4 9 -1.</_>
- <_>
- 21 2 2 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0759592726826668</threshold>
- <left_val>0.5931801795959473</left_val>
- <right_val>-0.1090068966150284</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 13 6 -1.</_>
- <_>
- 6 4 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1158166006207466</threshold>
- <left_val>-0.0984905213117599</left_val>
- <right_val>0.5940334796905518</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 15 2 -1.</_>
- <_>
- 5 4 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0160826407372952</threshold>
- <left_val>0.3794195055961609</left_val>
- <right_val>-0.1654051989316940</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 5 3 -1.</_>
- <_>
- 0 12 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7254770547151566e-003</threshold>
- <left_val>0.0937571078538895</left_val>
- <right_val>-0.7060937881469727</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 11 14 -1.</_>
- <_>
- 14 7 11 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0611884109675884</threshold>
- <left_val>-0.4381029903888702</left_val>
- <right_val>0.0796229690313339</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 10 4 1 -1.</_>
- <_>
- 3 11 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.5152038112282753e-003</threshold>
- <left_val>-0.7019357085227966</left_val>
- <right_val>0.0781789273023605</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 24 12 -1.</_>
- <_>
- 13 0 12 6 2.</_>
- <_>
- 1 6 12 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1988534033298492</threshold>
- <left_val>-0.6726130843162537</left_val>
- <right_val>0.0560497716069222</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 6 6 -1.</_>
- <_>
- 0 4 3 3 2.</_>
- <_>
- 3 7 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0194473192095757</threshold>
- <left_val>-0.1165110021829605</left_val>
- <right_val>0.4151527881622315</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 9 1 4 -1.</_>
- <_>
- 22 10 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.6706218272447586e-003</threshold>
- <left_val>-0.6090158820152283</left_val>
- <right_val>0.1049979999661446</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 4 1 -1.</_>
- <_>
- 3 10 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.0827528573572636e-003</threshold>
- <left_val>0.0689968466758728</left_val>
- <right_val>-0.5490871071815491</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 8 10 -1.</_>
- <_>
- 20 4 4 5 2.</_>
- <_>
- 16 9 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0201979596167803</threshold>
- <left_val>0.2884930074214935</left_val>
- <right_val>-0.1804888993501663</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 9 6 -1.</_>
- <_>
- 8 9 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0504430681467056</threshold>
- <left_val>-0.0897706300020218</left_val>
- <right_val>0.4609920978546143</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 12 4 3 -1.</_>
- <_>
- 12 12 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0139562226831913e-003</threshold>
- <left_val>-0.4820869863033295</left_val>
- <right_val>0.0588099807500839</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 3 3 -1.</_>
- <_>
- 0 1 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5741933435201645e-003</threshold>
- <left_val>0.0568646714091301</left_val>
- <right_val>-0.5979083180427551</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 9 14 2 -1.</_>
- <_>
- 11 9 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0121624497696757</threshold>
- <left_val>0.1446305960416794</left_val>
- <right_val>-0.1168325990438461</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 13 4 1 -1.</_>
- <_>
- 10 13 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9329390488564968e-003</threshold>
- <left_val>-0.5450860857963562</left_val>
- <right_val>0.0609783902764320</right_val></_></_></trees>
- <stage_threshold>-1.5324319601058960</stage_threshold>
- <parent>1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 3 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 8 6 -1.</_>
- <_>
- 0 3 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0320550985634327</threshold>
- <left_val>0.4280030131340027</left_val>
- <right_val>-0.4258942902088165</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 15 6 -1.</_>
- <_>
- 5 3 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1231034025549889</threshold>
- <left_val>0.5121241807937622</left_val>
- <right_val>-0.2055584937334061</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 4 3 -1.</_>
- <_>
- 0 8 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8588259853422642e-003</threshold>
- <left_val>-0.7101820707321167</left_val>
- <right_val>0.1075906008481979</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 20 6 -1.</_>
- <_>
- 8 3 10 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0977141335606575</threshold>
- <left_val>-0.1477957963943481</left_val>
- <right_val>0.4571174979209900</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 24 5 -1.</_>
- <_>
- 6 6 12 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0527394600212574</threshold>
- <left_val>0.3743767142295837</left_val>
- <right_val>-0.2183827012777329</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 9 6 -1.</_>
- <_>
- 8 7 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0584189109504223</threshold>
- <left_val>-0.1386294066905975</left_val>
- <right_val>0.4993282854557037</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 14 4 -1.</_>
- <_>
- 5 4 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0887569189071655</threshold>
- <left_val>-0.1315895020961762</left_val>
- <right_val>0.6216561794281006</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 8 3 6 -1.</_>
- <_>
- 22 10 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145876696333289</threshold>
- <left_val>0.0915696695446968</left_val>
- <right_val>-0.5815675258636475</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 18 2 -1.</_>
- <_>
- 3 9 9 1 2.</_>
- <_>
- 12 10 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1044600009918213</threshold>
- <left_val>5.2740359678864479e-003</left_val>
- <right_val>-5.6644519531250000e+004</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 8 3 6 -1.</_>
- <_>
- 22 10 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4322784096002579e-003</threshold>
- <left_val>-0.4866046011447907</left_val>
- <right_val>0.0979617610573769</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 24 6 -1.</_>
- <_>
- 0 0 12 3 2.</_>
- <_>
- 12 3 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0406559295952320</threshold>
- <left_val>0.1391579061746597</left_val>
- <right_val>-0.3656015992164612</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 11 4 4 -1.</_>
- <_>
- 15 11 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3366899266839027e-003</threshold>
- <left_val>0.0641745477914810</left_val>
- <right_val>-0.6245471239089966</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 15 2 -1.</_>
- <_>
- 5 6 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158455893397331</threshold>
- <left_val>-0.1791914999485016</left_val>
- <right_val>0.2889905869960785</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 15 6 -1.</_>
- <_>
- 5 6 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0746863335371017</threshold>
- <left_val>0.5424023270606995</left_val>
- <right_val>-0.1314727962017059</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 2 3 -1.</_>
- <_>
- 0 8 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7695250250399113e-003</threshold>
- <left_val>0.0965340435504913</left_val>
- <right_val>-0.6561154723167419</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 13 6 -1.</_>
- <_>
- 6 8 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0535226687788963</threshold>
- <left_val>0.4636800885200501</left_val>
- <right_val>-0.1353430002927780</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 6 3 -1.</_>
- <_>
- 0 12 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3648750074207783e-003</threshold>
- <left_val>-0.6624563932418823</left_val>
- <right_val>0.0684857368469238</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 14 14 -1.</_>
- <_>
- 11 7 14 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2447337061166763</threshold>
- <left_val>-0.8181337118148804</left_val>
- <right_val>0.0450799688696861</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 13 4 1 -1.</_>
- <_>
- 8 13 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4634969886392355e-003</threshold>
- <left_val>-0.7681804895401001</left_val>
- <right_val>0.0495845898985863</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 13 6 -1.</_>
- <_>
- 6 11 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0358034893870354</threshold>
- <left_val>0.3749603927135468</left_val>
- <right_val>-0.1447928994894028</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 4 4 -1.</_>
- <_>
- 0 10 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6720529682934284e-003</threshold>
- <left_val>-0.6127536296844482</left_val>
- <right_val>0.0935847163200378</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 4 6 -1.</_>
- <_>
- 21 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0132687101140618</threshold>
- <left_val>0.2863784134387970</left_val>
- <right_val>-0.2551889121532440</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 6 3 -1.</_>
- <_>
- 0 13 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2518939375877380e-003</threshold>
- <left_val>-0.5896773934364319</left_val>
- <right_val>0.0677111670374870</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 4 3 -1.</_>
- <_>
- 17 11 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3092570528388023e-003</threshold>
- <left_val>0.0272198095917702</left_val>
- <right_val>-0.5714861154556274</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 10 8 -1.</_>
- <_>
- 0 7 5 4 2.</_>
- <_>
- 5 11 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0258194394409657</threshold>
- <left_val>-0.1326007992029190</left_val>
- <right_val>0.3050251901149750</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 2 3 8 -1.</_>
- <_>
- 22 2 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0211078803986311</threshold>
- <left_val>0.1200629025697708</left_val>
- <right_val>-0.1475265026092529</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 16 4 -1.</_>
- <_>
- 9 3 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0408483408391476</threshold>
- <left_val>-0.1736883074045181</left_val>
- <right_val>0.2530446052551270</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 24 2 -1.</_>
- <_>
- 13 13 12 1 2.</_>
- <_>
- 1 14 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0179475992918015</threshold>
- <left_val>-0.7117617130279541</left_val>
- <right_val>0.0583698004484177</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 4 10 -1.</_>
- <_>
- 6 5 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0138895902782679</threshold>
- <left_val>-0.6778132915496826</left_val>
- <right_val>0.0435630008578300</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 7 2 6 -1.</_>
- <_>
- 11 9 2 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.8488982766866684e-003</threshold>
- <left_val>0.1479212939739227</left_val>
- <right_val>-0.0897465273737907</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 8 6 -1.</_>
- <_>
- 8 12 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0659847036004066</threshold>
- <left_val>0.5683801770210266</left_val>
- <right_val>-0.0681742578744888</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 7 1 4 -1.</_>
- <_>
- 24 8 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8370660254731774e-003</threshold>
- <left_val>-0.4986937940120697</left_val>
- <right_val>0.0779643580317497</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 15 6 -1.</_>
- <_>
- 5 9 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0277651809155941</threshold>
- <left_val>0.2679949104785919</left_val>
- <right_val>-0.1382624953985214</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 8 4 3 -1.</_>
- <_>
- 21 9 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9889356642961502e-003</threshold>
- <left_val>0.0445619411766529</left_val>
- <right_val>-0.7317379117012024</right_val></_></_></trees>
- <stage_threshold>-1.4849940538406372</stage_threshold>
- <parent>2</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 4 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 15 4 -1.</_>
- <_>
- 5 3 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0456383489072323</threshold>
- <left_val>0.6275423169136047</left_val>
- <right_val>-0.2494937032461166</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 15 3 -1.</_>
- <_>
- 6 5 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0310676805675030</threshold>
- <left_val>0.6427816152572632</left_val>
- <right_val>-0.1671900004148483</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 12 -1.</_>
- <_>
- 0 3 1 6 2.</_>
- <_>
- 1 9 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0193419661372900e-003</threshold>
- <left_val>-0.2399346977472305</left_val>
- <right_val>0.3676818013191223</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 11 4 -1.</_>
- <_>
- 7 4 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0315676406025887</threshold>
- <left_val>-0.1147691980004311</left_val>
- <right_val>0.5750172734260559</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 6 -1.</_>
- <_>
- 0 3 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4146341755986214e-003</threshold>
- <left_val>0.2154625058174133</left_val>
- <right_val>-0.3768770098686218</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 3 1 12 -1.</_>
- <_>
- 24 7 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7010860182344913e-003</threshold>
- <left_val>-0.4533824026584625</left_val>
- <right_val>0.0946888476610184</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 24 12 -1.</_>
- <_>
- 0 0 12 6 2.</_>
- <_>
- 12 6 12 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1890300065279007</threshold>
- <left_val>0.0801155269145966</left_val>
- <right_val>-0.7184885144233704</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 24 14 -1.</_>
- <_>
- 13 1 12 7 2.</_>
- <_>
- 1 8 12 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1293978989124298</threshold>
- <left_val>0.1093719005584717</left_val>
- <right_val>-0.5197048783302307</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 8 4 -1.</_>
- <_>
- 5 3 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0657683908939362</threshold>
- <left_val>0.5003104209899902</left_val>
- <right_val>-0.1238735020160675</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 9 1 4 -1.</_>
- <_>
- 23 10 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.0884059853851795e-003</threshold>
- <left_val>-0.5118011236190796</left_val>
- <right_val>0.0594223700463772</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 11 8 -1.</_>
- <_>
- 7 9 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0306642707437277</threshold>
- <left_val>0.2964648902416229</left_val>
- <right_val>-0.1741248071193695</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 9 1 4 -1.</_>
- <_>
- 23 10 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.7700960636138916e-003</threshold>
- <left_val>0.0846907272934914</left_val>
- <right_val>-0.4009515047073364</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 1 9 -1.</_>
- <_>
- 0 9 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2402039766311646e-003</threshold>
- <left_val>-0.5560923218727112</left_val>
- <right_val>0.0800850465893745</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 9 3 -1.</_>
- <_>
- 8 3 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0105152595788240</threshold>
- <left_val>-0.1309404969215393</left_val>
- <right_val>0.3612711131572723</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 7 4 -1.</_>
- <_>
- 9 5 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0181792695075274</threshold>
- <left_val>-0.1245180964469910</left_val>
- <right_val>0.3556562960147858</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 0 3 2 -1.</_>
- <_>
- 22 1 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3037698380649090e-003</threshold>
- <left_val>0.0638220235705376</left_val>
- <right_val>-0.6178466081619263</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 13 14 -1.</_>
- <_>
- 0 7 13 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1947806030511856</threshold>
- <left_val>-0.7228901982307434</left_val>
- <right_val>0.0475768186151981</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 9 4 4 -1.</_>
- <_>
- 21 10 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2230421938002110e-003</threshold>
- <left_val>0.0453382283449173</left_val>
- <right_val>-0.5460836291313171</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 4 4 -1.</_>
- <_>
- 0 10 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0375838764011860e-003</threshold>
- <left_val>0.0804468318820000</left_val>
- <right_val>-0.4817472100257874</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 9 1 4 -1.</_>
- <_>
- 21 10 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.1934829466044903e-003</threshold>
- <left_val>-0.5018991827964783</left_val>
- <right_val>0.0128700295463204</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 4 1 -1.</_>
- <_>
- 4 10 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.4941599480807781e-003</threshold>
- <left_val>-0.5862709879875183</left_val>
- <right_val>0.0634675025939941</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 10 12 -1.</_>
- <_>
- 20 3 5 6 2.</_>
- <_>
- 15 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0874131396412849</threshold>
- <left_val>-0.0676202401518822</left_val>
- <right_val>0.4797031879425049</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 14 6 -1.</_>
- <_>
- 0 8 7 3 2.</_>
- <_>
- 7 11 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0377015694975853</threshold>
- <left_val>0.3913342952728272</left_val>
- <right_val>-0.0978809297084808</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 10 1 4 -1.</_>
- <_>
- 22 11 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.0070370994508266e-003</threshold>
- <left_val>0.0484924912452698</left_val>
- <right_val>-0.2472224980592728</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 10 12 -1.</_>
- <_>
- 0 3 5 6 2.</_>
- <_>
- 5 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0974098667502403</threshold>
- <left_val>-0.0669010728597641</left_val>
- <right_val>0.5813519954681397</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 0 2 1 -1.</_>
- <_>
- 23 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.0166568942368031e-003</threshold>
- <left_val>-0.5456554293632507</left_val>
- <right_val>0.0363924615085125</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 9 3 -1.</_>
- <_>
- 8 4 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0104924896731973</threshold>
- <left_val>-0.1087466031312943</left_val>
- <right_val>0.3253425061702728</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 11 4 -1.</_>
- <_>
- 7 6 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0249659996479750</threshold>
- <left_val>-0.1137896031141281</left_val>
- <right_val>0.3056510984897614</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 20 8 -1.</_>
- <_>
- 12 7 10 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1301030069589615</threshold>
- <left_val>-0.1220476999878883</left_val>
- <right_val>0.3035365939140320</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 5 9 8 -1.</_>
- <_>
- 15 5 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0843720883131027</threshold>
- <left_val>-0.6943122148513794</left_val>
- <right_val>0.0178856607526541</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.9267850331962109e-003</threshold>
- <left_val>-0.5401834845542908</left_val>
- <right_val>0.0564073212444782</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 3 4 4 -1.</_>
- <_>
- 22 4 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0206745099276304</threshold>
- <left_val>0.4180921018123627</left_val>
- <right_val>-0.0685340464115143</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 9 8 -1.</_>
- <_>
- 7 5 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0514506399631500</threshold>
- <left_val>-0.6289098262786865</left_val>
- <right_val>0.0529876984655857</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 10 3 2 -1.</_>
- <_>
- 22 10 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.9261196553707123e-003</threshold>
- <left_val>-0.4644356071949005</left_val>
- <right_val>0.0236550793051720</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 24 5 -1.</_>
- <_>
- 6 5 12 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0830484703183174</threshold>
- <left_val>0.3304196894168854</left_val>
- <right_val>-0.0938697606325150</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 7 3 -1.</_>
- <_>
- 9 8 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0113369999453425</threshold>
- <left_val>-0.0979600325226784</left_val>
- <right_val>0.3484053015708923</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 20 9 -1.</_>
- <_>
- 7 0 10 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0827779024839401</threshold>
- <left_val>-0.1159391030669212</left_val>
- <right_val>0.2680957913398743</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 8 9 -1.</_>
- <_>
- 13 2 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0478848814964294</threshold>
- <left_val>-0.6079211235046387</left_val>
- <right_val>0.0222362894564867</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 4 1 -1.</_>
- <_>
- 2 9 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.8582698907703161e-003</threshold>
- <left_val>-0.4688901007175446</left_val>
- <right_val>0.0554540418088436</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 5 6 10 -1.</_>
- <_>
- 22 5 3 5 2.</_>
- <_>
- 19 10 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0334531292319298</threshold>
- <left_val>0.4192667901515961</left_val>
- <right_val>-0.0631088465452194</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 6 10 -1.</_>
- <_>
- 0 5 3 5 2.</_>
- <_>
- 3 10 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126036396250129</threshold>
- <left_val>-0.1227632984519005</left_val>
- <right_val>0.2175220996141434</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 9 2 -1.</_>
- <_>
- 13 10 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0262600891292095</threshold>
- <left_val>0.0162896700203419</left_val>
- <right_val>-0.5688759088516235</right_val></_></_></trees>
- <stage_threshold>-1.5437099933624268</stage_threshold>
- <parent>3</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 5 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 15 2 -1.</_>
- <_>
- 5 3 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0197793096303940</threshold>
- <left_val>0.4472095072269440</left_val>
- <right_val>-0.2573797106742859</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 4 4 3 -1.</_>
- <_>
- 21 4 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1997236013412476e-003</threshold>
- <left_val>0.4397894144058228</left_val>
- <right_val>-0.1382309943437576</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 15 4 -1.</_>
- <_>
- 1 6 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0222425796091557</threshold>
- <left_val>-0.1761150062084198</left_val>
- <right_val>0.3406811952590942</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 5 4 10 -1.</_>
- <_>
- 23 5 2 5 2.</_>
- <_>
- 21 10 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3650550544261932e-003</threshold>
- <left_val>-0.1087490990757942</left_val>
- <right_val>0.1631094068288803</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 21 8 -1.</_>
- <_>
- 7 0 7 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.7425013780593872</threshold>
- <left_val>4.6233131433837116e-004</left_val>
- <right_val>-1.4172740478515625e+003</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 15 6 -1.</_>
- <_>
- 5 2 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1289999037981033</threshold>
- <left_val>0.4220936894416809</left_val>
- <right_val>-0.1264209002256393</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 21 3 -1.</_>
- <_>
- 9 2 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4214023947715759</threshold>
- <left_val>3.0299068894237280e-003</left_val>
- <right_val>1.2071870117187500e+003</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 15 6 -1.</_>
- <_>
- 6 5 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1431712061166763</threshold>
- <left_val>0.5070012211799622</left_val>
- <right_val>-0.1091170981526375</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 4 10 -1.</_>
- <_>
- 0 5 2 5 2.</_>
- <_>
- 2 10 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4366121292114258e-003</threshold>
- <left_val>-0.2218814045190811</left_val>
- <right_val>0.2446105927228928</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 10 1 4 -1.</_>
- <_>
- 21 11 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.0177310109138489e-003</threshold>
- <left_val>0.1072233989834786</left_val>
- <right_val>-0.3470205068588257</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 3 4 -1.</_>
- <_>
- 0 8 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8220949247479439e-003</threshold>
- <left_val>-0.6534119248390198</left_val>
- <right_val>0.0803434476256371</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 24 3 -1.</_>
- <_>
- 7 3 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0362788289785385</threshold>
- <left_val>-0.2207075059413910</left_val>
- <right_val>0.2242490947246552</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 24 13 -1.</_>
- <_>
- 6 0 12 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1675994992256165</threshold>
- <left_val>0.4059072136878967</left_val>
- <right_val>-0.1054169982671738</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 15 4 -1.</_>
- <_>
- 5 4 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0509919412434101</threshold>
- <left_val>0.3452283143997192</left_val>
- <right_val>-0.1206474006175995</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 14 3 -1.</_>
- <_>
- 5 5 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0161635298281908</threshold>
- <left_val>-0.1465175002813339</left_val>
- <right_val>0.3696750998497009</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 8 2 4 -1.</_>
- <_>
- 22 9 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.3268675953149796e-003</threshold>
- <left_val>0.0642398297786713</left_val>
- <right_val>-0.5490669012069702</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 4 2 -1.</_>
- <_>
- 3 9 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.2614871896803379e-003</threshold>
- <left_val>-0.6105815768241882</left_val>
- <right_val>0.0538330897688866</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 9 6 -1.</_>
- <_>
- 9 10 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0427855290472507</threshold>
- <left_val>0.3435507118701935</left_val>
- <right_val>-0.1058441996574402</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 11 14 -1.</_>
- <_>
- 0 7 11 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0558885596692562</threshold>
- <left_val>-0.4213463068008423</left_val>
- <right_val>0.0855342373251915</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 24 12 -1.</_>
- <_>
- 13 0 12 6 2.</_>
- <_>
- 1 6 12 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1077039018273354</threshold>
- <left_val>0.0796676799654961</left_val>
- <right_val>-0.5105268955230713</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 3 4 -1.</_>
- <_>
- 0 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8622798203723505e-005</threshold>
- <left_val>0.1164970993995667</left_val>
- <right_val>-0.3022361099720001</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 15 4 -1.</_>
- <_>
- 7 3 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0272718109190464</threshold>
- <left_val>-0.0831976532936096</left_val>
- <right_val>0.3410704135894775</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 10 4 1 -1.</_>
- <_>
- 3 11 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.7942128945142031e-003</threshold>
- <left_val>0.0836139172315598</left_val>
- <right_val>-0.4521746933460236</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 11 4 4 -1.</_>
- <_>
- 21 12 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9649557806551456e-003</threshold>
- <left_val>-0.5814967751502991</left_val>
- <right_val>0.0588471181690693</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 12 8 -1.</_>
- <_>
- 1 7 6 4 2.</_>
- <_>
- 7 11 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0364551208913326</threshold>
- <left_val>0.2987614870071411</left_val>
- <right_val>-0.1163965016603470</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 11 6 -1.</_>
- <_>
- 7 11 11 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0560359284281731</threshold>
- <left_val>-0.1189749017357826</left_val>
- <right_val>0.3490499854087830</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 2 2 -1.</_>
- <_>
- 0 14 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9068910041823983e-003</threshold>
- <left_val>0.0623399801552296</left_val>
- <right_val>-0.5222734212875366</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 8 6 -1.</_>
- <_>
- 12 3 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0314803011715412</threshold>
- <left_val>-0.5988280177116394</left_val>
- <right_val>0.0221100505441427</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 8 6 -1.</_>
- <_>
- 9 3 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0291779898107052</threshold>
- <left_val>-0.7628328204154968</left_val>
- <right_val>0.0378519818186760</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 6 3 3 -1.</_>
- <_>
- 22 7 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3441819772124290e-003</threshold>
- <left_val>0.0293787997215986</left_val>
- <right_val>-0.5464184880256653</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 5 6 -1.</_>
- <_>
- 0 7 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2941689928993583e-003</threshold>
- <left_val>-0.2152619063854218</left_val>
- <right_val>0.1293071061372757</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 9 6 -1.</_>
- <_>
- 8 9 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0399527512490749</threshold>
- <left_val>-0.0815632417798042</left_val>
- <right_val>0.3440327942371368</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 20 13 -1.</_>
- <_>
- 12 0 10 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2579689919948578</threshold>
- <left_val>-0.0829713121056557</left_val>
- <right_val>0.2971759140491486</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 3 6 4 -1.</_>
- <_>
- 22 3 3 2 2.</_>
- <_>
- 19 5 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3975978195667267e-003</threshold>
- <left_val>-0.1235759034752846</left_val>
- <right_val>0.3130742907524109</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 8 12 3 -1.</_>
- <_>
- 9 8 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0210481006652117</threshold>
- <left_val>0.2553890943527222</left_val>
- <right_val>-0.1077592000365257</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 3 2 5 -1.</_>
- <_>
- 22 3 1 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0184192396700382</threshold>
- <left_val>-0.0348858311772347</left_val>
- <right_val>0.4613004922866821</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 8 8 -1.</_>
- <_>
- 8 7 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0335993207991123</threshold>
- <left_val>-0.6385626196861267</left_val>
- <right_val>0.0432357601821423</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 0 3 1 -1.</_>
- <_>
- 21 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.9369178488850594e-003</threshold>
- <left_val>-0.3381235003471375</left_val>
- <right_val>0.0261388104408979</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 1 3 -1.</_>
- <_>
- 4 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.4244509451091290e-003</threshold>
- <left_val>0.0416494794189930</left_val>
- <right_val>-0.6013135910034180</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 11 1 3 -1.</_>
- <_>
- 21 12 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.8341500330716372e-003</threshold>
- <left_val>-0.3147934973239899</left_val>
- <right_val>0.0227260906249285</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 4 3 -1.</_>
- <_>
- 3 4 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9263929724693298e-003</threshold>
- <left_val>-0.0845179632306099</left_val>
- <right_val>0.2986125946044922</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 4 6 8 -1.</_>
- <_>
- 22 4 3 4 2.</_>
- <_>
- 19 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0194444190710783</threshold>
- <left_val>0.2213757932186127</left_val>
- <right_val>-0.0513583682477474</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 8 8 -1.</_>
- <_>
- 0 4 4 4 2.</_>
- <_>
- 4 8 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0187752693891525</threshold>
- <left_val>-0.1223364025354385</left_val>
- <right_val>0.2647691071033478</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 11 1 3 -1.</_>
- <_>
- 21 12 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.4857508987188339e-003</threshold>
- <left_val>0.0205634497106075</left_val>
- <right_val>-0.5246906280517578</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 24 14 -1.</_>
- <_>
- 0 1 12 7 2.</_>
- <_>
- 12 8 12 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2598725855350494</threshold>
- <left_val>-0.6570193767547607</left_val>
- <right_val>0.0345496907830238</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 8 2 4 -1.</_>
- <_>
- 23 9 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8150831609964371e-003</threshold>
- <left_val>-0.6595460772514343</left_val>
- <right_val>0.0302442405372858</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 15 4 -1.</_>
- <_>
- 5 4 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0261219404637814</threshold>
- <left_val>0.1870407015085220</left_val>
- <right_val>-0.1252924054861069</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 9 3 -1.</_>
- <_>
- 8 2 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7821800000965595e-003</threshold>
- <left_val>0.2328509986400604</left_val>
- <right_val>-0.1182496026158333</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 2 4 -1.</_>
- <_>
- 0 9 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9595640953630209e-003</threshold>
- <left_val>-0.4579938054084778</left_val>
- <right_val>0.0564655400812626</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 10 7 2 -1.</_>
- <_>
- 18 11 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120882000774145</threshold>
- <left_val>-0.5189349055290222</left_val>
- <right_val>0.0244996603578329</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 11 12 4 -1.</_>
- <_>
- 6 12 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8109169155359268e-003</threshold>
- <left_val>0.2570025026798248</left_val>
- <right_val>-0.0927671566605568</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 6 15 -1.</_>
- <_>
- 16 0 2 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0459428504109383</threshold>
- <left_val>-0.4479719102382660</left_val>
- <right_val>0.0299462303519249</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 7 2 -1.</_>
- <_>
- 0 11 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100041404366493</threshold>
- <left_val>-0.6149634122848511</left_val>
- <right_val>0.0364212691783905</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 5 6 6 -1.</_>
- <_>
- 18 5 3 3 2.</_>
- <_>
- 15 8 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0116753997281194</threshold>
- <left_val>0.1172877028584480</left_val>
- <right_val>-0.0613474808633327</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 6 15 -1.</_>
- <_>
- 7 0 2 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0524668507277966</threshold>
- <left_val>-0.7613652944564819</left_val>
- <right_val>0.0306894704699516</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 9 4 -1.</_>
- <_>
- 8 8 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0182263404130936</threshold>
- <left_val>-0.0854801833629608</left_val>
- <right_val>0.2695373892784119</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 10 6 -1.</_>
- <_>
- 7 8 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0452684201300144</threshold>
- <left_val>0.3264470100402832</left_val>
- <right_val>-0.0773756429553032</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 11 1 3 -1.</_>
- <_>
- 18 12 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.1426883116364479e-003</threshold>
- <left_val>-0.4582937955856323</left_val>
- <right_val>9.3973511829972267e-003</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 11 3 1 -1.</_>
- <_>
- 7 12 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.3349281661212444e-003</threshold>
- <left_val>-0.5775498151779175</left_val>
- <right_val>0.0352523885667324</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 10 4 1 -1.</_>
- <_>
- 16 10 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0754769900813699e-003</threshold>
- <left_val>0.1434753984212875</left_val>
- <right_val>-0.1015762984752655</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 2 -1.</_>
- <_>
- 0 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5198600962758064e-003</threshold>
- <left_val>-0.6082041263580322</left_val>
- <right_val>0.0328880697488785</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 9 3 -1.</_>
- <_>
- 8 2 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0112483501434326</threshold>
- <left_val>-0.0905500426888466</left_val>
- <right_val>0.2323783040046692</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 5 3 -1.</_>
- <_>
- 0 7 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119920196011662</threshold>
- <left_val>-0.5705332159996033</left_val>
- <right_val>0.0367036312818527</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 8 1 4 -1.</_>
- <_>
- 20 9 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0121055301278830</threshold>
- <left_val>-0.7086269259452820</left_val>
- <right_val>4.4598700478672981e-003</right_val></_></_></trees>
- <stage_threshold>-1.5637760162353516</stage_threshold>
- <parent>4</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 6 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 15 6 -1.</_>
- <_>
- 5 3 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1112890988588333</threshold>
- <left_val>0.5214446783065796</left_val>
- <right_val>-0.2762526869773865</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 0 2 2 -1.</_>
- <_>
- 24 0 1 1 2.</_>
- <_>
- 23 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1310080084949732e-003</threshold>
- <left_val>-0.6073393225669861</left_val>
- <right_val>0.0243980996310711</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 15 6 -1.</_>
- <_>
- 3 5 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0975013524293900</threshold>
- <left_val>0.5489286780357361</left_val>
- <right_val>-0.1652427017688751</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 0 6 9 -1.</_>
- <_>
- 19 3 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0652247071266174</threshold>
- <left_val>0.3402006924152374</left_val>
- <right_val>-0.2693930864334106</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 15 6 -1.</_>
- <_>
- 5 4 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1191802993416786</threshold>
- <left_val>-0.1123576015233994</left_val>
- <right_val>0.6395980119705200</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 8 3 -1.</_>
- <_>
- 17 4 8 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0140629801899195</threshold>
- <left_val>0.3342761993408203</left_val>
- <right_val>-0.1284538954496384</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 8 4 -1.</_>
- <_>
- 4 3 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0564025007188320</threshold>
- <left_val>0.3790628910064697</left_val>
- <right_val>-0.1554156988859177</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 6 2 -1.</_>
- <_>
- 16 5 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1742408908903599e-003</threshold>
- <left_val>-0.1133088991045952</left_val>
- <right_val>0.1825089007616043</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 24 12 -1.</_>
- <_>
- 0 0 12 6 2.</_>
- <_>
- 12 6 12 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1259752959012985</threshold>
- <left_val>0.0945485532283783</left_val>
- <right_val>-0.4853444099426270</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 10 3 2 -1.</_>
- <_>
- 22 10 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.9177991934120655e-003</threshold>
- <left_val>0.0701321363449097</left_val>
- <right_val>-0.5377039909362793</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 6 6 -1.</_>
- <_>
- 4 5 6 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0439277403056622</threshold>
- <left_val>0.3950741887092590</left_val>
- <right_val>-0.1080185994505882</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 4 9 1 -1.</_>
- <_>
- 17 7 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.8314704373478889e-003</threshold>
- <left_val>0.0959606170654297</left_val>
- <right_val>-0.0468075983226299</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 2 3 -1.</_>
- <_>
- 3 10 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.6353402324020863e-003</threshold>
- <left_val>0.0943416282534599</left_val>
- <right_val>-0.5247716903686523</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 8 5 2 -1.</_>
- <_>
- 20 8 5 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0115382801741362</threshold>
- <left_val>-0.5154880285263062</left_val>
- <right_val>0.0138055300340056</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 16 6 -1.</_>
- <_>
- 0 9 8 3 2.</_>
- <_>
- 8 12 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0286462493240833</threshold>
- <left_val>-0.1382701992988586</left_val>
- <right_val>0.2750437855720520</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 13 3 -1.</_>
- <_>
- 6 3 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0138679798692465</threshold>
- <left_val>-0.1203586980700493</left_val>
- <right_val>0.3521435856819153</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 3 4 -1.</_>
- <_>
- 0 3 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0469371015205979e-004</threshold>
- <left_val>0.1522637009620667</left_val>
- <right_val>-0.2590084075927734</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 9 12 -1.</_>
- <_>
- 8 6 9 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1594581007957459</threshold>
- <left_val>-0.6391854882240295</left_val>
- <right_val>0.0514649897813797</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 2 -1.</_>
- <_>
- 4 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.7928699273616076e-003</threshold>
- <left_val>-0.5840150713920593</left_val>
- <right_val>0.0542793795466423</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 15 3 -1.</_>
- <_>
- 5 4 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0183532107621431</threshold>
- <left_val>-0.1051151007413864</left_val>
- <right_val>0.3529815971851349</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 2 3 -1.</_>
- <_>
- 3 10 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.1810559816658497e-003</threshold>
- <left_val>-0.4741767942905426</left_val>
- <right_val>0.0798512324690819</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 4 6 4 -1.</_>
- <_>
- 22 4 3 2 2.</_>
- <_>
- 19 6 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.2321299016475677e-003</threshold>
- <left_val>-0.0759327188134193</left_val>
- <right_val>0.1852813959121704</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 8 4 -1.</_>
- <_>
- 0 3 4 2 2.</_>
- <_>
- 4 5 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0121171101927757</threshold>
- <left_val>-0.1117528975009918</left_val>
- <right_val>0.2853634953498840</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 10 5 3 -1.</_>
- <_>
- 19 11 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2612818330526352e-003</threshold>
- <left_val>-0.5885108709335327</left_val>
- <right_val>0.0526883192360401</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 5 3 -1.</_>
- <_>
- 1 11 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6134900078177452e-003</threshold>
- <left_val>0.0474684908986092</left_val>
- <right_val>-0.5394589900970459</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 13 14 -1.</_>
- <_>
- 12 8 13 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1945167928934097</threshold>
- <left_val>-0.5634222030639648</left_val>
- <right_val>0.0302108898758888</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 13 14 -1.</_>
- <_>
- 0 8 13 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3550943136215210</threshold>
- <left_val>0.0630894526839256</left_val>
- <right_val>-0.4980587959289551</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 6 12 -1.</_>
- <_>
- 14 3 3 6 2.</_>
- <_>
- 11 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0331119708716869</threshold>
- <left_val>0.0346324704587460</left_val>
- <right_val>-0.5246484875679016</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 6 10 -1.</_>
- <_>
- 9 5 3 5 2.</_>
- <_>
- 12 10 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0342818088829517</threshold>
- <left_val>0.0431439802050591</left_val>
- <right_val>-0.6470713019371033</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 8 5 4 -1.</_>
- <_>
- 20 9 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8256614506244659e-003</threshold>
- <left_val>-0.4688000977039337</left_val>
- <right_val>0.0402393713593483</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 5 4 -1.</_>
- <_>
- 0 9 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0111560495570302</threshold>
- <left_val>0.0401505008339882</left_val>
- <right_val>-0.6095538735389710</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 9 3 -1.</_>
- <_>
- 8 10 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0113630602136254</threshold>
- <left_val>-0.0827489867806435</left_val>
- <right_val>0.3811689019203186</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 6 4 -1.</_>
- <_>
- 9 10 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0204051006585360</threshold>
- <left_val>0.0425756387412548</left_val>
- <right_val>-0.7467774152755737</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 14 4 -1.</_>
- <_>
- 6 7 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0191116295754910</threshold>
- <left_val>-0.1239197030663490</left_val>
- <right_val>0.2226520031690598</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 5 4 -1.</_>
- <_>
- 9 7 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3364898562431335e-003</threshold>
- <left_val>0.3034206926822662</left_val>
- <right_val>-0.0926956906914711</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 5 3 6 -1.</_>
- <_>
- 22 7 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6538922041654587e-003</threshold>
- <left_val>-0.3351745009422302</left_val>
- <right_val>0.0585405789315701</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 3 6 -1.</_>
- <_>
- 0 7 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0347895994782448</threshold>
- <left_val>0.0337578095495701</left_val>
- <right_val>-0.7483453154563904</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 1 5 4 -1.</_>
- <_>
- 17 2 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0174188297241926</threshold>
- <left_val>0.2445363998413086</left_val>
- <right_val>-0.0698786973953247</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 6 4 -1.</_>
- <_>
- 3 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5119079984724522e-003</threshold>
- <left_val>-0.1277886927127838</left_val>
- <right_val>0.2403315007686615</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 14 4 1 -1.</_>
- <_>
- 21 14 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0669797929003835e-004</threshold>
- <left_val>-0.1169779002666473</left_val>
- <right_val>0.1439380049705505</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 3 2 -1.</_>
- <_>
- 5 9 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.9512741863727570e-003</threshold>
- <left_val>-0.5078160762786865</left_val>
- <right_val>0.0478522293269634</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 4 7 -1.</_>
- <_>
- 14 2 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0503778010606766</threshold>
- <left_val>2.9282520990818739e-003</left_val>
- <right_val>-0.7751696109771729</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 4 7 -1.</_>
- <_>
- 9 2 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8862510118633509e-003</threshold>
- <left_val>-0.1550420969724655</left_val>
- <right_val>0.1570920050144196</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 8 5 -1.</_>
- <_>
- 11 3 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0385116301476955</threshold>
- <left_val>0.0230970401316881</left_val>
- <right_val>-0.6291617155075073</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 15 1 -1.</_>
- <_>
- 10 10 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5746049620211124e-003</threshold>
- <left_val>0.1807070970535278</left_val>
- <right_val>-0.1298052966594696</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 6 21 9 -1.</_>
- <_>
- 9 6 7 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1266476064920425</threshold>
- <left_val>-0.0865593999624252</left_val>
- <right_val>0.2957325875759125</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 6 6 -1.</_>
- <_>
- 0 6 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4126111790537834e-003</threshold>
- <left_val>-0.1528324931859970</left_val>
- <right_val>0.1662916988134384</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 24 3 -1.</_>
- <_>
- 7 12 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0361530818045139</threshold>
- <left_val>0.2797313034534454</left_val>
- <right_val>-0.1039886027574539</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 6 2 -1.</_>
- <_>
- 6 8 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1673998609185219e-003</threshold>
- <left_val>-0.0945642217993736</left_val>
- <right_val>0.2778528034687042</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 2 4 -1.</_>
- <_>
- 13 8 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.7790350876748562e-003</threshold>
- <left_val>0.1679068058729172</left_val>
- <right_val>-0.0839543119072914</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 8 5 -1.</_>
- <_>
- 10 6 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0298676099628210</threshold>
- <left_val>-0.7236117124557495</left_val>
- <right_val>0.0346310697495937</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 6 4 -1.</_>
- <_>
- 11 6 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5265512093901634e-003</threshold>
- <left_val>-0.1173760965466499</left_val>
- <right_val>0.1346033960580826</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 14 4 1 -1.</_>
- <_>
- 2 14 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4080960176652297e-005</threshold>
- <left_val>-0.1753176003694534</left_val>
- <right_val>0.1322204023599625</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 4 13 -1.</_>
- <_>
- 17 2 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0176294595003128</threshold>
- <left_val>-0.5160853862762451</left_val>
- <right_val>0.0253861900418997</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 1 4 -1.</_>
- <_>
- 0 8 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5446309698745608e-003</threshold>
- <left_val>-0.4142186045646668</left_val>
- <right_val>0.0513300895690918</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 0 1 2 -1.</_>
- <_>
- 24 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1520429980009794e-003</threshold>
- <left_val>0.0366159491240978</left_val>
- <right_val>-0.3692800998687744</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 2 4 -1.</_>
- <_>
- 1 5 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9612779617309570e-003</threshold>
- <left_val>0.2446188032627106</left_val>
- <right_val>-0.0842714235186577</right_val></_></_></trees>
- <stage_threshold>-1.5267670154571533</stage_threshold>
- <parent>5</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 7 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 8 4 -1.</_>
- <_>
- 0 3 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0141031695529819</threshold>
- <left_val>0.2699790894985199</left_val>
- <right_val>-0.3928318023681641</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 11 10 4 -1.</_>
- <_>
- 20 11 5 2 2.</_>
- <_>
- 15 13 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4714400321245193e-003</threshold>
- <left_val>-0.2269169986248016</left_val>
- <right_val>0.2749052047729492</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 11 3 -1.</_>
- <_>
- 7 6 11 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166354794055223</threshold>
- <left_val>-0.1547908037900925</left_val>
- <right_val>0.3224202096462250</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 4 4 3 -1.</_>
- <_>
- 21 4 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4477178752422333e-003</threshold>
- <left_val>0.3320780992507935</left_val>
- <right_val>-0.1249654963612557</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 4 1 -1.</_>
- <_>
- 2 5 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4904569145292044e-003</threshold>
- <left_val>0.2900204956531525</left_val>
- <right_val>-0.1460298001766205</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 12 4 -1.</_>
- <_>
- 7 4 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0282104406505823</threshold>
- <left_val>-0.0831937119364738</left_val>
- <right_val>0.4805397987365723</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 7 3 -1.</_>
- <_>
- 8 7 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3179903924465179e-003</threshold>
- <left_val>-0.1692426949739456</left_val>
- <right_val>0.3482030928134918</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 9 14 -1.</_>
- <_>
- 16 7 9 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0579102896153927</threshold>
- <left_val>-0.5040398836135864</left_val>
- <right_val>0.0840934887528419</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 24 6 -1.</_>
- <_>
- 0 0 12 3 2.</_>
- <_>
- 12 3 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0882126465439796</threshold>
- <left_val>0.0733099877834320</left_val>
- <right_val>-0.4883395135402679</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 13 2 1 -1.</_>
- <_>
- 23 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0974380176048726e-005</threshold>
- <left_val>-0.1594507992267609</left_val>
- <right_val>0.1473277956247330</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 24 2 -1.</_>
- <_>
- 0 13 12 1 2.</_>
- <_>
- 12 14 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0142063600942492</threshold>
- <left_val>-0.6365684866905212</left_val>
- <right_val>0.0507153607904911</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 12 5 3 -1.</_>
- <_>
- 19 13 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7181900851428509e-003</threshold>
- <left_val>-0.6330028772354126</left_val>
- <right_val>0.0328688994050026</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 7 4 -1.</_>
- <_>
- 9 8 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120071703568101</threshold>
- <left_val>-0.1254525035619736</left_val>
- <right_val>0.2893699109554291</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 7 -1.</_>
- <_>
- 14 0 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0707826167345047</threshold>
- <left_val>0.0305656604468822</left_val>
- <right_val>-0.5666698217391968</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 7 4 -1.</_>
- <_>
- 11 0 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0504123307764530</threshold>
- <left_val>-0.5089793801307678</left_val>
- <right_val>0.0710048824548721</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 14 2 -1.</_>
- <_>
- 9 5 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0220727995038033</threshold>
- <left_val>-0.1444841027259827</left_val>
- <right_val>0.2781184911727905</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 15 4 -1.</_>
- <_>
- 3 3 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0147649403661489</threshold>
- <left_val>-0.1283989995718002</left_val>
- <right_val>0.3290185928344727</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 12 5 3 -1.</_>
- <_>
- 19 13 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8206568248569965e-003</threshold>
- <left_val>0.0654795467853546</left_val>
- <right_val>-0.5463265776634216</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 8 4 -1.</_>
- <_>
- 0 11 4 2 2.</_>
- <_>
- 4 13 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0179790444672108e-003</threshold>
- <left_val>-0.2028342932462692</left_val>
- <right_val>0.1679659038782120</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 11 6 -1.</_>
- <_>
- 7 11 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0250812191516161</threshold>
- <left_val>-0.1104943975806236</left_val>
- <right_val>0.3191860020160675</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 7 4 -1.</_>
- <_>
- 0 12 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9391358196735382e-003</threshold>
- <left_val>0.0734132081270218</left_val>
- <right_val>-0.5538399219512940</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 0 5 2 -1.</_>
- <_>
- 20 1 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6396959805861115e-004</threshold>
- <left_val>0.1123031005263329</left_val>
- <right_val>-0.1697127074003220</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 3 2 -1.</_>
- <_>
- 6 11 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.5602197796106339e-003</threshold>
- <left_val>-0.7347347736358643</left_val>
- <right_val>0.0417169481515884</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 8 10 -1.</_>
- <_>
- 21 4 4 5 2.</_>
- <_>
- 17 9 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0389347188174725</threshold>
- <left_val>0.2292626947164536</left_val>
- <right_val>-0.0792299434542656</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 15 2 -1.</_>
- <_>
- 5 4 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0215415991842747</threshold>
- <left_val>0.3007172048091888</left_val>
- <right_val>-0.1152340024709702</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 5 2 -1.</_>
- <_>
- 16 5 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9337721429765224e-003</threshold>
- <left_val>-0.1002838015556335</left_val>
- <right_val>0.1348572969436646</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 22 10 -1.</_>
- <_>
- 1 0 11 5 2.</_>
- <_>
- 12 5 11 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1615066975355148</threshold>
- <left_val>0.0588171891868114</left_val>
- <right_val>-0.5656744837760925</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 0 5 2 -1.</_>
- <_>
- 20 1 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0123260198161006</threshold>
- <left_val>-0.2823328077793121</left_val>
- <right_val>0.0187596306204796</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 5 2 -1.</_>
- <_>
- 0 1 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2987951785326004e-003</threshold>
- <left_val>0.0524063482880592</left_val>
- <right_val>-0.5719032287597656</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 6 12 -1.</_>
- <_>
- 13 1 3 6 2.</_>
- <_>
- 10 7 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0289043206721544</threshold>
- <left_val>0.0477108694612980</left_val>
- <right_val>-0.4854584038257599</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 8 -1.</_>
- <_>
- 0 4 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0155697297304869</threshold>
- <left_val>0.0493178516626358</left_val>
- <right_val>-0.5100051760673523</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 13 6 -1.</_>
- <_>
- 6 2 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0938120707869530</threshold>
- <left_val>0.2564809024333954</left_val>
- <right_val>-0.1057069003582001</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 4 4 -1.</_>
- <_>
- 3 4 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0286933295428753</threshold>
- <left_val>0.5247043967247009</left_val>
- <right_val>-0.0509502515196800</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 8 5 3 -1.</_>
- <_>
- 20 9 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2301640175282955e-003</threshold>
- <left_val>0.0583653002977371</left_val>
- <right_val>-0.4894312024116516</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 13 2 2 -1.</_>
- <_>
- 7 13 1 1 2.</_>
- <_>
- 8 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2664839283097535e-005</threshold>
- <left_val>-0.1437218040227890</left_val>
- <right_val>0.1820268929004669</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 13 2 2 -1.</_>
- <_>
- 17 13 1 1 2.</_>
- <_>
- 16 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5241750515997410e-003</threshold>
- <left_val>0.0201267991214991</left_val>
- <right_val>-0.3884589970111847</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 13 2 2 -1.</_>
- <_>
- 7 13 1 1 2.</_>
- <_>
- 8 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5512307628523558e-005</threshold>
- <left_val>0.2280354052782059</left_val>
- <right_val>-0.1581206023693085</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 5 6 1 -1.</_>
- <_>
- 21 5 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4175599683076143e-003</threshold>
- <left_val>-0.0890450775623322</left_val>
- <right_val>0.2839250862598419</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 6 6 -1.</_>
- <_>
- 0 10 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0343084894120693</threshold>
- <left_val>0.0391304790973663</left_val>
- <right_val>-0.6263393163681030</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 13 4 -1.</_>
- <_>
- 6 9 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0127667998895049</threshold>
- <left_val>-0.0984294191002846</left_val>
- <right_val>0.2857427895069122</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 8 1 -1.</_>
- <_>
- 7 10 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7450299821794033e-003</threshold>
- <left_val>0.2090786993503571</left_val>
- <right_val>-0.1267945021390915</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 4 4 -1.</_>
- <_>
- 17 11 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0629850961267948e-003</threshold>
- <left_val>-0.4784719944000244</left_val>
- <right_val>0.0229746792465448</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 15 2 -1.</_>
- <_>
- 5 7 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0109674101695418</threshold>
- <left_val>-0.1310741007328033</left_val>
- <right_val>0.1712857037782669</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 20 10 -1.</_>
- <_>
- 3 1 10 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1530689001083374</threshold>
- <left_val>0.2361073046922684</left_val>
- <right_val>-0.0965401679277420</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 3 3 -1.</_>
- <_>
- 2 5 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1676090545952320e-003</threshold>
- <left_val>-0.1028804033994675</left_val>
- <right_val>0.2537584006786346</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 4 4 -1.</_>
- <_>
- 17 11 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0107051497325301</threshold>
- <left_val>0.0160892698913813</left_val>
- <right_val>-0.5868526101112366</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 11 4 4 -1.</_>
- <_>
- 6 11 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1142919585108757e-003</threshold>
- <left_val>-0.6146798133850098</left_val>
- <right_val>0.0344046317040920</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 8 10 -1.</_>
- <_>
- 21 4 4 5 2.</_>
- <_>
- 17 9 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0160057693719864</threshold>
- <left_val>0.0954133197665215</left_val>
- <right_val>-0.0657811686396599</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 5 3 -1.</_>
- <_>
- 0 9 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5541699081659317e-003</threshold>
- <left_val>0.0425793603062630</left_val>
- <right_val>-0.5490341186523438</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 13 2 1 -1.</_>
- <_>
- 23 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5742941185599193e-005</threshold>
- <left_val>0.1505846977233887</left_val>
- <right_val>-0.0978325977921486</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 2 1 -1.</_>
- <_>
- 1 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9888480134541169e-005</threshold>
- <left_val>-0.1522217988967896</left_val>
- <right_val>0.1464709937572479</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 7 3 -1.</_>
- <_>
- 10 2 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3986131250858307e-003</threshold>
- <left_val>-0.0793018564581871</left_val>
- <right_val>0.2222844958305359</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 8 12 -1.</_>
- <_>
- 0 3 4 6 2.</_>
- <_>
- 4 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0445945896208286</threshold>
- <left_val>0.3217073082923889</left_val>
- <right_val>-0.0712599530816078</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 16 11 -1.</_>
- <_>
- 6 0 8 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2763071060180664</threshold>
- <left_val>-0.0312894396483898</left_val>
- <right_val>0.4636780917644501</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 21 3 -1.</_>
- <_>
- 9 0 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0459242798388004</threshold>
- <left_val>0.2685551047325134</left_val>
- <right_val>-0.0946981832385063</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 1 2 12 -1.</_>
- <_>
- 23 1 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0328284502029419</threshold>
- <left_val>0.0420088581740856</left_val>
- <right_val>-0.1909179985523224</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.8416211977601051e-003</threshold>
- <left_val>0.0443820804357529</left_val>
- <right_val>-0.5017232894897461</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 6 3 -1.</_>
- <_>
- 17 0 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0253127701580524</threshold>
- <left_val>7.6768198050558567e-003</left_val>
- <right_val>-0.4524691104888916</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 6 4 -1.</_>
- <_>
- 10 9 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0206803791224957</threshold>
- <left_val>-0.7082331180572510</left_val>
- <right_val>0.0277527105063200</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 5 5 6 -1.</_>
- <_>
- 20 7 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9456259906291962e-003</threshold>
- <left_val>-0.1725641041994095</left_val>
- <right_val>0.0885240733623505</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 24 8 -1.</_>
- <_>
- 0 4 12 4 2.</_>
- <_>
- 12 8 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1318278014659882</threshold>
- <left_val>0.0378756709396839</left_val>
- <right_val>-0.5236573815345764</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 10 1 4 -1.</_>
- <_>
- 21 11 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.8449821770191193e-003</threshold>
- <left_val>-0.3831801116466522</left_val>
- <right_val>0.0295521095395088</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 11 3 -1.</_>
- <_>
- 7 1 11 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3295581601560116e-003</threshold>
- <left_val>-0.1172816008329392</left_val>
- <right_val>0.1712217032909393</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 13 4 -1.</_>
- <_>
- 6 1 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0353284589946270</threshold>
- <left_val>0.3731549978256226</left_val>
- <right_val>-0.0650273412466049</right_val></_></_></trees>
- <stage_threshold>-1.4507639408111572</stage_threshold>
- <parent>6</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 8 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 11 11 4 -1.</_>
- <_>
- 7 13 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0136478496715426</threshold>
- <left_val>-0.2802368998527527</left_val>
- <right_val>0.3575335144996643</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 3 4 12 -1.</_>
- <_>
- 23 3 2 6 2.</_>
- <_>
- 21 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0123078199103475</threshold>
- <left_val>-0.1484645009040833</left_val>
- <right_val>0.2714886069297791</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 21 6 -1.</_>
- <_>
- 9 6 7 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4659403860569000</threshold>
- <left_val>-0.0705008506774902</left_val>
- <right_val>0.5868018865585327</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 3 2 10 -1.</_>
- <_>
- 24 3 1 5 2.</_>
- <_>
- 23 8 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5693339519202709e-003</threshold>
- <left_val>-0.1150237023830414</left_val>
- <right_val>0.1375536024570465</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 10 -1.</_>
- <_>
- 0 3 1 5 2.</_>
- <_>
- 1 8 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5176738854497671e-003</threshold>
- <left_val>-0.1778890937566757</left_val>
- <right_val>0.2172407060861588</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 10 1 4 -1.</_>
- <_>
- 23 11 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.5299702323973179e-003</threshold>
- <left_val>0.0458603501319885</left_val>
- <right_val>-0.5376703143119812</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 4 1 -1.</_>
- <_>
- 2 11 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.0295510552823544e-003</threshold>
- <left_val>0.0599071383476257</left_val>
- <right_val>-0.5803095102310181</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 10 9 4 -1.</_>
- <_>
- 8 11 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0281656011939049e-003</threshold>
- <left_val>-0.0889611616730690</left_val>
- <right_val>0.3474006950855255</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 13 6 -1.</_>
- <_>
- 5 11 13 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0710994601249695</threshold>
- <left_val>0.4003205001354218</left_val>
- <right_val>-0.0876752585172653</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 15 4 -1.</_>
- <_>
- 5 2 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0905078798532486</threshold>
- <left_val>0.3202385008335114</left_val>
- <right_val>-0.1107280030846596</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 22 15 -1.</_>
- <_>
- 12 0 11 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3949914872646332</threshold>
- <left_val>-0.0544822700321674</left_val>
- <right_val>0.4376561045646668</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 14 8 1 -1.</_>
- <_>
- 12 14 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0021281242370605e-003</threshold>
- <left_val>0.0412968583405018</left_val>
- <right_val>-0.6277515888214111</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 8 4 -1.</_>
- <_>
- 1 4 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0126753300428391</threshold>
- <left_val>0.1864306032657623</left_val>
- <right_val>-0.1586595028638840</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 13 1 2 -1.</_>
- <_>
- 15 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2523188060149550e-004</threshold>
- <left_val>-0.0737809464335442</left_val>
- <right_val>0.1131825000047684</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 15 6 -1.</_>
- <_>
- 5 4 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1519853025674820</threshold>
- <left_val>-0.0698502063751221</left_val>
- <right_val>0.5526459217071533</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 12 2 1 -1.</_>
- <_>
- 23 12 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.9174448251724243e-003</threshold>
- <left_val>-0.4224376976490021</left_val>
- <right_val>0.0234292708337307</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 1 2 -1.</_>
- <_>
- 2 12 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.1085697486996651e-004</threshold>
- <left_val>-0.1782114058732987</left_val>
- <right_val>0.1747542023658752</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 13 9 2 -1.</_>
- <_>
- 11 13 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0286266505718231</threshold>
- <left_val>-0.7806789875030518</left_val>
- <right_val>0.0430335216224194</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 2 -1.</_>
- <_>
- 8 1 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2388539984822273e-003</threshold>
- <left_val>-0.1174874976277351</left_val>
- <right_val>0.2301342934370041</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 12 4 3 -1.</_>
- <_>
- 20 13 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8310899659991264e-003</threshold>
- <left_val>-0.5170273780822754</left_val>
- <right_val>0.0224770605564117</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 18 10 -1.</_>
- <_>
- 3 0 9 5 2.</_>
- <_>
- 12 5 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1381812989711762</threshold>
- <left_val>-0.6718307137489319</left_val>
- <right_val>0.0339458398520947</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 12 6 3 -1.</_>
- <_>
- 12 12 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0129029303789139</threshold>
- <left_val>0.0190411508083344</left_val>
- <right_val>-0.4739249050617218</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 8 -1.</_>
- <_>
- 0 2 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3398052006959915e-003</threshold>
- <left_val>0.0412811301648617</left_val>
- <right_val>-0.5821130871772766</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 5 3 4 -1.</_>
- <_>
- 22 6 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4067512943875045e-005</threshold>
- <left_val>-0.2301639020442963</left_val>
- <right_val>0.1240853965282440</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 4 4 -1.</_>
- <_>
- 0 6 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0172388590872288</threshold>
- <left_val>0.0539665818214417</left_val>
- <right_val>-0.5818564891815186</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 14 10 -1.</_>
- <_>
- 13 0 7 5 2.</_>
- <_>
- 6 5 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0786773264408112</threshold>
- <left_val>-0.4061115086078644</left_val>
- <right_val>0.0569235086441040</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 4 3 -1.</_>
- <_>
- 1 13 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5859591811895370e-003</threshold>
- <left_val>0.0368424393236637</left_val>
- <right_val>-0.5646867752075195</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 7 2 2 -1.</_>
- <_>
- 21 7 1 1 2.</_>
- <_>
- 20 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1322399415075779e-004</threshold>
- <left_val>0.1785047054290772</left_val>
- <right_val>-0.0668883100152016</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 7 2 2 -1.</_>
- <_>
- 3 7 1 1 2.</_>
- <_>
- 4 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9400849062949419e-004</threshold>
- <left_val>-0.0783978328108788</left_val>
- <right_val>0.3054557144641876</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 6 3 4 -1.</_>
- <_>
- 22 7 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0128271998837590</threshold>
- <left_val>0.0404374599456787</left_val>
- <right_val>-0.6479570865631104</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 7 3 -1.</_>
- <_>
- 9 7 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0119779799133539</threshold>
- <left_val>-0.0993791595101357</left_val>
- <right_val>0.2267276048660278</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 4 2 -1.</_>
- <_>
- 11 7 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9378769472241402e-003</threshold>
- <left_val>0.2706328034400940</left_val>
- <right_val>-0.0839221030473709</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 5 4 -1.</_>
- <_>
- 0 7 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0203377306461334</threshold>
- <left_val>0.0400571115314960</left_val>
- <right_val>-0.6170961260795593</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 15 6 -1.</_>
- <_>
- 5 5 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1582631021738052</threshold>
- <left_val>0.3718011081218720</left_val>
- <right_val>-0.0776448771357536</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 5 2 -1.</_>
- <_>
- 4 5 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5150578953325748e-003</threshold>
- <left_val>-0.1424572020769119</left_val>
- <right_val>0.1946897059679031</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 12 6 3 -1.</_>
- <_>
- 13 12 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0179421696811914</threshold>
- <left_val>-0.7258480787277222</left_val>
- <right_val>0.0292347799986601</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 1 3 -1.</_>
- <_>
- 2 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.2153151482343674e-003</threshold>
- <left_val>0.0460041500627995</left_val>
- <right_val>-0.4536756873130798</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 11 12 2 -1.</_>
- <_>
- 11 11 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7863838523626328e-003</threshold>
- <left_val>0.1746426969766617</left_val>
- <right_val>-0.1098980978131294</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 4 4 -1.</_>
- <_>
- 0 9 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4133447855710983e-003</threshold>
- <left_val>0.0346476286649704</left_val>
- <right_val>-0.5983666181564331</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 9 3 -1.</_>
- <_>
- 8 8 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6218741014599800e-003</threshold>
- <left_val>-0.1057026013731957</left_val>
- <right_val>0.2037336975336075</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 9 6 -1.</_>
- <_>
- 8 10 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0216018799692392</threshold>
- <left_val>-0.0909303426742554</left_val>
- <right_val>0.2887038886547089</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 11 5 4 -1.</_>
- <_>
- 20 12 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0118230897933245</threshold>
- <left_val>-0.6303614974021912</left_val>
- <right_val>0.0240826196968555</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 8 3 -1.</_>
- <_>
- 9 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0202329792082310</threshold>
- <left_val>-0.7420278787612915</left_val>
- <right_val>0.0235212203115225</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 2 -1.</_>
- <_>
- 17 0 1 1 2.</_>
- <_>
- 16 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4510147785767913e-004</threshold>
- <left_val>-0.0552557893097401</left_val>
- <right_val>0.1650166064500809</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 5 4 -1.</_>
- <_>
- 0 12 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1876022741198540e-003</threshold>
- <left_val>-0.5770931839942932</left_val>
- <right_val>0.0352346412837505</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 2 -1.</_>
- <_>
- 17 0 1 1 2.</_>
- <_>
- 16 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5044958824291825e-004</threshold>
- <left_val>0.1859780997037888</left_val>
- <right_val>-0.0824367776513100</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 6 6 -1.</_>
- <_>
- 7 9 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0273097790777683</threshold>
- <left_val>-0.7204548716545105</left_val>
- <right_val>0.0276838503777981</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 10 10 4 -1.</_>
- <_>
- 19 10 5 2 2.</_>
- <_>
- 14 12 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3051019571721554e-003</threshold>
- <left_val>-0.0758159905672073</left_val>
- <right_val>0.1228180006146431</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 3 1 -1.</_>
- <_>
- 7 6 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2118180105462670e-004</threshold>
- <left_val>-0.0847066268324852</left_val>
- <right_val>0.2212305068969727</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 6 3 2 -1.</_>
- <_>
- 17 6 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5794708896428347e-004</threshold>
- <left_val>0.0922004431486130</left_val>
- <right_val>-0.0512673109769821</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 3 2 -1.</_>
- <_>
- 7 6 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2906070332974195e-003</threshold>
- <left_val>0.2364850938320160</left_val>
- <right_val>-0.0856367424130440</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 8 4 -1.</_>
- <_>
- 12 4 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0234409496188164</threshold>
- <left_val>-0.3417592048645020</left_val>
- <right_val>0.0303556900471449</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.7003733420278877e-005</threshold>
- <left_val>-0.1778312027454376</left_val>
- <right_val>0.1098366007208824</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 2 1 -1.</_>
- <_>
- 21 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.0913260523229837e-003</threshold>
- <left_val>-0.3296548128128052</left_val>
- <right_val>0.0488219298422337</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 2 -1.</_>
- <_>
- 4 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.2883368916809559e-003</threshold>
- <left_val>0.0476020798087120</left_val>
- <right_val>-0.4229690134525299</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 8 6 -1.</_>
- <_>
- 11 3 8 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1046722009778023</threshold>
- <left_val>0.0145577099174261</left_val>
- <right_val>-0.5163959860801697</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 3 4 8 -1.</_>
- <_>
- 13 4 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0410936884582043</threshold>
- <left_val>0.0255694594234228</left_val>
- <right_val>-0.6734575033187866</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 20 15 -1.</_>
- <_>
- 3 0 10 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4545299112796783</threshold>
- <left_val>-0.0473212711513042</left_val>
- <right_val>0.4647259116172791</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 7 3 -1.</_>
- <_>
- 9 1 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4200271368026733e-003</threshold>
- <left_val>0.2172905951738358</left_val>
- <right_val>-0.0805237367749214</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 5 2 -1.</_>
- <_>
- 12 2 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3253689762204885e-003</threshold>
- <left_val>0.1196364015340805</left_val>
- <right_val>-0.0847371667623520</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 13 3 -1.</_>
- <_>
- 6 2 13 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0152236903086305</threshold>
- <left_val>-0.0892436280846596</left_val>
- <right_val>0.2284111976623535</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 3 10 12 -1.</_>
- <_>
- 19 3 5 6 2.</_>
- <_>
- 14 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0312239099293947</threshold>
- <left_val>0.1464260965585709</left_val>
- <right_val>-0.1012998968362808</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 21 6 -1.</_>
- <_>
- 8 6 7 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0729675367474556</threshold>
- <left_val>0.1977909952402115</left_val>
- <right_val>-0.0998045280575752</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 10 12 -1.</_>
- <_>
- 12 0 5 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0434687100350857</threshold>
- <left_val>-0.0738932862877846</left_val>
- <right_val>0.1571179032325745</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 11 3 -1.</_>
- <_>
- 7 9 11 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7427257783710957e-003</threshold>
- <left_val>-0.0907922536134720</left_val>
- <right_val>0.2449675947427750</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 22 10 -1.</_>
- <_>
- 2 5 11 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0834884494543076</threshold>
- <left_val>0.1732859015464783</left_val>
- <right_val>-0.1288128942251205</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 15 4 -1.</_>
- <_>
- 5 6 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0421115085482597</threshold>
- <left_val>-0.1475321054458618</left_val>
- <right_val>0.1373448967933655</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 15 6 -1.</_>
- <_>
- 7 3 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0966737270355225</threshold>
- <left_val>-0.0551961399614811</left_val>
- <right_val>0.3563303947448731</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 2 6 -1.</_>
- <_>
- 0 10 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8993981480598450e-003</threshold>
- <left_val>-0.5261930823326111</left_val>
- <right_val>0.0388906002044678</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 15 4 -1.</_>
- <_>
- 5 2 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0238508302718401</threshold>
- <left_val>0.1924559026956558</left_val>
- <right_val>-0.1050153970718384</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 2 2 -1.</_>
- <_>
- 7 8 1 1 2.</_>
- <_>
- 8 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4902130290865898e-004</threshold>
- <left_val>0.2476740926504135</left_val>
- <right_val>-0.0738597288727760</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 9 9 2 -1.</_>
- <_>
- 14 9 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0230488497763872</threshold>
- <left_val>-0.5220348238945007</left_val>
- <right_val>0.0295383799821138</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 2 2 -1.</_>
- <_>
- 7 8 1 1 2.</_>
- <_>
- 8 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.7920900871977210e-004</threshold>
- <left_val>-0.0807055011391640</left_val>
- <right_val>0.2493984997272492</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 10 8 4 -1.</_>
- <_>
- 17 11 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0254354309290648</threshold>
- <left_val>-0.6520490050315857</left_val>
- <right_val>0.0163280703127384</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 8 4 -1.</_>
- <_>
- 0 11 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0176391601562500</threshold>
- <left_val>0.0246949195861816</left_val>
- <right_val>-0.6850522756576538</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 6 4 -1.</_>
- <_>
- 18 11 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0205357391387224</threshold>
- <left_val>0.0165182203054428</left_val>
- <right_val>-0.4285225868225098</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 24 1 -1.</_>
- <_>
- 6 13 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0111132804304361</threshold>
- <left_val>-0.0871591791510582</left_val>
- <right_val>0.2062001973390579</right_val></_></_></trees>
- <stage_threshold>-1.3936280012130737</stage_threshold>
- <parent>7</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 9 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 10 6 -1.</_>
- <_>
- 0 9 5 3 2.</_>
- <_>
- 5 12 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0140618495643139</threshold>
- <left_val>-0.2737283110618591</left_val>
- <right_val>0.4017829895019531</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 5 10 10 -1.</_>
- <_>
- 18 5 5 5 2.</_>
- <_>
- 13 10 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0334245301783085</threshold>
- <left_val>0.3433864116668701</left_val>
- <right_val>-0.1524070948362351</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 4 2 -1.</_>
- <_>
- 2 4 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3982729073613882e-003</threshold>
- <left_val>0.3046114146709442</left_val>
- <right_val>-0.2162856012582779</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 5 12 10 -1.</_>
- <_>
- 19 5 6 5 2.</_>
- <_>
- 13 10 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0673939511179924</threshold>
- <left_val>-0.0539562106132507</left_val>
- <right_val>0.3304964005947113</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 12 10 -1.</_>
- <_>
- 0 5 6 5 2.</_>
- <_>
- 6 10 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0515447482466698</threshold>
- <left_val>0.3804036974906921</left_val>
- <right_val>-0.1334261000156403</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 11 3 4 -1.</_>
- <_>
- 11 13 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6630779504776001e-003</threshold>
- <left_val>-0.1760202944278717</left_val>
- <right_val>0.2139966934919357</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 2 5 -1.</_>
- <_>
- 5 8 1 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.8836623579263687e-003</threshold>
- <left_val>0.0570616200566292</left_val>
- <right_val>-0.5150743126869202</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 14 18 1 -1.</_>
- <_>
- 4 14 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9480048045516014e-003</threshold>
- <left_val>0.2230996936559677</left_val>
- <right_val>-0.1190536990761757</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 1 6 -1.</_>
- <_>
- 1 3 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5760587565600872e-004</threshold>
- <left_val>0.0999659672379494</left_val>
- <right_val>-0.2558285892009735</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 9 4 -1.</_>
- <_>
- 8 10 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.5389392226934433e-003</threshold>
- <left_val>-0.0655315071344376</left_val>
- <right_val>0.3246265947818756</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 5 4 -1.</_>
- <_>
- 0 10 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7904132194817066e-003</threshold>
- <left_val>0.0450260303914547</left_val>
- <right_val>-0.6068859100341797</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 5 6 2 -1.</_>
- <_>
- 21 5 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0692770853638649e-003</threshold>
- <left_val>-0.0624743513762951</left_val>
- <right_val>0.1570695042610169</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 6 2 -1.</_>
- <_>
- 2 5 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1110940035432577e-003</threshold>
- <left_val>-0.0744680091738701</left_val>
- <right_val>0.2600801885128021</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 9 6 3 -1.</_>
- <_>
- 15 9 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0156514495611191</threshold>
- <left_val>0.0255663506686687</left_val>
- <right_val>-0.5172523260116577</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 21 9 -1.</_>
- <_>
- 9 3 7 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2044613063335419</threshold>
- <left_val>-0.0763430967926979</left_val>
- <right_val>0.3323906958103180</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 9 10 2 -1.</_>
- <_>
- 11 9 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0101691596210003</threshold>
- <left_val>0.1606681048870087</left_val>
- <right_val>-0.1091597974300385</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 24 14 -1.</_>
- <_>
- 0 0 12 7 2.</_>
- <_>
- 12 7 12 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1894780993461609</threshold>
- <left_val>0.0538599416613579</left_val>
- <right_val>-0.5398759841918945</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 15 6 -1.</_>
- <_>
- 5 4 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1479240059852600</threshold>
- <left_val>0.2385465949773789</left_val>
- <right_val>-0.1132820993661881</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 16 11 -1.</_>
- <_>
- 10 0 8 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1483031064271927</threshold>
- <left_val>0.3646511137485504</left_val>
- <right_val>-0.0753156766295433</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 15 6 -1.</_>
- <_>
- 5 2 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1325532943010330</threshold>
- <left_val>0.2919555902481079</left_val>
- <right_val>-0.0949441567063332</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 5 4 -1.</_>
- <_>
- 10 6 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0163901709020138</threshold>
- <left_val>0.3920511901378632</left_val>
- <right_val>-0.0685021281242371</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 0 2 3 -1.</_>
- <_>
- 23 1 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3240979798138142e-003</threshold>
- <left_val>-0.6633772253990173</left_val>
- <right_val>0.0337768010795116</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 3 -1.</_>
- <_>
- 0 1 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0147409504279494</threshold>
- <left_val>0.0431423708796501</left_val>
- <right_val>-0.5016931891441345</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 15 2 -1.</_>
- <_>
- 10 6 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0171020403504372</threshold>
- <left_val>-0.1739968061447144</left_val>
- <right_val>0.2036074995994568</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 6 4 -1.</_>
- <_>
- 0 4 3 2 2.</_>
- <_>
- 3 6 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5232060626149178e-003</threshold>
- <left_val>0.2614240050315857</left_val>
- <right_val>-0.0894730314612389</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 7 2 4 -1.</_>
- <_>
- 20 8 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.0899456515908241e-003</threshold>
- <left_val>0.0491316393017769</left_val>
- <right_val>-0.3869245946407318</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 4 2 -1.</_>
- <_>
- 5 8 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0111914901062846</threshold>
- <left_val>-0.7151393890380859</left_val>
- <right_val>0.0292793400585651</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 13 1 2 -1.</_>
- <_>
- 24 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4855492382775992e-005</threshold>
- <left_val>0.1147895976901054</left_val>
- <right_val>-0.1195824965834618</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 4 15 -1.</_>
- <_>
- 3 0 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0263162907212973</threshold>
- <left_val>0.0260859299451113</left_val>
- <right_val>-0.8071029186248779</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 4 1 -1.</_>
- <_>
- 22 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0132494196295738</threshold>
- <left_val>-0.3211443126201630</left_val>
- <right_val>7.5486088171601295e-003</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 4 -1.</_>
- <_>
- 3 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.2180599197745323e-003</threshold>
- <left_val>0.0555592402815819</left_val>
- <right_val>-0.4065248966217041</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 24 14 -1.</_>
- <_>
- 13 1 12 7 2.</_>
- <_>
- 1 8 12 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1724980026483536</threshold>
- <left_val>0.0407503582537174</left_val>
- <right_val>-0.5056337714195252</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 6 6 -1.</_>
- <_>
- 8 9 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0216798391193151</threshold>
- <left_val>-0.6235452890396118</left_val>
- <right_val>0.0264780297875404</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 15 4 -1.</_>
- <_>
- 10 3 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0167031493037939</threshold>
- <left_val>-0.1379484981298447</left_val>
- <right_val>0.1374935954809189</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 20 10 -1.</_>
- <_>
- 5 0 10 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0904578119516373</threshold>
- <left_val>0.2364515066146851</left_val>
- <right_val>-0.0822857320308685</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 3 6 12 -1.</_>
- <_>
- 22 3 3 6 2.</_>
- <_>
- 19 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0319220200181007</threshold>
- <left_val>0.2578540146350861</left_val>
- <right_val>-0.0472433306276798</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 7 2 -1.</_>
- <_>
- 3 3 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107858600094914</threshold>
- <left_val>0.1915684044361115</left_val>
- <right_val>-0.1092626005411148</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 3 6 12 -1.</_>
- <_>
- 22 3 3 6 2.</_>
- <_>
- 19 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0153568601235747</threshold>
- <left_val>-0.0915980264544487</left_val>
- <right_val>0.1492947041988373</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 6 12 -1.</_>
- <_>
- 0 3 3 6 2.</_>
- <_>
- 3 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0298386197537184</threshold>
- <left_val>0.3693186044692993</left_val>
- <right_val>-0.0698615685105324</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 14 6 1 -1.</_>
- <_>
- 19 14 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5088700456544757e-003</threshold>
- <left_val>-0.0684053674340248</left_val>
- <right_val>0.1167493984103203</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 6 13 -1.</_>
- <_>
- 6 2 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0391593612730503</threshold>
- <left_val>-0.5139203071594238</left_val>
- <right_val>0.0376962982118130</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 14 8 1 -1.</_>
- <_>
- 19 14 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6957627683877945e-003</threshold>
- <left_val>0.0178152993321419</left_val>
- <right_val>-0.4685910940170288</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 14 8 1 -1.</_>
- <_>
- 2 14 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2683161124587059e-004</threshold>
- <left_val>-0.1310783028602600</left_val>
- <right_val>0.1574900001287460</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 11 2 2 -1.</_>
- <_>
- 23 11 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.9894571527838707e-003</threshold>
- <left_val>0.0452235005795956</left_val>
- <right_val>-0.4237715899944305</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 11 2 2 -1.</_>
- <_>
- 2 11 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.1600970327854156e-003</threshold>
- <left_val>-0.5150998830795288</left_val>
- <right_val>0.0348056405782700</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 9 4 -1.</_>
- <_>
- 8 5 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0237389300018549</threshold>
- <left_val>0.2213699966669083</left_val>
- <right_val>-0.0842292308807373</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 9 3 -1.</_>
- <_>
- 8 5 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145637700334191</threshold>
- <left_val>-0.0898087024688721</left_val>
- <right_val>0.2186468988656998</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 6 2 4 -1.</_>
- <_>
- 23 6 1 2 2.</_>
- <_>
- 22 8 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2849658317863941e-004</threshold>
- <left_val>-0.0709035396575928</left_val>
- <right_val>0.1204996034502983</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 6 8 -1.</_>
- <_>
- 9 3 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0311498604714870</threshold>
- <left_val>-0.6067348122596741</left_val>
- <right_val>0.0294798705726862</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 4 3 4 -1.</_>
- <_>
- 22 5 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0167685598134995</threshold>
- <left_val>0.0236525908112526</left_val>
- <right_val>-0.4164066910743713</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 4 2 -1.</_>
- <_>
- 4 10 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.9033348485827446e-003</threshold>
- <left_val>-0.5536022186279297</left_val>
- <right_val>0.0302125699818134</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 7 2 2 -1.</_>
- <_>
- 18 7 1 1 2.</_>
- <_>
- 17 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3961132653057575e-004</threshold>
- <left_val>-0.0588473901152611</left_val>
- <right_val>0.1531303972005844</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 11 6 1 -1.</_>
- <_>
- 11 11 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3886012434959412e-003</threshold>
- <left_val>-0.7052780985832214</left_val>
- <right_val>0.0250979401171207</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 7 2 2 -1.</_>
- <_>
- 18 7 1 1 2.</_>
- <_>
- 17 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4085000515915453e-004</threshold>
- <left_val>0.1771869063377380</left_val>
- <right_val>-0.1048467978835106</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 2 4 -1.</_>
- <_>
- 0 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1828009784221649e-003</threshold>
- <left_val>0.0330388285219669</left_val>
- <right_val>-0.4948574900627136</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 5 5 6 -1.</_>
- <_>
- 20 7 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2702568033710122e-004</threshold>
- <left_val>-0.1844830960035324</left_val>
- <right_val>0.0777885988354683</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 2 2 -1.</_>
- <_>
- 6 7 1 1 2.</_>
- <_>
- 7 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0980831040069461e-004</threshold>
- <left_val>0.1959578990936279</left_val>
- <right_val>-0.0837520435452461</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 7 2 2 -1.</_>
- <_>
- 18 7 1 1 2.</_>
- <_>
- 17 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2273030006326735e-004</threshold>
- <left_val>-0.0814708098769188</left_val>
- <right_val>0.1209300011396408</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 2 2 -1.</_>
- <_>
- 6 7 1 1 2.</_>
- <_>
- 7 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6565610682591796e-004</threshold>
- <left_val>-0.0953319519758224</left_val>
- <right_val>0.2288299947977066</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 4 9 -1.</_>
- <_>
- 16 0 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0216477997601032</threshold>
- <left_val>-0.6933805942535400</left_val>
- <right_val>0.0170615408569574</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 14 14 -1.</_>
- <_>
- 5 1 7 7 2.</_>
- <_>
- 12 8 7 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0595006607472897</threshold>
- <left_val>0.0526031702756882</left_val>
- <right_val>-0.2782197892665863</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 4 9 -1.</_>
- <_>
- 16 0 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0253651998937130</threshold>
- <left_val>8.9954538270831108e-003</left_val>
- <right_val>-0.6383489966392517</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 5 3 -1.</_>
- <_>
- 0 8 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9667091332376003e-003</threshold>
- <left_val>-0.3175272047519684</left_val>
- <right_val>0.0470112897455692</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 2 3 4 -1.</_>
- <_>
- 22 3 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.2784779369831085e-003</threshold>
- <left_val>-0.0544440597295761</left_val>
- <right_val>0.2219938933849335</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 4 15 -1.</_>
- <_>
- 7 0 2 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0221254508942366</threshold>
- <left_val>-0.6738150715827942</left_val>
- <right_val>0.0225456394255161</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 2 3 4 -1.</_>
- <_>
- 22 3 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0180159192532301</threshold>
- <left_val>0.1972057968378067</left_val>
- <right_val>-0.0419279783964157</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 4 3 -1.</_>
- <_>
- 3 3 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.4426235407590866e-003</threshold>
- <left_val>-0.0605471916496754</left_val>
- <right_val>0.2649214863777161</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 5 3 7 -1.</_>
- <_>
- 14 6 1 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0325668416917324</threshold>
- <left_val>-0.7107285857200623</left_val>
- <right_val>0.0118406098335981</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 10 15 1 -1.</_>
- <_>
- 9 10 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7655492089688778e-003</threshold>
- <left_val>0.1384397000074387</left_val>
- <right_val>-0.1150531992316246</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 10 9 -1.</_>
- <_>
- 12 6 5 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0569362901151180</threshold>
- <left_val>-0.0613397099077702</left_val>
- <right_val>0.2665694057941437</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 22 14 -1.</_>
- <_>
- 12 1 11 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1374146044254303</threshold>
- <left_val>-0.1139679029583931</left_val>
- <right_val>0.1789363026618958</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 3 2 -1.</_>
- <_>
- 11 9 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4123009536415339e-003</threshold>
- <left_val>-0.0668940767645836</left_val>
- <right_val>0.2595616877079010</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 11 2 -1.</_>
- <_>
- 2 6 11 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0116290198639035</threshold>
- <left_val>-0.1346206963062286</left_val>
- <right_val>0.1518495976924896</right_val></_></_></trees>
- <stage_threshold>-1.3217060565948486</stage_threshold>
- <parent>8</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 10 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 10 4 -1.</_>
- <_>
- 3 2 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0302658006548882</threshold>
- <left_val>0.3809668123722076</left_val>
- <right_val>-0.1337769925594330</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 15 6 -1.</_>
- <_>
- 5 3 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1888993978500366</threshold>
- <left_val>0.3472220003604889</left_val>
- <right_val>-0.1143490970134735</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 6 6 -1.</_>
- <_>
- 0 9 3 3 2.</_>
- <_>
- 3 12 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4756601564586163e-003</threshold>
- <left_val>-0.1779001951217651</left_val>
- <right_val>0.1983720064163208</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 3 5 2 -1.</_>
- <_>
- 19 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.2559102922677994e-003</threshold>
- <left_val>0.2553296089172363</left_val>
- <right_val>-0.0956856831908226</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 10 14 4 -1.</_>
- <_>
- 2 10 7 2 2.</_>
- <_>
- 9 12 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0103751895949245</threshold>
- <left_val>-0.1290100961923599</left_val>
- <right_val>0.2047273963689804</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 24 8 -1.</_>
- <_>
- 9 3 8 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2527360022068024</threshold>
- <left_val>-0.0779134780168533</left_val>
- <right_val>0.3413710892200470</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 2 6 -1.</_>
- <_>
- 0 10 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9952310770750046e-003</threshold>
- <left_val>0.1191667988896370</left_val>
- <right_val>-0.4138369858264923</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 14 2 1 -1.</_>
- <_>
- 23 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6510503529570997e-005</threshold>
- <left_val>-0.2305306047201157</left_val>
- <right_val>0.1328932046890259</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 6 4 -1.</_>
- <_>
- 0 4 3 2 2.</_>
- <_>
- 3 6 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0104297399520874</threshold>
- <left_val>-0.0622061118483543</left_val>
- <right_val>0.2935121059417725</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 13 21 1 -1.</_>
- <_>
- 10 13 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.4513092190027237e-003</threshold>
- <left_val>0.1671503931283951</left_val>
- <right_val>-0.1161310002207756</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 24 14 -1.</_>
- <_>
- 0 0 12 7 2.</_>
- <_>
- 12 7 12 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1386305987834930</threshold>
- <left_val>-0.4514685869216919</left_val>
- <right_val>0.0725729763507843</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 0 1 10 -1.</_>
- <_>
- 24 5 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0154232997447252</threshold>
- <left_val>-0.4277118146419525</left_val>
- <right_val>0.0248409193009138</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 11 2 2 -1.</_>
- <_>
- 4 11 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.5782992169260979e-003</threshold>
- <left_val>-0.6540787816047669</left_val>
- <right_val>0.0402618311345577</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 14 2 1 -1.</_>
- <_>
- 23 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8917557655368000e-005</threshold>
- <left_val>0.2068260014057159</left_val>
- <right_val>-0.1195247992873192</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 14 2 1 -1.</_>
- <_>
- 1 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1416288847103715e-005</threshold>
- <left_val>-0.1625899970531464</left_val>
- <right_val>0.1518989056348801</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 11 6 -1.</_>
- <_>
- 7 4 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1354866027832031</threshold>
- <left_val>-0.0504554286599159</left_val>
- <right_val>0.4712490141391754</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 2 2 -1.</_>
- <_>
- 2 2 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.1286230292171240e-003</threshold>
- <left_val>-0.1934940963983536</left_val>
- <right_val>0.1492028981447220</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 0 1 10 -1.</_>
- <_>
- 24 5 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0376871302723885</threshold>
- <left_val>-6.5130472648888826e-004</left_val>
- <right_val>-0.5566216707229614</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 10 -1.</_>
- <_>
- 0 5 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0177724994719028</threshold>
- <left_val>-0.5733047127723694</left_val>
- <right_val>0.0462512709200382</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 11 6 2 -1.</_>
- <_>
- 14 11 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0141524598002434</threshold>
- <left_val>-0.7905998826026917</left_val>
- <right_val>0.0153570203110576</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 20 2 -1.</_>
- <_>
- 7 0 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0194474104791880</threshold>
- <left_val>0.2123239040374756</left_val>
- <right_val>-0.1021943986415863</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 10 4 -1.</_>
- <_>
- 10 0 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0129150198772550</threshold>
- <left_val>-0.0788644626736641</left_val>
- <right_val>0.1457864940166473</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 20 1 -1.</_>
- <_>
- 10 0 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7283121645450592e-003</threshold>
- <left_val>-0.1338106989860535</left_val>
- <right_val>0.2055318057537079</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 10 3 -1.</_>
- <_>
- 8 5 10 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0264210291206837</threshold>
- <left_val>0.2729040980339050</left_val>
- <right_val>-0.0841038301587105</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 7 6 -1.</_>
- <_>
- 9 8 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0216425806283951</threshold>
- <left_val>0.2165616005659103</left_val>
- <right_val>-0.0997976064682007</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 9 3 -1.</_>
- <_>
- 8 6 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0186041705310345</threshold>
- <left_val>0.3167817890644074</left_val>
- <right_val>-0.0684646219015121</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 1 3 -1.</_>
- <_>
- 5 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.9184472560882568e-003</threshold>
- <left_val>0.0389325916767120</left_val>
- <right_val>-0.5849621891975403</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 0 1 4 -1.</_>
- <_>
- 24 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0868779807351530e-005</threshold>
- <left_val>0.1183537989854813</left_val>
- <right_val>-0.2693997025489807</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 10 2 1 -1.</_>
- <_>
- 10 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3271610997617245e-005</threshold>
- <left_val>0.1483621001243591</left_val>
- <right_val>-0.1414014995098114</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 10 1 4 -1.</_>
- <_>
- 21 11 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.0123859178274870e-003</threshold>
- <left_val>0.0475597009062767</left_val>
- <right_val>-0.3168076872825623</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 6 5 -1.</_>
- <_>
- 6 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0202028602361679</threshold>
- <left_val>0.0363369397819042</left_val>
- <right_val>-0.4958786964416504</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 8 12 -1.</_>
- <_>
- 21 3 4 6 2.</_>
- <_>
- 17 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0681129470467567</threshold>
- <left_val>-0.0636018067598343</left_val>
- <right_val>0.3745648860931397</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 8 12 -1.</_>
- <_>
- 0 3 4 6 2.</_>
- <_>
- 4 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0613449215888977</threshold>
- <left_val>0.3703984022140503</left_val>
- <right_val>-0.0626903176307678</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 6 10 -1.</_>
- <_>
- 13 3 3 5 2.</_>
- <_>
- 10 8 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0239223092794418</threshold>
- <left_val>-0.3475331962108612</left_val>
- <right_val>0.0568292401731014</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 4 1 -1.</_>
- <_>
- 4 11 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.4279401190578938e-003</threshold>
- <left_val>0.0318974405527115</left_val>
- <right_val>-0.5085908770561218</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 9 4 -1.</_>
- <_>
- 16 2 9 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0923664569854736</threshold>
- <left_val>-0.4889659881591797</left_val>
- <right_val>9.9938698112964630e-003</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 4 9 -1.</_>
- <_>
- 9 2 2 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.1878310255706310e-003</threshold>
- <left_val>0.0857494324445724</left_val>
- <right_val>-0.2382344007492065</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 9 3 3 -1.</_>
- <_>
- 20 10 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2605291604995728e-003</threshold>
- <left_val>0.0244128108024597</left_val>
- <right_val>-0.5500137209892273</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 13 4 -1.</_>
- <_>
- 6 2 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0217170491814613</threshold>
- <left_val>-0.0847987011075020</left_val>
- <right_val>0.2182479947805405</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 4 5 4 -1.</_>
- <_>
- 10 5 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0102959601208568</threshold>
- <left_val>-0.1032914966344833</left_val>
- <right_val>0.1945870965719223</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 3 3 -1.</_>
- <_>
- 0 6 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0121496301144362</threshold>
- <left_val>0.0322238989174366</left_val>
- <right_val>-0.5932865738868713</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 5 4 4 -1.</_>
- <_>
- 21 6 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0191168300807476</threshold>
- <left_val>0.0309407506138086</left_val>
- <right_val>-0.4538871943950653</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 4 4 -1.</_>
- <_>
- 0 6 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1067700628191233e-004</threshold>
- <left_val>-0.1545806974172592</left_val>
- <right_val>0.1262297928333283</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 9 6 -1.</_>
- <_>
- 8 11 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0294274203479290</threshold>
- <left_val>0.2070481926202774</left_val>
- <right_val>-0.0861818864941597</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 11 3 1 -1.</_>
- <_>
- 5 12 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.7067469675093889e-003</threshold>
- <left_val>-0.5155926942825317</left_val>
- <right_val>0.0383589081466198</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 14 2 1 -1.</_>
- <_>
- 23 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0146670875838026e-005</threshold>
- <left_val>-0.1023617982864380</left_val>
- <right_val>0.0884054377675056</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 14 2 1 -1.</_>
- <_>
- 1 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8713612563442439e-005</threshold>
- <left_val>0.1984436959028244</left_val>
- <right_val>-0.0994443595409393</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 4 14 -1.</_>
- <_>
- 11 8 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0848333984613419</threshold>
- <left_val>-0.3900933861732483</left_val>
- <right_val>0.0397581607103348</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 2 3 -1.</_>
- <_>
- 3 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0115453395992517</threshold>
- <left_val>0.0299104899168015</left_val>
- <right_val>-0.5021548867225647</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 12 1 2 -1.</_>
- <_>
- 24 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2721769744530320e-003</threshold>
- <left_val>0.0357883498072624</left_val>
- <right_val>-0.3856284022331238</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 14 14 -1.</_>
- <_>
- 0 8 14 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3789406120777130</threshold>
- <left_val>0.0429151207208633</left_val>
- <right_val>-0.3726823925971985</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 6 15 -1.</_>
- <_>
- 15 0 2 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0587286688387394</threshold>
- <left_val>0.0175066608935595</left_val>
- <right_val>-0.7129334807395935</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 1 4 -1.</_>
- <_>
- 0 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2667418862693012e-005</threshold>
- <left_val>0.0852374136447906</left_val>
- <right_val>-0.1796067953109741</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 13 1 2 -1.</_>
- <_>
- 24 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5661939289420843e-003</threshold>
- <left_val>-0.4941900074481964</left_val>
- <right_val>0.0211067497730255</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 1 2 -1.</_>
- <_>
- 0 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2544771935790777e-005</threshold>
- <left_val>0.1260727941989899</left_val>
- <right_val>-0.1358107030391693</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 11 2 4 -1.</_>
- <_>
- 23 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3382088877260685e-003</threshold>
- <left_val>-0.3425475955009460</left_val>
- <right_val>0.0313290804624558</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 2 4 -1.</_>
- <_>
- 0 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0032588876783848e-003</threshold>
- <left_val>0.0353341810405254</left_val>
- <right_val>-0.4785414040088654</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 10 2 2 -1.</_>
- <_>
- 17 10 1 1 2.</_>
- <_>
- 16 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8725446655880660e-005</threshold>
- <left_val>-0.0865093916654587</left_val>
- <right_val>0.1098069027066231</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 2 2 -1.</_>
- <_>
- 7 10 1 1 2.</_>
- <_>
- 8 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5411381395533681e-004</threshold>
- <left_val>-0.0866223275661469</left_val>
- <right_val>0.1815810948610306</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 24 6 -1.</_>
- <_>
- 13 0 12 3 2.</_>
- <_>
- 1 3 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1003293022513390</threshold>
- <left_val>-0.4118100106716156</left_val>
- <right_val>0.0407990105450153</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 6 12 -1.</_>
- <_>
- 8 1 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0457341782748699</threshold>
- <left_val>0.0250630006194115</left_val>
- <right_val>-0.5801063179969788</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 6 6 3 -1.</_>
- <_>
- 19 7 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0143571095541120</threshold>
- <left_val>0.0273739993572235</left_val>
- <right_val>-0.3111906945705414</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 7 2 -1.</_>
- <_>
- 5 7 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.2823958210647106e-003</threshold>
- <left_val>-0.1212206035852432</left_val>
- <right_val>0.1300680041313171</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 7 4 -1.</_>
- <_>
- 9 7 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0191692691296339</threshold>
- <left_val>0.3547115027904511</left_val>
- <right_val>-0.0586979016661644</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 6 3 -1.</_>
- <_>
- 0 7 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0203719399869442</threshold>
- <left_val>0.0270470399409533</left_val>
- <right_val>-0.6216102838516235</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 13 4 -1.</_>
- <_>
- 6 9 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119816595688462</threshold>
- <left_val>0.1762886941432953</left_val>
- <right_val>-0.0943156927824020</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 2 2 -1.</_>
- <_>
- 7 10 1 1 2.</_>
- <_>
- 8 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.4278322649188340e-005</threshold>
- <left_val>0.1507049947977066</left_val>
- <right_val>-0.1071290969848633</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 11 6 2 -1.</_>
- <_>
- 14 11 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0101822800934315</threshold>
- <left_val>0.0161433499306440</left_val>
- <right_val>-0.3503915071487427</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 12 10 -1.</_>
- <_>
- 6 0 6 5 2.</_>
- <_>
- 12 5 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0520590804517269</threshold>
- <left_val>-0.3121460080146790</left_val>
- <right_val>0.0477841906249523</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 11 6 2 -1.</_>
- <_>
- 14 11 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0249434690922499</threshold>
- <left_val>-0.7933396100997925</left_val>
- <right_val>-4.0430951048620045e-004</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 2 -1.</_>
- <_>
- 7 0 1 1 2.</_>
- <_>
- 8 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2259827973321080e-004</threshold>
- <left_val>0.2043831050395966</left_val>
- <right_val>-0.0712744519114494</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 2 -1.</_>
- <_>
- 17 0 1 1 2.</_>
- <_>
- 16 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6859298638300970e-005</threshold>
- <left_val>0.0861500576138496</left_val>
- <right_val>-0.0658712089061737</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 2 -1.</_>
- <_>
- 7 0 1 1 2.</_>
- <_>
- 8 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0834350511431694e-004</threshold>
- <left_val>-0.1051706001162529</left_val>
- <right_val>0.2224697023630142</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 11 6 2 -1.</_>
- <_>
- 14 11 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1075460352003574e-003</threshold>
- <left_val>0.0464305393397808</left_val>
- <right_val>-0.0319086797535419</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 11 6 2 -1.</_>
- <_>
- 9 11 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0123662399128079</threshold>
- <left_val>-0.6207143068313599</left_val>
- <right_val>0.0261646900326014</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 12 18 3 -1.</_>
- <_>
- 11 12 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0354762189090252</threshold>
- <left_val>0.1230582967400551</left_val>
- <right_val>-0.0519298203289509</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.3794448934495449e-003</threshold>
- <left_val>-0.3795419931411743</left_val>
- <right_val>0.0417488515377045</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 4 4 2 -1.</_>
- <_>
- 23 4 2 1 2.</_>
- <_>
- 21 5 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3966970145702362e-003</threshold>
- <left_val>-0.0851486772298813</left_val>
- <right_val>0.1512037962675095</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 7 3 -1.</_>
- <_>
- 9 4 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1437891088426113e-003</threshold>
- <left_val>-0.0816644281148911</left_val>
- <right_val>0.1789588034152985</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 8 5 -1.</_>
- <_>
- 15 4 4 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1239939033985138</threshold>
- <left_val>-0.6658980846405029</left_val>
- <right_val>9.5204189419746399e-003</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 6 4 -1.</_>
- <_>
- 11 2 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0393908508121967</threshold>
- <left_val>0.0182536505162716</left_val>
- <right_val>-0.7637290954589844</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 0 2 2 -1.</_>
- <_>
- 22 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9372270219027996e-003</threshold>
- <left_val>0.0226261299103498</left_val>
- <right_val>-0.3233875036239624</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 16 12 -1.</_>
- <_>
- 12 1 8 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1816650927066803</threshold>
- <left_val>-0.0618673898279667</left_val>
- <right_val>0.2298932969570160</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 20 10 -1.</_>
- <_>
- 3 0 10 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0892752110958099</threshold>
- <left_val>-0.0848015919327736</left_val>
- <right_val>0.2109096944332123</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 6 6 -1.</_>
- <_>
- 0 4 3 3 2.</_>
- <_>
- 3 7 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0179201308637857</threshold>
- <left_val>-0.0663900971412659</left_val>
- <right_val>0.2243462055921555</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 4 3 3 -1.</_>
- <_>
- 23 5 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.5024111643433571e-003</threshold>
- <left_val>-0.0559136196970940</left_val>
- <right_val>0.1079157963395119</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 3 3 -1.</_>
- <_>
- 2 5 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0126318400725722</threshold>
- <left_val>0.3352184891700745</left_val>
- <right_val>-0.0470694787800312</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 7 3 4 -1.</_>
- <_>
- 22 8 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2040186971426010e-003</threshold>
- <left_val>0.0521674789488316</left_val>
- <right_val>-0.5830680727958679</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 4 7 -1.</_>
- <_>
- 4 1 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0215438604354858</threshold>
- <left_val>0.0103719802573323</left_val>
- <right_val>-0.8169081807136536</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 7 3 4 -1.</_>
- <_>
- 22 8 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2779878713190556e-003</threshold>
- <left_val>-0.3437061011791229</left_val>
- <right_val>0.0348356589674950</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.5721762627363205e-003</threshold>
- <left_val>0.0160374492406845</left_val>
- <right_val>-0.7592146992683411</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 4 6 2 -1.</_>
- <_>
- 18 5 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9499992057681084e-003</threshold>
- <left_val>-0.0835138633847237</left_val>
- <right_val>0.0937561765313149</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 15 6 -1.</_>
- <_>
- 5 5 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0868803784251213</threshold>
- <left_val>0.1977919936180115</left_val>
- <right_val>-0.0735685229301453</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 8 4 -1.</_>
- <_>
- 16 5 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.7690730318427086e-003</threshold>
- <left_val>-0.0611343309283257</left_val>
- <right_val>0.0826714411377907</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 24 10 -1.</_>
- <_>
- 0 1 12 5 2.</_>
- <_>
- 12 6 12 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1480645984411240</threshold>
- <left_val>0.0396532900631428</left_val>
- <right_val>-0.4085262119770050</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 7 -1.</_>
- <_>
- 15 0 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0186682697385550</threshold>
- <left_val>-0.6671301126480103</left_val>
- <right_val>0.0156445093452930</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 3 4 -1.</_>
- <_>
- 0 8 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0101426700130105</threshold>
- <left_val>0.0211487896740437</left_val>
- <right_val>-0.5610821843147278</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 5 4 4 -1.</_>
- <_>
- 20 5 2 2 2.</_>
- <_>
- 18 7 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6263110339641571e-003</threshold>
- <left_val>0.0881423130631447</left_val>
- <right_val>-0.0586008317768574</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 6 2 -1.</_>
- <_>
- 5 5 3 1 2.</_>
- <_>
- 8 6 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0406240839511156e-003</threshold>
- <left_val>-0.0699731782078743</left_val>
- <right_val>0.1942113041877747</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 9 2 3 -1.</_>
- <_>
- 21 10 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0523111820220947e-003</threshold>
- <left_val>-0.3989843130111694</left_val>
- <right_val>0.0284519009292126</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 2 2 -1.</_>
- <_>
- 7 1 1 1 2.</_>
- <_>
- 8 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3293411252088845e-004</threshold>
- <left_val>-0.0920187085866928</left_val>
- <right_val>0.1521372944116592</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 2 2 -1.</_>
- <_>
- 17 1 1 1 2.</_>
- <_>
- 16 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4471479516942054e-004</threshold>
- <left_val>0.1328881978988648</left_val>
- <right_val>-0.0869787335395813</right_val></_></_></trees>
- <stage_threshold>-1.4393190145492554</stage_threshold>
- <parent>9</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 11 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 7 6 -1.</_>
- <_>
- 9 9 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0305288899689913</threshold>
- <left_val>0.3361127972602844</left_val>
- <right_val>-0.1605879068374634</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 2 7 2 -1.</_>
- <_>
- 17 3 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8238358944654465e-003</threshold>
- <left_val>0.2510839104652405</left_val>
- <right_val>-0.2578383982181549</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 9 4 -1.</_>
- <_>
- 3 3 9 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0260700508952141</threshold>
- <left_val>0.3176701068878174</left_val>
- <right_val>-0.1111562028527260</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 14 6 1 -1.</_>
- <_>
- 19 14 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6021650517359376e-003</threshold>
- <left_val>-0.1096177026629448</left_val>
- <right_val>0.1561331003904343</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 11 6 -1.</_>
- <_>
- 6 11 11 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0346175394952297</threshold>
- <left_val>0.2614395916461945</left_val>
- <right_val>-0.0955564379692078</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 8 12 -1.</_>
- <_>
- 21 3 4 6 2.</_>
- <_>
- 17 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0825498923659325</threshold>
- <left_val>-0.0359772108495235</left_val>
- <right_val>0.3189736902713776</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 24 8 -1.</_>
- <_>
- 0 7 12 4 2.</_>
- <_>
- 12 11 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1079908013343811</threshold>
- <left_val>-0.4661987125873566</left_val>
- <right_val>0.0965379774570465</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 16 12 -1.</_>
- <_>
- 13 3 8 6 2.</_>
- <_>
- 5 9 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0710962936282158</threshold>
- <left_val>-0.3290941119194031</left_val>
- <right_val>0.0201707594096661</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 24 6 -1.</_>
- <_>
- 8 5 8 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6102272272109985</threshold>
- <left_val>-0.0410851910710335</left_val>
- <right_val>0.5919780731201172</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 24 1 -1.</_>
- <_>
- 7 8 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6180485561490059e-003</threshold>
- <left_val>0.1845327019691467</left_val>
- <right_val>-0.1256957054138184</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 14 6 -1.</_>
- <_>
- 1 9 7 3 2.</_>
- <_>
- 8 12 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0216567497700453</threshold>
- <left_val>0.3558863103389740</left_val>
- <right_val>-0.0654195472598076</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 5 3 2 -1.</_>
- <_>
- 19 6 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2288730144500732e-003</threshold>
- <left_val>-0.1597114056348801</left_val>
- <right_val>0.1442176997661591</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 14 10 1 -1.</_>
- <_>
- 5 14 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6023850552737713e-003</threshold>
- <left_val>-0.1301265954971314</left_val>
- <right_val>0.1848530024290085</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 15 6 -1.</_>
- <_>
- 5 3 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1224254965782166</threshold>
- <left_val>-0.0509620085358620</left_val>
- <right_val>0.4787274003028870</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 7 6 -1.</_>
- <_>
- 1 3 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0398168414831162</threshold>
- <left_val>0.1911015063524246</left_val>
- <right_val>-0.1490415036678314</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 12 6 3 -1.</_>
- <_>
- 17 13 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0165654607117176</threshold>
- <left_val>0.0250385701656342</left_val>
- <right_val>-0.2660810947418213</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 3 -1.</_>
- <_>
- 3 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.7314971238374710e-003</threshold>
- <left_val>0.0361662209033966</left_val>
- <right_val>-0.5751237273216248</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 24 3 -1.</_>
- <_>
- 7 12 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0238826293498278</threshold>
- <left_val>0.1817242056131363</left_val>
- <right_val>-0.1013408973813057</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 12 6 3 -1.</_>
- <_>
- 5 13 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0168766304850578</threshold>
- <left_val>0.0499957092106342</left_val>
- <right_val>-0.4964488148689270</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 24 12 -1.</_>
- <_>
- 13 0 12 6 2.</_>
- <_>
- 1 6 12 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0814632922410965</threshold>
- <left_val>0.0508196912705898</left_val>
- <right_val>-0.3092927038669586</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 21 15 -1.</_>
- <_>
- 9 0 7 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1567866057157517</threshold>
- <left_val>-0.0846417918801308</left_val>
- <right_val>0.2097589969635010</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 6 2 -1.</_>
- <_>
- 17 4 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0107369897887111</threshold>
- <left_val>-0.0588766187429428</left_val>
- <right_val>0.2673564851284027</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 14 2 -1.</_>
- <_>
- 3 4 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0162507798522711</threshold>
- <left_val>0.2185824960470200</left_val>
- <right_val>-0.1275278925895691</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 21 4 -1.</_>
- <_>
- 11 0 7 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0513998307287693</threshold>
- <left_val>0.1707165986299515</left_val>
- <right_val>-0.0564976185560226</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 13 4 1 -1.</_>
- <_>
- 7 13 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8661050125956535e-003</threshold>
- <left_val>0.0403385981917381</left_val>
- <right_val>-0.4740450084209442</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 8 12 -1.</_>
- <_>
- 21 3 4 6 2.</_>
- <_>
- 17 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0494354106485844</threshold>
- <left_val>0.1537600010633469</left_val>
- <right_val>-0.0417859293520451</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 8 12 -1.</_>
- <_>
- 0 3 4 6 2.</_>
- <_>
- 4 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0696671828627586</threshold>
- <left_val>-0.0588539093732834</left_val>
- <right_val>0.3099964857101440</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 16 8 -1.</_>
- <_>
- 13 0 8 4 2.</_>
- <_>
- 5 4 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0781185403466225</threshold>
- <left_val>-0.4109517037868500</left_val>
- <right_val>0.0523068793118000</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 7 4 2 -1.</_>
- <_>
- 4 8 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.6161941289901733e-003</threshold>
- <left_val>-0.5668942928314209</left_val>
- <right_val>0.0286804605275393</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 11 15 4 -1.</_>
- <_>
- 5 12 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8916371092200279e-003</threshold>
- <left_val>-0.0957784205675125</left_val>
- <right_val>0.1680631041526794</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 13 1 2 -1.</_>
- <_>
- 10 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4734419942833483e-005</threshold>
- <left_val>-0.1476065963506699</left_val>
- <right_val>0.1278074979782105</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 14 6 1 -1.</_>
- <_>
- 14 14 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5460228361189365e-003</threshold>
- <left_val>-0.5353912711143494</left_val>
- <right_val>0.0211423803120852</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 6 4 -1.</_>
- <_>
- 9 6 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119369700551033</threshold>
- <left_val>0.2489618957042694</left_val>
- <right_val>-0.0659059137105942</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 5 13 2 -1.</_>
- <_>
- 12 6 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0160134993493557</threshold>
- <left_val>-0.0751639306545258</left_val>
- <right_val>0.0920000970363617</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 15 6 -1.</_>
- <_>
- 5 2 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1797882020473480</threshold>
- <left_val>0.3122220933437347</left_val>
- <right_val>-0.0546800307929516</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 20 15 -1.</_>
- <_>
- 3 0 10 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4293603003025055</threshold>
- <left_val>-0.0467442497611046</left_val>
- <right_val>0.4671711027622223</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 22 14 -1.</_>
- <_>
- 12 1 11 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1762980967760086</threshold>
- <left_val>-0.1196762025356293</left_val>
- <right_val>0.2303612977266312</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 5 10 2 -1.</_>
- <_>
- 15 6 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0434980615973473</threshold>
- <left_val>0.0213767793029547</left_val>
- <right_val>-0.3402695953845978</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 13 2 -1.</_>
- <_>
- 0 6 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0168955195695162</threshold>
- <left_val>-0.1305568963289261</left_val>
- <right_val>0.1834042966365814</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 15 4 -1.</_>
- <_>
- 5 3 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0185353793203831</threshold>
- <left_val>-0.0754243135452271</left_val>
- <right_val>0.2354936003684998</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 15 3 -1.</_>
- <_>
- 5 5 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0173294302076101</threshold>
- <left_val>-0.0853839814662933</left_val>
- <right_val>0.2036404013633728</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 11 4 4 -1.</_>
- <_>
- 21 12 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6630741134285927e-003</threshold>
- <left_val>0.0385910011827946</left_val>
- <right_val>-0.6201460957527161</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 1 2 -1.</_>
- <_>
- 5 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.7052681222558022e-003</threshold>
- <left_val>0.0312472805380821</left_val>
- <right_val>-0.4070529043674469</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 3 2 4 -1.</_>
- <_>
- 23 3 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8030379433184862e-003</threshold>
- <left_val>0.1957851052284241</left_val>
- <right_val>-0.1433366984128952</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 4 6 -1.</_>
- <_>
- 8 1 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0187879204750061</threshold>
- <left_val>-0.8691418766975403</left_val>
- <right_val>0.0169819705188274</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 11 3 -1.</_>
- <_>
- 8 7 11 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0186009202152491</threshold>
- <left_val>-0.0818153098225594</left_val>
- <right_val>0.1891387999057770</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 2 1 -1.</_>
- <_>
- 1 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4120598330628127e-005</threshold>
- <left_val>-0.1289912015199661</left_val>
- <right_val>0.1211050972342491</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 12 3 3 -1.</_>
- <_>
- 21 13 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6057129986584187e-003</threshold>
- <left_val>-0.4698300957679749</left_val>
- <right_val>0.0159890707582235</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 3 3 -1.</_>
- <_>
- 1 13 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5192570649087429e-003</threshold>
- <left_val>0.0361930206418037</left_val>
- <right_val>-0.4484112858772278</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 3 2 4 -1.</_>
- <_>
- 23 3 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7741440096870065e-003</threshold>
- <left_val>-0.0433034710586071</left_val>
- <right_val>0.1395574957132340</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 4 -1.</_>
- <_>
- 1 3 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6350420191884041e-003</threshold>
- <left_val>0.1395068019628525</left_val>
- <right_val>-0.1124152988195419</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 3 4 10 -1.</_>
- <_>
- 23 3 2 5 2.</_>
- <_>
- 21 8 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4794770441949368e-003</threshold>
- <left_val>-0.0600515604019165</left_val>
- <right_val>0.0728941932320595</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 4 10 -1.</_>
- <_>
- 0 3 2 5 2.</_>
- <_>
- 2 8 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0203247498720884</threshold>
- <left_val>0.4297815859317780</left_val>
- <right_val>-0.0396846085786819</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 1 1 4 -1.</_>
- <_>
- 24 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3453041948378086e-003</threshold>
- <left_val>-0.2533842921257019</left_val>
- <right_val>0.0242939405143261</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 6 -1.</_>
- <_>
- 0 2 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0959975495934486e-003</threshold>
- <left_val>0.0340887792408466</left_val>
- <right_val>-0.4518730044364929</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 4 4 -1.</_>
- <_>
- 17 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0161635801196098</threshold>
- <left_val>6.8225921131670475e-003</left_val>
- <right_val>-0.7205737829208374</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 4 4 -1.</_>
- <_>
- 6 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0112293101847172</threshold>
- <left_val>-0.6191986203193665</left_val>
- <right_val>0.0222914796322584</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 10 12 -1.</_>
- <_>
- 15 8 10 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1763328015804291</threshold>
- <left_val>-0.6819115877151489</left_val>
- <right_val>8.8407555595040321e-003</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 9 3 -1.</_>
- <_>
- 8 6 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0192962400615215</threshold>
- <left_val>-0.0796290487051010</left_val>
- <right_val>0.2013067007064819</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 14 2 -1.</_>
- <_>
- 6 8 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0105654401704669</threshold>
- <left_val>-0.0832984521985054</left_val>
- <right_val>0.1872760951519013</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 7 5 4 -1.</_>
- <_>
- 10 8 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7616738379001617e-003</threshold>
- <left_val>0.2069583982229233</left_val>
- <right_val>-0.0813189968466759</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 12 2 3 -1.</_>
- <_>
- 23 13 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3086878936737776e-003</threshold>
- <left_val>-0.2798121869564056</left_val>
- <right_val>0.0293897707015276</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 4 4 -1.</_>
- <_>
- 0 8 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9189318455755711e-003</threshold>
- <left_val>-0.5095586180686951</left_val>
- <right_val>0.0291001908481121</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 13 21 2 -1.</_>
- <_>
- 10 13 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0195926092565060</threshold>
- <left_val>0.1248695999383926</left_val>
- <right_val>-0.0666698589920998</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 3 1 -1.</_>
- <_>
- 7 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6698801927268505e-004</threshold>
- <left_val>0.1772525012493134</left_val>
- <right_val>-0.0755556300282478</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 2 -1.</_>
- <_>
- 17 0 1 1 2.</_>
- <_>
- 16 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5187108702957630e-004</threshold>
- <left_val>-0.0468317084014416</left_val>
- <right_val>0.1377387940883637</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 2 -1.</_>
- <_>
- 7 0 1 1 2.</_>
- <_>
- 8 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3244438711553812e-004</threshold>
- <left_val>0.1750548034906387</left_val>
- <right_val>-0.0822173282504082</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 12 2 3 -1.</_>
- <_>
- 23 13 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2091289758682251e-003</threshold>
- <left_val>0.0258904304355383</left_val>
- <right_val>-0.3546032905578613</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 9 2 -1.</_>
- <_>
- 11 8 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0288993604481220</threshold>
- <left_val>-0.7315214276313782</left_val>
- <right_val>0.0180548094213009</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 12 2 3 -1.</_>
- <_>
- 23 13 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8803699074778706e-005</threshold>
- <left_val>-0.0383186303079128</left_val>
- <right_val>0.0343451388180256</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 2 3 -1.</_>
- <_>
- 0 13 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2848090156912804e-003</threshold>
- <left_val>-0.3603490889072418</left_val>
- <right_val>0.0380517281591892</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 9 9 -1.</_>
- <_>
- 8 7 9 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2230083048343658</threshold>
- <left_val>-0.0353877097368240</left_val>
- <right_val>0.4118692874908447</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 11 12 4 -1.</_>
- <_>
- 3 11 6 2 2.</_>
- <_>
- 9 13 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8663020823150873e-003</threshold>
- <left_val>-0.1147940978407860</left_val>
- <right_val>0.1196625977754593</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 5 4 -1.</_>
- <_>
- 10 11 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6781090311706066e-003</threshold>
- <left_val>-0.0887862071394920</left_val>
- <right_val>0.2093122005462647</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 14 6 1 -1.</_>
- <_>
- 9 14 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6886930465698242e-003</threshold>
- <left_val>0.0420652516186237</left_val>
- <right_val>-0.3311671912670136</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 18 15 -1.</_>
- <_>
- 4 0 9 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.5000842809677124</threshold>
- <left_val>0.4582319855690002</left_val>
- <right_val>-0.0300164502114058</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 4 4 -1.</_>
- <_>
- 1 3 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2457590568810701e-003</threshold>
- <left_val>-0.0581394806504250</left_val>
- <right_val>0.2244455963373184</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 0 3 4 -1.</_>
- <_>
- 22 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2515371721237898e-004</threshold>
- <left_val>0.0857456997036934</left_val>
- <right_val>-0.2164471000432968</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 20 8 -1.</_>
- <_>
- 5 0 10 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0756241232156754</threshold>
- <left_val>-0.0728698670864105</left_val>
- <right_val>0.1809341013431549</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 24 10 -1.</_>
- <_>
- 13 5 12 5 2.</_>
- <_>
- 1 10 12 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1401147991418839</threshold>
- <left_val>-0.3049497008323669</left_val>
- <right_val>0.0322263389825821</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 5 6 -1.</_>
- <_>
- 0 7 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2914249673485756e-003</threshold>
- <left_val>-0.1651930958032608</left_val>
- <right_val>0.0796989724040031</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 3 4 2 -1.</_>
- <_>
- 18 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8063062131404877e-003</threshold>
- <left_val>-0.0511631406843662</left_val>
- <right_val>0.1528493016958237</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 4 2 -1.</_>
- <_>
- 2 3 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0197005104273558</threshold>
- <left_val>-0.0214679203927517</left_val>
- <right_val>0.5898631215095520</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 6 6 -1.</_>
- <_>
- 16 1 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0282465498894453</threshold>
- <left_val>-0.3611007034778595</left_val>
- <right_val>0.0215946007519960</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 6 6 -1.</_>
- <_>
- 7 1 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0318388007581234</threshold>
- <left_val>0.0213881190866232</left_val>
- <right_val>-0.5591915845870972</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 10 6 1 -1.</_>
- <_>
- 13 10 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2926959469914436e-003</threshold>
- <left_val>0.0171414706856012</left_val>
- <right_val>-0.3245368003845215</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 11 4 -1.</_>
- <_>
- 6 9 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3176206573843956e-003</threshold>
- <left_val>-0.0691479519009590</left_val>
- <right_val>0.1877806931734085</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 13 2 2 -1.</_>
- <_>
- 24 13 1 1 2.</_>
- <_>
- 23 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9812679965980351e-004</threshold>
- <left_val>-0.0710251703858376</left_val>
- <right_val>0.1166272014379501</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 13 4 -1.</_>
- <_>
- 6 1 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0172033403068781</threshold>
- <left_val>-0.0834768265485764</left_val>
- <right_val>0.1448491960763931</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 3 1 -1.</_>
- <_>
- 18 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.0548562109470367e-003</threshold>
- <left_val>0.0214444492012262</left_val>
- <right_val>-0.2763100862503052</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 1 3 -1.</_>
- <_>
- 7 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.7419088445603848e-003</threshold>
- <left_val>0.0341341383755207</left_val>
- <right_val>-0.3555370867252350</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 12 2 2 -1.</_>
- <_>
- 23 12 1 1 2.</_>
- <_>
- 22 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.7136920077027753e-005</threshold>
- <left_val>-0.0699329003691673</left_val>
- <right_val>0.0822271332144737</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 2 1 -1.</_>
- <_>
- 1 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0014430346200243e-005</threshold>
- <left_val>0.1533315926790237</left_val>
- <right_val>-0.0801942795515060</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 13 2 1 -1.</_>
- <_>
- 22 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6377622715663165e-005</threshold>
- <left_val>0.0740585327148438</left_val>
- <right_val>-0.0435769110918045</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 2 1 -1.</_>
- <_>
- 2 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0605492510367185e-005</threshold>
- <left_val>-0.1192411035299301</left_val>
- <right_val>0.1157367005944252</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 13 3 1 -1.</_>
- <_>
- 23 13 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2301438194699585e-005</threshold>
- <left_val>-0.0702318474650383</left_val>
- <right_val>0.0793638303875923</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 2 12 -1.</_>
- <_>
- 2 2 1 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4867830323055387e-003</threshold>
- <left_val>0.1245760992169380</left_val>
- <right_val>-0.1076287999749184</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 3 4 2 -1.</_>
- <_>
- 18 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2434820681810379e-003</threshold>
- <left_val>0.1116774976253510</left_val>
- <right_val>-0.0614912398159504</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 4 2 -1.</_>
- <_>
- 3 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8055239282548428e-003</threshold>
- <left_val>-0.0496800504624844</left_val>
- <right_val>0.3046393096446991</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 0 1 12 -1.</_>
- <_>
- 24 3 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0167157892137766</threshold>
- <left_val>0.0242684707045555</left_val>
- <right_val>-0.5641499757766724</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 15 6 -1.</_>
- <_>
- 5 10 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0197794307023287</threshold>
- <left_val>0.1293102055788040</left_val>
- <right_val>-0.1014008000493050</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 7 6 2 -1.</_>
- <_>
- 19 7 6 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.7752218456007540e-005</threshold>
- <left_val>0.0773630663752556</left_val>
- <right_val>-0.0876037329435349</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 5 3 -1.</_>
- <_>
- 1 11 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0129433302208781</threshold>
- <left_val>-0.8692914843559265</left_val>
- <right_val>0.0158042199909687</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 0 1 12 -1.</_>
- <_>
- 24 3 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0125468103215098</threshold>
- <left_val>-0.1350758969783783</left_val>
- <right_val>0.0456306189298630</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 12 -1.</_>
- <_>
- 0 3 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9727862030267715e-003</threshold>
- <left_val>0.0405779294669628</left_val>
- <right_val>-0.3409133851528168</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 12 1 -1.</_>
- <_>
- 13 0 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3152899965643883e-003</threshold>
- <left_val>0.1372991949319840</left_val>
- <right_val>-0.0561671592295170</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 12 1 -1.</_>
- <_>
- 8 0 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6897659301757813e-003</threshold>
- <left_val>0.1639326065778732</left_val>
- <right_val>-0.0914164036512375</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 20 1 -1.</_>
- <_>
- 8 0 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0578881055116653e-003</threshold>
- <left_val>-0.0800797268748283</left_val>
- <right_val>0.1433712989091873</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 9 2 -1.</_>
- <_>
- 4 0 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0299335699528456</threshold>
- <left_val>-0.5326762199401856</left_val>
- <right_val>0.0227312203496695</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 8 2 -1.</_>
- <_>
- 11 7 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0810988545417786e-003</threshold>
- <left_val>-0.0732182189822197</left_val>
- <right_val>0.1027508974075317</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 3 8 -1.</_>
- <_>
- 11 7 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0508137904107571</threshold>
- <left_val>0.0516868904232979</left_val>
- <right_val>-0.2544622123241425</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 4 4 2 -1.</_>
- <_>
- 21 5 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.7044758684933186e-003</threshold>
- <left_val>-0.0572907589375973</left_val>
- <right_val>0.0760648325085640</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 2 6 -1.</_>
- <_>
- 6 7 1 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.6408819034695625e-003</threshold>
- <left_val>0.0559986904263496</left_val>
- <right_val>-0.2172269970178604</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 4 4 2 -1.</_>
- <_>
- 21 5 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.5121748745441437e-003</threshold>
- <left_val>0.1812860071659088</left_val>
- <right_val>-0.0377242304384708</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 2 4 -1.</_>
- <_>
- 4 5 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.5726249441504478e-003</threshold>
- <left_val>-0.1238458007574081</left_val>
- <right_val>0.1421934068202972</right_val></_></_></trees>
- <stage_threshold>-1.3500690460205078</stage_threshold>
- <parent>10</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 12 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 11 3 -1.</_>
- <_>
- 7 6 11 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0184330195188522</threshold>
- <left_val>-0.1618741005659103</left_val>
- <right_val>0.3351263999938965</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 1 3 4 -1.</_>
- <_>
- 20 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8202150501310825e-003</threshold>
- <left_val>-0.0972008332610130</left_val>
- <right_val>0.2755692005157471</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 9 3 -1.</_>
- <_>
- 8 5 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0214508101344109</threshold>
- <left_val>-0.1013654991984367</left_val>
- <right_val>0.3922119140625000</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 9 3 -1.</_>
- <_>
- 9 7 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0201995000243187</threshold>
- <left_val>-0.1041551977396011</left_val>
- <right_val>0.3485709130764008</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 8 8 -1.</_>
- <_>
- 0 7 4 4 2.</_>
- <_>
- 4 11 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0154604399576783</threshold>
- <left_val>-0.1814713031053543</left_val>
- <right_val>0.2296576052904129</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 7 3 -1.</_>
- <_>
- 9 8 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0121146701276302</threshold>
- <left_val>-0.0955794528126717</left_val>
- <right_val>0.3321264982223511</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 9 3 -1.</_>
- <_>
- 8 4 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166161693632603</threshold>
- <left_val>-0.0751067474484444</left_val>
- <right_val>0.3475660085678101</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 1 1 6 -1.</_>
- <_>
- 19 3 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0151290399953723</threshold>
- <left_val>0.1396238952875137</left_val>
- <right_val>-0.1150512024760246</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 24 5 -1.</_>
- <_>
- 6 7 12 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0707296282052994</threshold>
- <left_val>0.2683610916137695</left_val>
- <right_val>-0.1016533970832825</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 11 1 2 -1.</_>
- <_>
- 24 11 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.2831759415566921e-003</threshold>
- <left_val>0.0443518795073032</left_val>
- <right_val>-0.4632245898246765</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 8 5 -1.</_>
- <_>
- 5 2 4 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.5853649973869324e-003</threshold>
- <left_val>0.0919516831636429</left_val>
- <right_val>-0.3147256970405579</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 8 12 -1.</_>
- <_>
- 20 3 4 6 2.</_>
- <_>
- 16 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0406785085797310</threshold>
- <left_val>0.1471066027879715</left_val>
- <right_val>-0.0726505890488625</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 24 12 -1.</_>
- <_>
- 0 0 12 6 2.</_>
- <_>
- 12 6 12 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1358978003263474</threshold>
- <left_val>-0.5053529739379883</left_val>
- <right_val>0.0469954796135426</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 10 8 -1.</_>
- <_>
- 13 2 5 4 2.</_>
- <_>
- 8 6 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0384974703192711</threshold>
- <left_val>-0.3717043101787567</left_val>
- <right_val>0.0552083589136600</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 8 -1.</_>
- <_>
- 0 3 1 4 2.</_>
- <_>
- 1 7 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7928350027650595e-003</threshold>
- <left_val>-0.1162076964974403</left_val>
- <right_val>0.1937797069549561</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 11 2 4 -1.</_>
- <_>
- 22 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3412551060318947e-003</threshold>
- <left_val>0.0129640102386475</left_val>
- <right_val>-0.4924449026584625</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 2 4 -1.</_>
- <_>
- 1 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6604509912431240e-003</threshold>
- <left_val>-0.4564127027988434</left_val>
- <right_val>0.0437755398452282</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 2 13 12 -1.</_>
- <_>
- 12 8 13 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3209887146949768</threshold>
- <left_val>0.0484563298523426</left_val>
- <right_val>-0.3930096924304962</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 2 4 -1.</_>
- <_>
- 5 8 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.2495201602578163e-003</threshold>
- <left_val>-0.4188942015171051</left_val>
- <right_val>0.0410884395241737</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 6 6 7 -1.</_>
- <_>
- 17 6 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0233532395213842</threshold>
- <left_val>0.0302080996334553</left_val>
- <right_val>-0.3757928013801575</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 6 6 -1.</_>
- <_>
- 6 6 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0224980209022760</threshold>
- <left_val>-0.4524075090885162</left_val>
- <right_val>0.0389229394495487</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 13 9 2 -1.</_>
- <_>
- 16 13 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0238666702061892</threshold>
- <left_val>-0.5288146734237671</left_val>
- <right_val>0.0138155296444893</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 7 4 -1.</_>
- <_>
- 3 5 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0336419306695461</threshold>
- <left_val>0.4436714053153992</left_val>
- <right_val>-0.0403416194021702</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 4 6 8 -1.</_>
- <_>
- 21 4 3 4 2.</_>
- <_>
- 18 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0221408791840076</threshold>
- <left_val>-0.0495454296469688</left_val>
- <right_val>0.2051838934421539</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 14 9 1 -1.</_>
- <_>
- 6 14 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0106034297496080</threshold>
- <left_val>0.0319968499243259</left_val>
- <right_val>-0.5148760080337524</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 11 14 4 -1.</_>
- <_>
- 18 11 7 2 2.</_>
- <_>
- 11 13 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6357148140668869e-003</threshold>
- <left_val>-0.1237379983067513</left_val>
- <right_val>0.1527843028306961</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 6 8 -1.</_>
- <_>
- 1 4 3 4 2.</_>
- <_>
- 4 8 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0297187492251396</threshold>
- <left_val>-0.0567854084074497</left_val>
- <right_val>0.2904588878154755</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 0 2 2 -1.</_>
- <_>
- 23 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.0548420434352010e-004</threshold>
- <left_val>-0.2718465924263001</left_val>
- <right_val>0.1070784032344818</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 13 4 -1.</_>
- <_>
- 6 1 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0486726500093937</threshold>
- <left_val>0.4235774874687195</left_val>
- <right_val>-0.0456859990954399</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 4 2 -1.</_>
- <_>
- 11 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5377809070050716e-003</threshold>
- <left_val>-0.0727348327636719</left_val>
- <right_val>0.2103600949048996</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 2 2 -1.</_>
- <_>
- 2 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.3941529691219330e-003</threshold>
- <left_val>-0.3815236985683441</left_val>
- <right_val>0.0445483289659023</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 9 5 6 -1.</_>
- <_>
- 20 11 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0237451493740082</threshold>
- <left_val>-0.4413619935512543</left_val>
- <right_val>0.0249414704740047</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 15 3 -1.</_>
- <_>
- 5 3 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0200922992080450</threshold>
- <left_val>0.1694606989622116</left_val>
- <right_val>-0.0953345969319344</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 7 3 -1.</_>
- <_>
- 9 3 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0110265100374818</threshold>
- <left_val>-0.0721762925386429</left_val>
- <right_val>0.2484644949436188</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 14 21 1 -1.</_>
- <_>
- 9 14 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0158068798482418</threshold>
- <left_val>0.2241718024015427</left_val>
- <right_val>-0.0724460408091545</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 11 16 4 -1.</_>
- <_>
- 8 11 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0490073598921299</threshold>
- <left_val>-0.0551217384636402</left_val>
- <right_val>0.2583925127983093</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 24 2 -1.</_>
- <_>
- 12 12 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0288716107606888</threshold>
- <left_val>-0.1153011992573738</left_val>
- <right_val>0.1924846023321152</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 9 3 6 -1.</_>
- <_>
- 22 11 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3990179225802422e-003</threshold>
- <left_val>0.0522995889186859</left_val>
- <right_val>-0.2191856950521469</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 12 2 -1.</_>
- <_>
- 0 1 6 1 2.</_>
- <_>
- 6 2 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1737848445773125e-003</threshold>
- <left_val>0.2038096934556961</left_val>
- <right_val>-0.0696693286299706</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 9 3 -1.</_>
- <_>
- 8 10 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4332564622163773e-003</threshold>
- <left_val>-0.0534071698784828</left_val>
- <right_val>0.2586283981800079</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 3 6 -1.</_>
- <_>
- 0 11 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0143210804089904</threshold>
- <left_val>0.0336425192654133</left_val>
- <right_val>-0.4679594039916992</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 11 14 4 -1.</_>
- <_>
- 18 11 7 2 2.</_>
- <_>
- 11 13 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0224872808903456</threshold>
- <left_val>-0.0431007482111454</left_val>
- <right_val>0.1123055964708328</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 4 6 -1.</_>
- <_>
- 8 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8018830865621567e-003</threshold>
- <left_val>-0.5997744798660278</left_val>
- <right_val>0.0238500293344259</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 12 6 2 -1.</_>
- <_>
- 12 12 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.2824921011924744e-003</threshold>
- <left_val>-0.3792850077152252</left_val>
- <right_val>0.0247395392507315</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 1 2 -1.</_>
- <_>
- 0 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8288799260044470e-005</threshold>
- <left_val>0.1094501987099648</left_val>
- <right_val>-0.1270592063665390</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 10 12 -1.</_>
- <_>
- 20 3 5 6 2.</_>
- <_>
- 15 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1060767024755478</threshold>
- <left_val>0.1223917007446289</left_val>
- <right_val>-0.0179706607013941</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 9 4 6 -1.</_>
- <_>
- 10 9 2 3 2.</_>
- <_>
- 12 12 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145011199638247</threshold>
- <left_val>0.0254385806620121</left_val>
- <right_val>-0.5499516725540161</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 6 4 -1.</_>
- <_>
- 11 3 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0294254906475544</threshold>
- <left_val>-0.4407989084720612</left_val>
- <right_val>0.0163295306265354</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 14 14 -1.</_>
- <_>
- 0 7 14 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2141247987747192</threshold>
- <left_val>-0.5817149281501770</left_val>
- <right_val>0.0224080495536327</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 10 12 -1.</_>
- <_>
- 20 2 5 6 2.</_>
- <_>
- 15 8 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0159379299730062</threshold>
- <left_val>0.0447719283401966</left_val>
- <right_val>-0.0470217689871788</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 6 4 -1.</_>
- <_>
- 11 3 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0358322896063328</threshold>
- <left_val>0.0257156305015087</left_val>
- <right_val>-0.5430511236190796</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 5 2 6 -1.</_>
- <_>
- 23 7 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0114978998899460</threshold>
- <left_val>-0.4132392108440399</left_val>
- <right_val>0.0246592592447996</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 5 3 -1.</_>
- <_>
- 10 9 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6680490747094154e-003</threshold>
- <left_val>-0.0596144981682301</left_val>
- <right_val>0.2419749945402145</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 7 5 4 -1.</_>
- <_>
- 20 8 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0123357502743602</threshold>
- <left_val>0.0375008806586266</left_val>
- <right_val>-0.4776956140995026</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 11 4 -1.</_>
- <_>
- 7 11 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0130474697798491</threshold>
- <left_val>-0.0609255395829678</left_val>
- <right_val>0.2419895976781845</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 13 1 2 -1.</_>
- <_>
- 16 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2074559789616615e-005</threshold>
- <left_val>-0.0981822684407234</left_val>
- <right_val>0.0891881734132767</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 5 4 -1.</_>
- <_>
- 3 2 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2866070978343487e-003</threshold>
- <left_val>-0.0941056609153748</left_val>
- <right_val>0.1441165059804916</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 8 2 -1.</_>
- <_>
- 17 4 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0417326614260674</threshold>
- <left_val>-0.6405817270278931</left_val>
- <right_val>0.0221338905394077</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 5 4 -1.</_>
- <_>
- 0 8 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7638191655278206e-003</threshold>
- <left_val>0.0412781611084938</left_val>
- <right_val>-0.3354279994964600</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 12 6 -1.</_>
- <_>
- 13 4 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1077456995844841</threshold>
- <left_val>8.1762494519352913e-003</left_val>
- <right_val>-0.4347884058952332</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 12 6 -1.</_>
- <_>
- 8 4 4 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1119699031114578</threshold>
- <left_val>0.0199715103954077</left_val>
- <right_val>-0.6503595113754273</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 12 9 -1.</_>
- <_>
- 11 0 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0680430680513382</threshold>
- <left_val>-0.0602735094726086</left_val>
- <right_val>0.1384491026401520</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 16 8 -1.</_>
- <_>
- 12 5 8 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1206192970275879</threshold>
- <left_val>-0.0666261836886406</left_val>
- <right_val>0.2128939926624298</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 2 1 -1.</_>
- <_>
- 16 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7089789509773254e-003</threshold>
- <left_val>-0.4214768111705780</left_val>
- <right_val>7.0062931627035141e-003</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 12 2 1 -1.</_>
- <_>
- 8 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.8798991530202329e-005</threshold>
- <left_val>0.1287330985069275</left_val>
- <right_val>-0.1178120002150536</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 3 6 4 -1.</_>
- <_>
- 22 3 3 2 2.</_>
- <_>
- 19 5 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0177976898849010</threshold>
- <left_val>-0.0398075394332409</left_val>
- <right_val>0.2582241892814636</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 10 6 3 -1.</_>
- <_>
- 10 10 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0155267501249909</threshold>
- <left_val>-0.5375617146492004</left_val>
- <right_val>0.0254285801202059</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 6 2 2 -1.</_>
- <_>
- 17 6 1 1 2.</_>
- <_>
- 16 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1374800233170390e-003</threshold>
- <left_val>0.1497129052877426</left_val>
- <right_val>-0.0317900516092777</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 24 2 -1.</_>
- <_>
- 0 0 12 1 2.</_>
- <_>
- 12 1 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0219873897731304</threshold>
- <left_val>0.0302675794810057</left_val>
- <right_val>-0.4156928062438965</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 6 2 2 -1.</_>
- <_>
- 17 6 1 1 2.</_>
- <_>
- 16 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9880971093662083e-005</threshold>
- <left_val>-0.0641673132777214</left_val>
- <right_val>0.0799537077546120</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 6 4 -1.</_>
- <_>
- 0 3 3 2 2.</_>
- <_>
- 3 5 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6966080814599991e-003</threshold>
- <left_val>-0.0727465227246284</left_val>
- <right_val>0.1708455979824066</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 0 3 4 -1.</_>
- <_>
- 22 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2799488659948111e-004</threshold>
- <left_val>0.0341552086174488</left_val>
- <right_val>-0.1379152983427048</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 2 3 -1.</_>
- <_>
- 11 1 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2622140347957611e-003</threshold>
- <left_val>0.1615235060453415</left_val>
- <right_val>-0.0755578279495239</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 7 2 4 -1.</_>
- <_>
- 20 8 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0110059296712279</threshold>
- <left_val>-0.4823004007339478</left_val>
- <right_val>0.0268340297043324</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 10 1 -1.</_>
- <_>
- 9 9 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5793791115283966e-003</threshold>
- <left_val>0.1946887969970703</left_val>
- <right_val>-0.0669640377163887</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 6 2 2 -1.</_>
- <_>
- 17 6 1 1 2.</_>
- <_>
- 16 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1821959358640015e-005</threshold>
- <left_val>0.0793757066130638</left_val>
- <right_val>-0.0674495473504066</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 2 2 -1.</_>
- <_>
- 7 6 1 1 2.</_>
- <_>
- 8 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2134959688410163e-003</threshold>
- <left_val>-0.0511140711605549</left_val>
- <right_val>0.2775780856609345</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 6 2 2 -1.</_>
- <_>
- 17 6 1 1 2.</_>
- <_>
- 16 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9206802183762193e-004</threshold>
- <left_val>-0.0284809302538633</left_val>
- <right_val>0.1130611971020699</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 4 -1.</_>
- <_>
- 0 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7196949813514948e-003</threshold>
- <left_val>0.0362051688134670</left_val>
- <right_val>-0.3822895884513855</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 6 2 2 -1.</_>
- <_>
- 17 6 1 1 2.</_>
- <_>
- 16 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0203691720962524e-003</threshold>
- <left_val>-0.7084425091743469</left_val>
- <right_val>9.6215400844812393e-005</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 2 2 -1.</_>
- <_>
- 7 6 1 1 2.</_>
- <_>
- 8 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4910762486979365e-004</threshold>
- <left_val>0.1899659931659699</left_val>
- <right_val>-0.0707588419318199</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 9 6 -1.</_>
- <_>
- 11 11 3 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0300100892782211</threshold>
- <left_val>0.1409595012664795</left_val>
- <right_val>-0.0833628922700882</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 2 6 -1.</_>
- <_>
- 0 7 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0211524497717619</threshold>
- <left_val>0.0258801300078630</left_val>
- <right_val>-0.4697616100311279</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 4 4 7 -1.</_>
- <_>
- 15 5 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0319705903530121</threshold>
- <left_val>-0.5124071240425110</left_val>
- <right_val>0.0121158296242356</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 13 20 2 -1.</_>
- <_>
- 2 13 10 1 2.</_>
- <_>
- 12 14 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0105077195912600</threshold>
- <left_val>0.0386607907712460</left_val>
- <right_val>-0.3098644018173218</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 7 2 2 -1.</_>
- <_>
- 24 7 1 1 2.</_>
- <_>
- 23 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8152811359614134e-005</threshold>
- <left_val>-0.0616559796035290</left_val>
- <right_val>0.0678063929080963</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 1 4 -1.</_>
- <_>
- 3 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6495117759332061e-004</threshold>
- <left_val>-0.0613585598766804</left_val>
- <right_val>0.1991685926914215</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 14 4 -1.</_>
- <_>
- 11 3 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0404121391475201</threshold>
- <left_val>0.1341411024332047</left_val>
- <right_val>-0.0717744380235672</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 4 5 -1.</_>
- <_>
- 6 7 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8856019750237465e-003</threshold>
- <left_val>0.0359793491661549</left_val>
- <right_val>-0.3332307040691376</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 8 1 4 -1.</_>
- <_>
- 22 9 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.3272489458322525e-003</threshold>
- <left_val>0.0328989103436470</left_val>
- <right_val>-0.5153871178627014</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 10 8 -1.</_>
- <_>
- 7 0 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0532727986574173</threshold>
- <left_val>-0.0784574225544930</left_val>
- <right_val>0.1582656949758530</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 24 3 -1.</_>
- <_>
- 9 6 8 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0174429006874561</threshold>
- <left_val>0.1339583992958069</left_val>
- <right_val>-0.1186174973845482</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 4 10 -1.</_>
- <_>
- 10 5 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0433590598404408</threshold>
- <left_val>-0.2269790023565292</left_val>
- <right_val>0.0467031300067902</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 15 3 -1.</_>
- <_>
- 5 5 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0231206398457289</threshold>
- <left_val>0.1634031981229782</left_val>
- <right_val>-0.0685165524482727</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 3 6 -1.</_>
- <_>
- 11 8 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3796178698539734e-003</threshold>
- <left_val>0.1582739949226379</left_val>
- <right_val>-0.0771108269691467</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 8 7 3 -1.</_>
- <_>
- 18 9 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0141222495585680</threshold>
- <left_val>-0.5691561102867127</left_val>
- <right_val>0.0232016704976559</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 4 2 -1.</_>
- <_>
- 0 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0155957797542214</threshold>
- <left_val>-0.7199953794479370</left_val>
- <right_val>0.0111829601228237</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 0 2 1 -1.</_>
- <_>
- 20 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.4529898120090365e-004</threshold>
- <left_val>-0.0766925588250160</left_val>
- <right_val>0.0582969412207603</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 1 8 -1.</_>
- <_>
- 0 8 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1220599561929703e-003</threshold>
- <left_val>-0.4147517085075378</left_val>
- <right_val>0.0252124201506376</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 7 2 2 -1.</_>
- <_>
- 24 7 1 1 2.</_>
- <_>
- 23 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7267909141955897e-005</threshold>
- <left_val>0.0905847102403641</left_val>
- <right_val>-0.0668906867504120</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 2 2 -1.</_>
- <_>
- 0 7 1 1 2.</_>
- <_>
- 1 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8431767653673887e-004</threshold>
- <left_val>-0.0570513382554054</left_val>
- <right_val>0.2420555055141449</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 8 1 4 -1.</_>
- <_>
- 23 9 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.3992529176175594e-003</threshold>
- <left_val>-0.4766991138458252</left_val>
- <right_val>0.0172231607139111</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 3 1 -1.</_>
- <_>
- 2 9 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.4215620253235102e-003</threshold>
- <left_val>0.0330659411847591</left_val>
- <right_val>-0.3505514860153198</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 7 2 2 -1.</_>
- <_>
- 22 7 1 1 2.</_>
- <_>
- 21 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0761801432818174e-004</threshold>
- <left_val>-0.0633307918906212</left_val>
- <right_val>0.1801937073469162</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 15 6 -1.</_>
- <_>
- 5 10 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0271245595067739</threshold>
- <left_val>0.1347420066595078</left_val>
- <right_val>-0.0843034014105797</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 14 8 -1.</_>
- <_>
- 6 9 14 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0320383384823799</threshold>
- <left_val>-0.0676692426204681</left_val>
- <right_val>0.1796665936708450</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 10 2 -1.</_>
- <_>
- 1 5 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2583961300551891e-003</threshold>
- <left_val>-0.0986167713999748</left_val>
- <right_val>0.1166217997670174</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 5 3 3 -1.</_>
- <_>
- 13 6 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7803640589118004e-003</threshold>
- <left_val>0.1233021020889282</left_val>
- <right_val>-0.0477618910372257</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 7 3 -1.</_>
- <_>
- 0 5 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0392416305840015</threshold>
- <left_val>0.0167705602943897</left_val>
- <right_val>-0.7329750061035156</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 7 2 2 -1.</_>
- <_>
- 22 7 1 1 2.</_>
- <_>
- 21 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3865249356022105e-005</threshold>
- <left_val>0.0850126668810844</left_val>
- <right_val>-0.0751027390360832</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 2 2 -1.</_>
- <_>
- 2 7 1 1 2.</_>
- <_>
- 3 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2592968828976154e-004</threshold>
- <left_val>-0.0551505312323570</left_val>
- <right_val>0.2059426009654999</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 9 1 3 -1.</_>
- <_>
- 21 10 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.6403529015369713e-005</threshold>
- <left_val>0.0762555226683617</left_val>
- <right_val>-0.0699946209788322</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 2 2 -1.</_>
- <_>
- 11 13 1 1 2.</_>
- <_>
- 12 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6928332196548581e-004</threshold>
- <left_val>-0.2483194023370743</left_val>
- <right_val>0.0468857996165752</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 3 6 12 -1.</_>
- <_>
- 22 3 3 6 2.</_>
- <_>
- 19 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0424826890230179</threshold>
- <left_val>-0.0344216786324978</left_val>
- <right_val>0.1484764963388443</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 6 12 -1.</_>
- <_>
- 0 3 3 6 2.</_>
- <_>
- 3 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0339534096419811</threshold>
- <left_val>0.2843470871448517</left_val>
- <right_val>-0.0431083589792252</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 1 4 11 -1.</_>
- <_>
- 18 1 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0188998207449913</threshold>
- <left_val>0.0142998602241278</left_val>
- <right_val>-0.4192070066928864</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 6 3 -1.</_>
- <_>
- 0 11 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9765710458159447e-003</threshold>
- <left_val>0.0621932409703732</left_val>
- <right_val>-0.1786025017499924</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 11 2 1 -1.</_>
- <_>
- 23 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0894439482362941e-005</threshold>
- <left_val>0.0948854833841324</left_val>
- <right_val>-0.0689786225557327</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 4 11 -1.</_>
- <_>
- 5 1 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0114915501326323</threshold>
- <left_val>0.0331886112689972</left_val>
- <right_val>-0.3628959059715271</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 3 4 12 -1.</_>
- <_>
- 23 3 2 6 2.</_>
- <_>
- 21 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0215106792747974</threshold>
- <left_val>0.2759737968444824</left_val>
- <right_val>-0.0317491404712200</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 4 12 -1.</_>
- <_>
- 0 3 2 6 2.</_>
- <_>
- 2 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0130551997572184</threshold>
- <left_val>-0.0830815583467484</left_val>
- <right_val>0.1449849009513855</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 11 6 4 -1.</_>
- <_>
- 11 12 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6747581586241722e-003</threshold>
- <left_val>-0.0461902506649494</left_val>
- <right_val>0.1383360028266907</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 11 13 4 -1.</_>
- <_>
- 6 12 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0616300217807293e-003</threshold>
- <left_val>0.1968749016523361</left_val>
- <right_val>-0.0837985798716545</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 10 3 1 -1.</_>
- <_>
- 12 10 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1481661396101117e-004</threshold>
- <left_val>0.0542011298239231</left_val>
- <right_val>-0.1981233954429627</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 13 8 -1.</_>
- <_>
- 5 6 13 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2860183119773865</threshold>
- <left_val>0.0232954602688551</left_val>
- <right_val>-0.4173370003700256</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 10 6 -1.</_>
- <_>
- 15 4 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0463717207312584</threshold>
- <left_val>-0.0290123391896486</left_val>
- <right_val>0.1808013021945953</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 10 6 -1.</_>
- <_>
- 0 4 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0557247512042522</threshold>
- <left_val>0.1358146965503693</left_val>
- <right_val>-0.1061223000288010</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 13 8 -1.</_>
- <_>
- 12 3 13 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2584396898746491</threshold>
- <left_val>-0.4910731911659241</left_val>
- <right_val>0.0151501996442676</right_val></_></_></trees>
- <stage_threshold>-1.3960490226745605</stage_threshold>
- <parent>11</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 13 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 15 3 -1.</_>
- <_>
- 5 4 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0417404398322105</threshold>
- <left_val>0.4202992916107178</left_val>
- <right_val>-0.1386588066816330</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 9 3 -1.</_>
- <_>
- 9 4 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0274386107921600</threshold>
- <left_val>-0.0691855624318123</left_val>
- <right_val>0.6378138065338135</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 7 3 -1.</_>
- <_>
- 2 3 7 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0319233611226082</threshold>
- <left_val>0.5562999844551086</left_val>
- <right_val>-0.0588022507727146</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 15 3 -1.</_>
- <_>
- 5 3 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0426339097321033</threshold>
- <left_val>0.3957036137580872</left_val>
- <right_val>-0.0923223569989204</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 15 3 -1.</_>
- <_>
- 5 5 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0453329794108868</threshold>
- <left_val>0.4831672012805939</left_val>
- <right_val>-0.0990284606814384</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 6 2 2 -1.</_>
- <_>
- 18 6 1 1 2.</_>
- <_>
- 17 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4149550115689635e-003</threshold>
- <left_val>-0.0383210293948650</left_val>
- <right_val>0.3782787919044495</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 2 3 -1.</_>
- <_>
- 5 10 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.1844570767134428e-003</threshold>
- <left_val>0.0845874175429344</left_val>
- <right_val>-0.3629348874092102</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 11 2 4 -1.</_>
- <_>
- 23 13 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9865548759698868e-003</threshold>
- <left_val>0.0660245269536972</left_val>
- <right_val>-0.4990949034690857</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 14 4 -1.</_>
- <_>
- 0 11 7 2 2.</_>
- <_>
- 7 13 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3637079223990440e-003</threshold>
- <left_val>-0.1568834036588669</left_val>
- <right_val>0.1732781976461411</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 4 6 3 -1.</_>
- <_>
- 10 5 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166161693632603</threshold>
- <left_val>-0.1092156991362572</left_val>
- <right_val>0.3208172023296356</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 24 14 -1.</_>
- <_>
- 0 1 12 7 2.</_>
- <_>
- 12 8 12 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1083723008632660</threshold>
- <left_val>-0.3144314885139465</left_val>
- <right_val>0.0960887372493744</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 24 8 -1.</_>
- <_>
- 13 5 12 4 2.</_>
- <_>
- 1 9 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0552641600370407</threshold>
- <left_val>-0.3238588869571686</left_val>
- <right_val>0.0760045275092125</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 24 12 -1.</_>
- <_>
- 0 0 12 6 2.</_>
- <_>
- 12 6 12 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1263256967067719</threshold>
- <left_val>0.0652572736144066</left_val>
- <right_val>-0.4011892974376679</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 15 14 -1.</_>
- <_>
- 10 7 15 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3880456089973450</threshold>
- <left_val>0.0290472805500031</left_val>
- <right_val>-0.2850419878959656</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 2 1 -1.</_>
- <_>
- 1 11 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.1647498942911625e-003</threshold>
- <left_val>0.0566388815641403</left_val>
- <right_val>-0.4483107030391693</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 24 4 -1.</_>
- <_>
- 1 11 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0850358307361603</threshold>
- <left_val>0.2374248951673508</left_val>
- <right_val>-0.1127642020583153</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 10 3 -1.</_>
- <_>
- 7 8 10 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0297137200832367</threshold>
- <left_val>-0.0403699316084385</left_val>
- <right_val>0.4747174084186554</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 7 3 -1.</_>
- <_>
- 9 6 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0189488306641579</threshold>
- <left_val>-0.0794471576809883</left_val>
- <right_val>0.2721098959445953</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 2 6 -1.</_>
- <_>
- 0 11 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4433820769190788e-003</threshold>
- <left_val>-0.4018659889698029</left_val>
- <right_val>0.0573576912283897</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 8 3 2 -1.</_>
- <_>
- 22 8 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.4416291899979115e-003</threshold>
- <left_val>-0.4642170965671539</left_val>
- <right_val>0.0343283303081989</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 1 3 -1.</_>
- <_>
- 12 7 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1745829619467258e-003</threshold>
- <left_val>-0.0719946026802063</left_val>
- <right_val>0.2899833023548126</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 6 1 6 -1.</_>
- <_>
- 24 8 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6435040421783924e-003</threshold>
- <left_val>-0.4219543039798737</left_val>
- <right_val>0.0394870713353157</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 7 2 -1.</_>
- <_>
- 3 3 7 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0225970800966024</threshold>
- <left_val>0.2745698094367981</left_val>
- <right_val>-0.0772427767515183</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 4 6 10 -1.</_>
- <_>
- 13 4 3 5 2.</_>
- <_>
- 10 9 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0175681803375483</threshold>
- <left_val>0.0604698508977890</left_val>
- <right_val>-0.2755838930606842</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 14 6 -1.</_>
- <_>
- 0 6 14 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2285360991954804</threshold>
- <left_val>0.0372774116694927</left_val>
- <right_val>-0.5375431180000305</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 8 8 -1.</_>
- <_>
- 13 0 4 4 2.</_>
- <_>
- 9 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0323306396603584</threshold>
- <left_val>0.0458961501717567</left_val>
- <right_val>-0.3844825029373169</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 5 3 -1.</_>
- <_>
- 2 5 5 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0285396501421928</threshold>
- <left_val>0.5891790986061096</left_val>
- <right_val>-0.0340728089213371</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 9 7 6 -1.</_>
- <_>
- 18 11 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0286119598895311</threshold>
- <left_val>0.0241741407662630</left_val>
- <right_val>-0.2325512021780014</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 7 6 -1.</_>
- <_>
- 0 11 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0190214607864618</threshold>
- <left_val>0.0562911406159401</left_val>
- <right_val>-0.3404670059680939</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 3 3 -1.</_>
- <_>
- 12 2 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7942080311477184e-003</threshold>
- <left_val>0.2392093986272812</left_val>
- <right_val>-0.0638626366853714</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 6 8 -1.</_>
- <_>
- 9 2 3 4 2.</_>
- <_>
- 12 6 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0198575407266617</threshold>
- <left_val>0.0513716302812099</left_val>
- <right_val>-0.3405377864837647</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 14 24 1 -1.</_>
- <_>
- 7 14 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0227794591337442</threshold>
- <left_val>0.2922581136226654</left_val>
- <right_val>-0.0604945607483387</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 12 12 -1.</_>
- <_>
- 0 3 6 6 2.</_>
- <_>
- 6 9 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1480142027139664</threshold>
- <left_val>-0.0343834199011326</left_val>
- <right_val>0.4667116999626160</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 9 4 -1.</_>
- <_>
- 14 3 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0337039716541767</threshold>
- <left_val>-0.3770483136177063</left_val>
- <right_val>0.0263036508113146</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 6 6 -1.</_>
- <_>
- 9 4 3 3 2.</_>
- <_>
- 12 7 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0162283908575773</threshold>
- <left_val>-0.3382456898689270</left_val>
- <right_val>0.0570861399173737</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 0 4 1 -1.</_>
- <_>
- 20 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.2941919527947903e-003</threshold>
- <left_val>-0.3295148909091950</left_val>
- <right_val>0.0434178002178669</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 9 4 -1.</_>
- <_>
- 11 3 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0235741101205349</threshold>
- <left_val>-0.3945200145244598</left_val>
- <right_val>0.0398236103355885</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 4 6 9 -1.</_>
- <_>
- 16 4 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0218487493693829</threshold>
- <left_val>0.0268086697906256</left_val>
- <right_val>-0.2596569955348969</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 6 9 -1.</_>
- <_>
- 7 4 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0209309905767441</threshold>
- <left_val>-0.3641955852508545</left_val>
- <right_val>0.0437827892601490</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 5 2 2 -1.</_>
- <_>
- 17 5 1 1 2.</_>
- <_>
- 16 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6019339673221111e-003</threshold>
- <left_val>-0.0240206904709339</left_val>
- <right_val>0.2182880043983460</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 15 12 -1.</_>
- <_>
- 0 4 15 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.5489655733108521</threshold>
- <left_val>-0.5673372149467468</left_val>
- <right_val>0.0286840796470642</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 11 3 -1.</_>
- <_>
- 8 2 11 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0151870902627707</threshold>
- <left_val>-0.0816961303353310</left_val>
- <right_val>0.2107073962688446</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 1 6 -1.</_>
- <_>
- 0 8 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0653451103717089e-003</threshold>
- <left_val>-0.3701387047767639</left_val>
- <right_val>0.0471426397562027</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 5 1 3 -1.</_>
- <_>
- 14 6 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2847671061754227e-003</threshold>
- <left_val>0.1813296973705292</left_val>
- <right_val>-0.0419041812419891</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 2 2 -1.</_>
- <_>
- 7 2 1 1 2.</_>
- <_>
- 8 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3886080123484135e-003</threshold>
- <left_val>-0.0477169714868069</left_val>
- <right_val>0.3120515942573547</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 9 1 4 -1.</_>
- <_>
- 21 10 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.2354268953204155e-003</threshold>
- <left_val>-0.3120726943016052</left_val>
- <right_val>0.0365724302828312</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 5 3 -1.</_>
- <_>
- 10 6 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9234707839787006e-003</threshold>
- <left_val>-0.1105178967118263</left_val>
- <right_val>0.1364745944738388</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 5 1 3 -1.</_>
- <_>
- 14 6 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7824353724718094e-004</threshold>
- <left_val>0.1019112989306450</left_val>
- <right_val>-0.0396985597908497</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 2 -1.</_>
- <_>
- 0 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3952899500727654e-003</threshold>
- <left_val>0.0345855616033077</left_val>
- <right_val>-0.4620797038078308</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 9 1 4 -1.</_>
- <_>
- 21 10 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.7391599360271357e-005</threshold>
- <left_val>0.0470036789774895</left_val>
- <right_val>-0.0576489008963108</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 4 1 -1.</_>
- <_>
- 4 10 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.7895010318607092e-003</threshold>
- <left_val>-0.3904446959495544</left_val>
- <right_val>0.0392708182334900</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 9 3 -1.</_>
- <_>
- 8 9 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0251507405191660</threshold>
- <left_val>-0.0313480608165264</left_val>
- <right_val>0.4742729067802429</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 21 3 -1.</_>
- <_>
- 9 9 7 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0545641481876373</threshold>
- <left_val>0.1494560986757278</left_val>
- <right_val>-0.0982013270258904</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 6 8 8 -1.</_>
- <_>
- 12 6 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0416621901094913</threshold>
- <left_val>-0.4245094060897827</left_val>
- <right_val>0.0152987902984023</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 6 12 -1.</_>
- <_>
- 9 3 2 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0207394007593393</threshold>
- <left_val>-0.3218981921672821</left_val>
- <right_val>0.0479229800403118</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 3 1 -1.</_>
- <_>
- 12 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7902817651629448e-004</threshold>
- <left_val>0.2330693006515503</left_val>
- <right_val>-0.0597994215786457</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 4 4 -1.</_>
- <_>
- 11 10 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1547799482941628e-003</threshold>
- <left_val>-0.3040251135826111</left_val>
- <right_val>0.0456931404769421</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 5 2 2 -1.</_>
- <_>
- 17 5 1 1 2.</_>
- <_>
- 16 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6045470804092474e-005</threshold>
- <left_val>0.0553880184888840</left_val>
- <right_val>-0.0540977194905281</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 2 2 -1.</_>
- <_>
- 7 5 1 1 2.</_>
- <_>
- 8 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0567409917712212e-003</threshold>
- <left_val>-0.0526767596602440</left_val>
- <right_val>0.2473292946815491</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 24 8 -1.</_>
- <_>
- 13 0 12 4 2.</_>
- <_>
- 1 4 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1842923015356064</threshold>
- <left_val>0.0165581107139587</left_val>
- <right_val>-0.5789644718170166</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 3 1 -1.</_>
- <_>
- 7 6 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4177090488374233e-003</threshold>
- <left_val>-0.0524071305990219</left_val>
- <right_val>0.2524789869785309</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 12 4 3 -1.</_>
- <_>
- 21 13 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0882350876927376e-003</threshold>
- <left_val>-0.3066633939743042</left_val>
- <right_val>0.0269502196460962</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 4 4 -1.</_>
- <_>
- 0 3 2 2 2.</_>
- <_>
- 2 5 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5421912372112274e-003</threshold>
- <left_val>-0.0481166206300259</left_val>
- <right_val>0.2716326117515564</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 0 2 3 -1.</_>
- <_>
- 19 0 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0195690393447876</threshold>
- <left_val>0.0251199807971716</left_val>
- <right_val>-0.3371602892875671</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 15 6 -1.</_>
- <_>
- 2 5 15 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2677350938320160</threshold>
- <left_val>0.0231193397194147</left_val>
- <right_val>-0.5075724124908447</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 15 2 -1.</_>
- <_>
- 5 1 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0326806083321571</threshold>
- <left_val>0.2773688137531281</left_val>
- <right_val>-0.0481392890214920</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 4 -1.</_>
- <_>
- 0 1 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0574508495628834e-003</threshold>
- <left_val>-0.3639586865901947</left_val>
- <right_val>0.0363070890307426</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 1 2 12 -1.</_>
- <_>
- 20 4 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0791702270507813</threshold>
- <left_val>-0.0295530706644058</left_val>
- <right_val>0.1632819026708603</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 2 3 -1.</_>
- <_>
- 4 3 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2955629974603653e-003</threshold>
- <left_val>-0.0644191280007362</left_val>
- <right_val>0.1921634972095490</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 0 2 2 -1.</_>
- <_>
- 20 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.1744619880337268e-004</threshold>
- <left_val>-0.1248127967119217</left_val>
- <right_val>0.0513428300619125</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 4 3 -1.</_>
- <_>
- 0 13 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9793200343847275e-003</threshold>
- <left_val>-0.5400406122207642</left_val>
- <right_val>0.0236572697758675</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 12 8 -1.</_>
- <_>
- 13 3 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2183004021644592</threshold>
- <left_val>-0.3002713024616242</left_val>
- <right_val>0.0188296400010586</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 2 2 -1.</_>
- <_>
- 5 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.5782659649848938e-003</threshold>
- <left_val>-0.2936800122261047</left_val>
- <right_val>0.0437353104352951</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 14 12 -1.</_>
- <_>
- 11 8 14 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1344317942857742</threshold>
- <left_val>-0.2982031106948853</left_val>
- <right_val>0.0219516493380070</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 14 12 -1.</_>
- <_>
- 0 8 14 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3329834043979645</threshold>
- <left_val>0.0417996607720852</left_val>
- <right_val>-0.3464672863483429</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 7 6 8 -1.</_>
- <_>
- 18 7 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0276046600192785</threshold>
- <left_val>-0.3169625997543335</left_val>
- <right_val>0.0150398099794984</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 13 2 -1.</_>
- <_>
- 7 0 13 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0284599401056767</threshold>
- <left_val>0.0311327595263720</left_val>
- <right_val>-0.4115855097770691</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 7 6 8 -1.</_>
- <_>
- 18 7 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0568751804530621</threshold>
- <left_val>3.1998890917748213e-003</left_val>
- <right_val>-0.8496329784393311</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 7 6 8 -1.</_>
- <_>
- 5 7 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0264140591025352</threshold>
- <left_val>-0.4030340015888214</left_val>
- <right_val>0.0285327993333340</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 7 2 2 -1.</_>
- <_>
- 18 7 1 1 2.</_>
- <_>
- 17 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2670920528471470e-004</threshold>
- <left_val>-0.0478886701166630</left_val>
- <right_val>0.2083473950624466</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 5 3 6 -1.</_>
- <_>
- 13 6 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0174812003970146</threshold>
- <left_val>-0.4784274101257324</left_val>
- <right_val>0.0261973403394222</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 2 1 6 -1.</_>
- <_>
- 20 4 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0102093704044819</threshold>
- <left_val>-0.0323491990566254</left_val>
- <right_val>0.3333239853382111</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 2 2 -1.</_>
- <_>
- 7 2 1 1 2.</_>
- <_>
- 8 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0442842338234186e-004</threshold>
- <left_val>0.2252988964319229</left_val>
- <right_val>-0.0502184815704823</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 10 2 1 -1.</_>
- <_>
- 19 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5155509471660480e-005</threshold>
- <left_val>0.0854163095355034</left_val>
- <right_val>-0.0922556668519974</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 8 2 -1.</_>
- <_>
- 8 4 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5864349491894245e-003</threshold>
- <left_val>-0.2745333909988403</left_val>
- <right_val>0.0428331792354584</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 16 7 -1.</_>
- <_>
- 13 5 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0689363330602646</threshold>
- <left_val>-0.0362212397158146</left_val>
- <right_val>0.2202139943838120</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 2 2 -1.</_>
- <_>
- 6 7 1 1 2.</_>
- <_>
- 7 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0017789900302887e-003</threshold>
- <left_val>-0.0464680194854736</left_val>
- <right_val>0.2603206038475037</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 7 2 2 -1.</_>
- <_>
- 18 7 1 1 2.</_>
- <_>
- 17 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5333900228142738e-003</threshold>
- <left_val>0.2831267118453980</left_val>
- <right_val>-0.0321949794888496</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 2 2 -1.</_>
- <_>
- 11 13 1 1 2.</_>
- <_>
- 12 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0275481771677732e-004</threshold>
- <left_val>0.0547226108610630</left_val>
- <right_val>-0.2383649945259094</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 7 2 2 -1.</_>
- <_>
- 18 7 1 1 2.</_>
- <_>
- 17 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7827408201992512e-005</threshold>
- <left_val>-0.0391390211880207</left_val>
- <right_val>0.0501381084322929</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 2 2 -1.</_>
- <_>
- 6 7 1 1 2.</_>
- <_>
- 7 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6863682847470045e-004</threshold>
- <left_val>0.2108709067106247</left_val>
- <right_val>-0.0608406700193882</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 8 5 3 -1.</_>
- <_>
- 20 9 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0157267302274704</threshold>
- <left_val>0.0115508204326034</left_val>
- <right_val>-0.8977199196815491</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 2 2 -1.</_>
- <_>
- 11 13 1 1 2.</_>
- <_>
- 12 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1983527848497033e-004</threshold>
- <left_val>-0.2865422964096069</left_val>
- <right_val>0.0380632318556309</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 11 15 4 -1.</_>
- <_>
- 5 12 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0148898903280497</threshold>
- <left_val>0.2188885957002640</left_val>
- <right_val>-0.0534253492951393</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 6 3 -1.</_>
- <_>
- 0 9 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1423774138092995e-003</threshold>
- <left_val>0.0289719104766846</left_val>
- <right_val>-0.4331383109092712</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 10 2 1 -1.</_>
- <_>
- 19 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4567110307980329e-005</threshold>
- <left_val>-0.0493506006896496</left_val>
- <right_val>0.0829902365803719</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 10 2 1 -1.</_>
- <_>
- 5 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6295441279653460e-005</threshold>
- <left_val>0.1145173981785774</left_val>
- <right_val>-0.1154157966375351</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 24 6 -1.</_>
- <_>
- 13 0 12 3 2.</_>
- <_>
- 1 3 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0951543077826500</threshold>
- <left_val>-0.3621807992458344</left_val>
- <right_val>0.0389639586210251</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 2 5 -1.</_>
- <_>
- 5 1 1 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0114479204639792</threshold>
- <left_val>-0.0633771494030952</left_val>
- <right_val>0.1799890995025635</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 3 4 12 -1.</_>
- <_>
- 23 3 2 6 2.</_>
- <_>
- 21 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0168469492346048</threshold>
- <left_val>-0.0795559063553810</left_val>
- <right_val>0.2080432027578354</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 4 12 -1.</_>
- <_>
- 0 3 2 6 2.</_>
- <_>
- 2 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0195328295230865</threshold>
- <left_val>0.3306660056114197</left_val>
- <right_val>-0.0368879809975624</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 2 1 6 -1.</_>
- <_>
- 24 5 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.9951513111591339e-003</threshold>
- <left_val>-0.2601873874664307</left_val>
- <right_val>0.0200320500880480</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 9 8 -1.</_>
- <_>
- 8 2 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0559661500155926</threshold>
- <left_val>0.0298731103539467</left_val>
- <right_val>-0.3797968029975891</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 2 1 6 -1.</_>
- <_>
- 24 5 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0223989300429821</threshold>
- <left_val>9.4442693516612053e-003</left_val>
- <right_val>-0.3070712089538574</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 1 6 -1.</_>
- <_>
- 0 5 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0111306598410010</threshold>
- <left_val>-0.4547461867332459</left_val>
- <right_val>0.0237820893526077</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 9 4 -1.</_>
- <_>
- 9 7 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0103914495557547</threshold>
- <left_val>-0.0801509991288185</left_val>
- <right_val>0.1017400026321411</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 3 4 -1.</_>
- <_>
- 11 7 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7076389938592911e-003</threshold>
- <left_val>0.3220044970512390</left_val>
- <right_val>-0.0475250408053398</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 14 2 1 -1.</_>
- <_>
- 20 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9170529412804171e-005</threshold>
- <left_val>-0.0619046017527580</left_val>
- <right_val>0.0758714973926544</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 6 4 -1.</_>
- <_>
- 0 9 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7660471647977829e-003</threshold>
- <left_val>-0.2893261909484863</left_val>
- <right_val>0.0357113592326641</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 2 -1.</_>
- <_>
- 17 0 1 1 2.</_>
- <_>
- 16 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.0189562868326902e-004</threshold>
- <left_val>0.1487676948308945</left_val>
- <right_val>-0.0337995104491711</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 9 15 -1.</_>
- <_>
- 11 5 3 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4516898989677429</threshold>
- <left_val>-0.5800644755363464</left_val>
- <right_val>0.0182942803949118</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 9 4 6 -1.</_>
- <_>
- 14 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1167000569403172e-003</threshold>
- <left_val>0.0221952199935913</left_val>
- <right_val>-0.4342006146907806</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 9 3 -1.</_>
- <_>
- 8 3 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0214324798434973</threshold>
- <left_val>-0.0425198413431644</left_val>
- <right_val>0.2711758911609650</right_val></_></_></trees>
- <stage_threshold>-1.3937480449676514</stage_threshold>
- <parent>12</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 14 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 8 6 -1.</_>
- <_>
- 0 9 4 3 2.</_>
- <_>
- 4 12 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8465185835957527e-003</threshold>
- <left_val>-0.2059727013111115</left_val>
- <right_val>0.2158975005149841</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 1 5 4 -1.</_>
- <_>
- 20 3 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0114869000390172</threshold>
- <left_val>0.1450283974409103</left_val>
- <right_val>-0.2512278854846954</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 16 7 -1.</_>
- <_>
- 8 3 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0613779015839100</threshold>
- <left_val>-0.1210888996720314</left_val>
- <right_val>0.2893109023571014</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 10 8 -1.</_>
- <_>
- 15 2 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0514667406678200</threshold>
- <left_val>0.0770430117845535</left_val>
- <right_val>-0.1447598934173584</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 24 10 -1.</_>
- <_>
- 0 2 12 5 2.</_>
- <_>
- 12 7 12 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0990432873368263</threshold>
- <left_val>0.0879464074969292</left_val>
- <right_val>-0.3668490052223206</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 9 5 4 -1.</_>
- <_>
- 20 10 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0240789316594601e-003</threshold>
- <left_val>0.0559716187417507</left_val>
- <right_val>-0.4230535030364990</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 14 22 1 -1.</_>
- <_>
- 11 14 11 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3228947371244431e-003</threshold>
- <left_val>-0.1488721966743469</left_val>
- <right_val>0.1423504054546356</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 0 3 12 -1.</_>
- <_>
- 22 0 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0837828367948532</threshold>
- <left_val>-0.0506230294704437</left_val>
- <right_val>0.0671857669949532</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 2 2 -1.</_>
- <_>
- 1 4 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4369570417329669e-003</threshold>
- <left_val>0.1669974029064179</left_val>
- <right_val>-0.1184794977307320</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 9 5 4 -1.</_>
- <_>
- 20 10 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.4923747926950455e-003</threshold>
- <left_val>-0.5746508240699768</left_val>
- <right_val>0.0469529181718826</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 5 4 -1.</_>
- <_>
- 0 10 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1581619083881378e-003</threshold>
- <left_val>0.0387838594615459</left_val>
- <right_val>-0.4179377853870392</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 18 6 -1.</_>
- <_>
- 13 5 6 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3882668018341065</threshold>
- <left_val>-0.0341588892042637</left_val>
- <right_val>0.3883490860462189</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 10 10 1 -1.</_>
- <_>
- 9 10 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2880381010472775e-003</threshold>
- <left_val>0.1877942979335785</left_val>
- <right_val>-0.1096756979823113</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 1 4 10 -1.</_>
- <_>
- 21 1 2 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0886473506689072</threshold>
- <left_val>0.2961074113845825</left_val>
- <right_val>-0.0496502704918385</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 10 4 -1.</_>
- <_>
- 4 1 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0573849491775036</threshold>
- <left_val>-0.0621429793536663</left_val>
- <right_val>0.4039953947067261</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 8 4 7 -1.</_>
- <_>
- 17 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3049891032278538e-003</threshold>
- <left_val>0.0302408598363400</left_val>
- <right_val>-0.2553277909755707</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 4 7 -1.</_>
- <_>
- 6 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0128176100552082</threshold>
- <left_val>-0.7491502761840820</left_val>
- <right_val>0.0188356805592775</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 13 2 -1.</_>
- <_>
- 6 1 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5159690566360950e-003</threshold>
- <left_val>-0.0749715119600296</left_val>
- <right_val>0.1975888013839722</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 8 3 -1.</_>
- <_>
- 0 13 8 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2992920652031898e-003</threshold>
- <left_val>0.0329895503818989</left_val>
- <right_val>-0.4346657097339630</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 0 2 1 -1.</_>
- <_>
- 22 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.3911718316376209e-003</threshold>
- <left_val>0.0297571904957294</left_val>
- <right_val>-0.3072845935821533</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 1 2 -1.</_>
- <_>
- 3 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.8949637352488935e-005</threshold>
- <left_val>-0.1729405969381332</left_val>
- <right_val>0.0927027910947800</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 8 8 -1.</_>
- <_>
- 21 3 4 4 2.</_>
- <_>
- 17 7 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0413548089563847</threshold>
- <left_val>-0.0279047600924969</left_val>
- <right_val>0.1629645973443985</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 13 6 -1.</_>
- <_>
- 6 4 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1899937987327576</threshold>
- <left_val>-0.0312954708933830</left_val>
- <right_val>0.4835174977779388</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 15 14 -1.</_>
- <_>
- 10 7 15 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1273290067911148</threshold>
- <left_val>-0.4309565126895905</left_val>
- <right_val>0.0414485186338425</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 12 1 -1.</_>
- <_>
- 1 1 6 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0356059707701206</threshold>
- <left_val>-0.2009662985801697</left_val>
- <right_val>0.0775555819272995</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 3 4 2 -1.</_>
- <_>
- 18 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2760661132633686e-003</threshold>
- <left_val>0.1169442981481552</left_val>
- <right_val>-0.0564889013767242</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 11 6 4 -1.</_>
- <_>
- 9 11 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0167282801121473</threshold>
- <left_val>-0.5582438707351685</left_val>
- <right_val>0.0246787108480930</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 4 5 6 -1.</_>
- <_>
- 20 6 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5163350403308868e-003</threshold>
- <left_val>-0.1312393993139267</left_val>
- <right_val>0.0638676136732101</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 5 3 -1.</_>
- <_>
- 1 13 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7709469906985760e-003</threshold>
- <left_val>-0.3320902884006500</left_val>
- <right_val>0.0413776598870754</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 24 2 -1.</_>
- <_>
- 13 0 12 1 2.</_>
- <_>
- 1 1 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0138869602233171</threshold>
- <left_val>-0.3127424120903015</left_val>
- <right_val>0.0425702482461929</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 5 3 -1.</_>
- <_>
- 2 4 5 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.3537326902151108e-003</threshold>
- <left_val>-0.0667856708168983</left_val>
- <right_val>0.1907455027103424</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 6 8 4 -1.</_>
- <_>
- 19 6 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0194346699863672</threshold>
- <left_val>0.3152694106101990</left_val>
- <right_val>-0.0473581515252590</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 1 3 -1.</_>
- <_>
- 4 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.2511018477380276e-003</threshold>
- <left_val>0.0309588797390461</left_val>
- <right_val>-0.3830946981906891</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 0 2 4 -1.</_>
- <_>
- 23 2 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0252969004213810</threshold>
- <left_val>-0.2962245941162109</left_val>
- <right_val>0.0151915997266769</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 3 6 -1.</_>
- <_>
- 0 3 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0754129402339458e-003</threshold>
- <left_val>0.0729133188724518</left_val>
- <right_val>-0.1764045059680939</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 14 2 -1.</_>
- <_>
- 18 1 7 1 2.</_>
- <_>
- 11 2 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8001008369028568e-003</threshold>
- <left_val>-0.0501575507223606</left_val>
- <right_val>0.1162889003753662</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 14 2 -1.</_>
- <_>
- 0 1 7 1 2.</_>
- <_>
- 7 2 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7680540271103382e-003</threshold>
- <left_val>0.2415755987167358</left_val>
- <right_val>-0.0778944417834282</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 15 6 -1.</_>
- <_>
- 5 6 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0880923122167587</threshold>
- <left_val>0.2515082955360413</left_val>
- <right_val>-0.0482993088662624</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 7 2 2 -1.</_>
- <_>
- 10 8 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7023129621520638e-003</threshold>
- <left_val>0.1797576993703842</left_val>
- <right_val>-0.0970716699957848</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 8 5 -1.</_>
- <_>
- 15 4 4 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0997034236788750</threshold>
- <left_val>-0.4700092971324921</left_val>
- <right_val>0.0155829498544335</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 2 2 -1.</_>
- <_>
- 2 9 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.6657170169055462e-003</threshold>
- <left_val>0.0295135807245970</left_val>
- <right_val>-0.4018146991729736</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 6 3 -1.</_>
- <_>
- 14 8 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0176613796502352</threshold>
- <left_val>-0.5449513792991638</left_val>
- <right_val>0.0168585199862719</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 24 6 -1.</_>
- <_>
- 8 11 8 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2230933010578156</threshold>
- <left_val>0.1843273043632507</left_val>
- <right_val>-0.0632233396172524</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 24 3 -1.</_>
- <_>
- 9 13 8 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0528507791459560</threshold>
- <left_val>-0.0734771713614464</left_val>
- <right_val>0.1994421929121018</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 11 15 4 -1.</_>
- <_>
- 5 13 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0246656592935324</threshold>
- <left_val>0.2699545025825501</left_val>
- <right_val>-0.0523515492677689</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 10 1 4 -1.</_>
- <_>
- 23 11 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.9799769185483456e-003</threshold>
- <left_val>-0.4495851993560791</left_val>
- <right_val>0.0269833803176880</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 4 1 -1.</_>
- <_>
- 2 11 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.0535869300365448e-003</threshold>
- <left_val>0.0375075116753578</left_val>
- <right_val>-0.3464896082878113</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 10 14 -1.</_>
- <_>
- 15 8 10 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0263100396841764</threshold>
- <left_val>-0.1766241043806076</left_val>
- <right_val>0.0256136003881693</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 4 2 -1.</_>
- <_>
- 2 7 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8684021458029747e-003</threshold>
- <left_val>0.1877097040414810</left_val>
- <right_val>-0.0605575516819954</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 4 5 6 -1.</_>
- <_>
- 20 6 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0458405800163746</threshold>
- <left_val>0.0330421291291714</left_val>
- <right_val>-0.2026686072349548</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 7 6 -1.</_>
- <_>
- 0 6 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7487969063222408e-003</threshold>
- <left_val>-0.1384654939174652</left_val>
- <right_val>0.1144922971725464</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 7 6 3 -1.</_>
- <_>
- 11 8 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0107938302680850</threshold>
- <left_val>-0.0550474487245083</left_val>
- <right_val>0.1810662001371384</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 10 9 1 -1.</_>
- <_>
- 11 10 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0132016502320766</threshold>
- <left_val>-0.4654887914657593</left_val>
- <right_val>0.0258085392415524</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 15 1 -1.</_>
- <_>
- 10 10 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9963342025876045e-003</threshold>
- <left_val>0.1138966009020805</left_val>
- <right_val>-0.1140139997005463</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 6 3 -1.</_>
- <_>
- 9 8 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0158193595707417</threshold>
- <left_val>-0.4853562116622925</left_val>
- <right_val>0.0220876205712557</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 12 2 1 -1.</_>
- <_>
- 23 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8264620495028794e-005</threshold>
- <left_val>-0.0819193720817566</left_val>
- <right_val>0.0840993970632553</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 24 2 -1.</_>
- <_>
- 0 13 12 1 2.</_>
- <_>
- 12 14 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0156373791396618</threshold>
- <left_val>-0.4515635073184967</left_val>
- <right_val>0.0227358005940914</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 9 7 3 -1.</_>
- <_>
- 9 10 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3005577325820923e-003</threshold>
- <left_val>-0.0514142103493214</left_val>
- <right_val>0.2212347984313965</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 2 4 -1.</_>
- <_>
- 0 7 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6999751143157482e-003</threshold>
- <left_val>0.0297896005213261</left_val>
- <right_val>-0.3543488979339600</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 2 5 4 -1.</_>
- <_>
- 18 3 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1744161173701286e-003</threshold>
- <left_val>-0.0496886894106865</left_val>
- <right_val>0.2202914059162140</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 8 2 -1.</_>
- <_>
- 1 4 4 1 2.</_>
- <_>
- 5 5 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1278040520846844e-003</threshold>
- <left_val>-0.0630758926272392</left_val>
- <right_val>0.1783366054296494</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 8 4 4 -1.</_>
- <_>
- 21 9 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8791587837040424e-003</threshold>
- <left_val>0.0284415297210217</left_val>
- <right_val>-0.2993854880332947</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 8 4 -1.</_>
- <_>
- 4 5 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217361003160477</threshold>
- <left_val>0.1791318953037262</left_val>
- <right_val>-0.0602877512574196</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 4 14 4 -1.</_>
- <_>
- 11 5 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0140090202912688</threshold>
- <left_val>-0.1060196980834007</left_val>
- <right_val>0.1548174023628235</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 18 9 -1.</_>
- <_>
- 12 0 9 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2186813950538635</threshold>
- <left_val>-0.0483517609536648</left_val>
- <right_val>0.2573468983173370</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 20 15 -1.</_>
- <_>
- 3 0 10 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2838009893894196</threshold>
- <left_val>-0.0509055890142918</left_val>
- <right_val>0.2936053872108460</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 6 8 -1.</_>
- <_>
- 14 3 2 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1209316030144692</threshold>
- <left_val>0.0173095706850290</left_val>
- <right_val>-0.6926872134208679</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 1 9 -1.</_>
- <_>
- 14 7 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0569618307054043</threshold>
- <left_val>-0.0186788197606802</left_val>
- <right_val>0.3227567970752716</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 4 8 -1.</_>
- <_>
- 7 7 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0500963851809502e-003</threshold>
- <left_val>-0.4240661859512329</left_val>
- <right_val>0.0268415194004774</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 5 4 3 -1.</_>
- <_>
- 21 6 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0231182798743248</threshold>
- <left_val>0.0105462800711393</left_val>
- <right_val>-0.5228689908981323</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 2 -1.</_>
- <_>
- 7 0 1 1 2.</_>
- <_>
- 8 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1480690445750952e-003</threshold>
- <left_val>-0.0459857396781445</left_val>
- <right_val>0.2319914996623993</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 8 4 3 -1.</_>
- <_>
- 21 9 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.8909307271242142e-003</threshold>
- <left_val>-0.5407552123069763</left_val>
- <right_val>0.0142617002129555</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 2 2 -1.</_>
- <_>
- 7 1 1 1 2.</_>
- <_>
- 8 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0599978789687157e-004</threshold>
- <left_val>-0.0649549588561058</left_val>
- <right_val>0.1677557975053787</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 2 2 -1.</_>
- <_>
- 17 1 1 1 2.</_>
- <_>
- 16 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2311293226666749e-005</threshold>
- <left_val>0.0727679133415222</left_val>
- <right_val>-0.0542482398450375</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 4 3 -1.</_>
- <_>
- 0 9 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3380471654236317e-003</threshold>
- <left_val>0.0320924408733845</left_val>
- <right_val>-0.3186857998371124</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 9 2 2 -1.</_>
- <_>
- 21 9 1 1 2.</_>
- <_>
- 20 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9835889260284603e-005</threshold>
- <left_val>-0.0492977797985077</left_val>
- <right_val>0.0571143105626106</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 2 2 -1.</_>
- <_>
- 3 9 1 1 2.</_>
- <_>
- 4 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0741640987107530e-005</threshold>
- <left_val>-0.0992263928055763</left_val>
- <right_val>0.1105673015117645</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 3 6 12 -1.</_>
- <_>
- 22 3 3 6 2.</_>
- <_>
- 19 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0271146595478058</threshold>
- <left_val>0.2459900975227356</left_val>
- <right_val>-0.0621489509940147</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 2 2 -1.</_>
- <_>
- 7 1 1 1 2.</_>
- <_>
- 8 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8477227836847305e-004</threshold>
- <left_val>0.2023449987173080</left_val>
- <right_val>-0.0529261194169521</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 12 3 -1.</_>
- <_>
- 7 5 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0192636791616678</threshold>
- <left_val>0.1516259014606476</left_val>
- <right_val>-0.0715369805693626</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 11 2 -1.</_>
- <_>
- 0 1 11 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6891522407531738e-003</threshold>
- <left_val>0.0357108712196350</left_val>
- <right_val>-0.3255082964897156</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 6 5 -1.</_>
- <_>
- 15 2 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0228419005870819</threshold>
- <left_val>-0.3499914109706879</left_val>
- <right_val>0.0171892996877432</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 24 10 -1.</_>
- <_>
- 0 0 12 5 2.</_>
- <_>
- 12 5 12 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1477797031402588</threshold>
- <left_val>-0.4319078028202057</left_val>
- <right_val>0.0216299500316381</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 4 2 3 -1.</_>
- <_>
- 20 5 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3399880155920982e-003</threshold>
- <left_val>-0.0442668199539185</left_val>
- <right_val>0.0963377729058266</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 7 4 -1.</_>
- <_>
- 0 4 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0728321895003319</threshold>
- <left_val>-0.8186188936233521</left_val>
- <right_val>0.0117990002036095</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 14 14 -1.</_>
- <_>
- 11 8 14 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3072721064090729</threshold>
- <left_val>-0.7007309198379517</left_val>
- <right_val>3.5564110148698092e-003</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 6 5 -1.</_>
- <_>
- 8 2 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0207666493952274</threshold>
- <left_val>-0.3913905024528503</left_val>
- <right_val>0.0246222894638777</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 2 -1.</_>
- <_>
- 17 0 1 1 2.</_>
- <_>
- 16 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6341920495033264e-003</threshold>
- <left_val>-0.4501088857650757</left_val>
- <right_val>5.5562350898981094e-003</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 2 -1.</_>
- <_>
- 7 0 1 1 2.</_>
- <_>
- 8 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0794070779811591e-005</threshold>
- <left_val>0.1087834984064102</left_val>
- <right_val>-0.0905004590749741</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 2 -1.</_>
- <_>
- 17 0 1 1 2.</_>
- <_>
- 16 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8314860477112234e-005</threshold>
- <left_val>0.0641764104366302</left_val>
- <right_val>-0.0494646318256855</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 20 1 -1.</_>
- <_>
- 7 0 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0110706500709057</threshold>
- <left_val>0.1473083049058914</left_val>
- <right_val>-0.0670493170619011</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 14 1 -1.</_>
- <_>
- 11 0 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3626351766288280e-003</threshold>
- <left_val>-0.0400333292782307</left_val>
- <right_val>0.0926633775234222</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 6 2 -1.</_>
- <_>
- 9 4 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7499519102275372e-003</threshold>
- <left_val>0.1392461061477661</left_val>
- <right_val>-0.0774780735373497</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 3 4 -1.</_>
- <_>
- 11 4 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7532729804515839e-003</threshold>
- <left_val>-0.0729171708226204</left_val>
- <right_val>0.1706562042236328</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 18 3 -1.</_>
- <_>
- 6 12 6 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168079808354378</threshold>
- <left_val>0.1308007985353470</left_val>
- <right_val>-0.0801806673407555</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 10 12 -1.</_>
- <_>
- 20 3 5 6 2.</_>
- <_>
- 15 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1279494017362595</threshold>
- <left_val>-0.0199226494878531</left_val>
- <right_val>0.3711799085140228</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 14 3 -1.</_>
- <_>
- 0 4 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0181895997375250</threshold>
- <left_val>0.1235873028635979</left_val>
- <right_val>-0.0830406174063683</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 8 3 -1.</_>
- <_>
- 11 4 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0161725897341967</threshold>
- <left_val>-0.4490650892257690</left_val>
- <right_val>0.0227566491812468</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 2 1 -1.</_>
- <_>
- 1 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8046152591705322e-005</threshold>
- <left_val>-0.1011824011802673</left_val>
- <right_val>0.0935735777020454</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 13 2 2 -1.</_>
- <_>
- 24 13 1 1 2.</_>
- <_>
- 23 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1714019638020545e-004</threshold>
- <left_val>-0.0810816064476967</left_val>
- <right_val>0.1062628999352455</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 2 2 -1.</_>
- <_>
- 0 13 1 1 2.</_>
- <_>
- 1 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4521678976016119e-005</threshold>
- <left_val>-0.0932891815900803</left_val>
- <right_val>0.1159989982843399</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 12 8 1 -1.</_>
- <_>
- 11 12 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5095802098512650e-003</threshold>
- <left_val>-0.5051903724670410</left_val>
- <right_val>0.0141592798754573</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 6 4 -1.</_>
- <_>
- 0 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8461390174925327e-003</threshold>
- <left_val>-0.1991575956344605</left_val>
- <right_val>0.0473652109503746</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 3 6 12 -1.</_>
- <_>
- 22 3 3 6 2.</_>
- <_>
- 19 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0232862401753664</threshold>
- <left_val>-0.0403292290866375</left_val>
- <right_val>0.0805157274007797</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 6 12 -1.</_>
- <_>
- 0 3 3 6 2.</_>
- <_>
- 3 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0426056496798992</threshold>
- <left_val>0.3344807922840118</left_val>
- <right_val>-0.0383727103471756</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 7 2 4 -1.</_>
- <_>
- 23 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5101181603968143e-003</threshold>
- <left_val>0.0263549294322729</left_val>
- <right_val>-0.2349215000867844</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 2 4 -1.</_>
- <_>
- 0 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1817811802029610e-003</threshold>
- <left_val>0.0211725104600191</left_val>
- <right_val>-0.4420514106750488</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 7 8 4 -1.</_>
- <_>
- 17 7 4 2 2.</_>
- <_>
- 13 9 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0106069697067142</threshold>
- <left_val>0.0654574930667877</left_val>
- <right_val>-0.0324725992977619</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 10 14 -1.</_>
- <_>
- 0 8 10 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0858135819435120</threshold>
- <left_val>-0.3406231105327606</left_val>
- <right_val>0.0301514994353056</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 7 3 -1.</_>
- <_>
- 9 9 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2758061103522778e-003</threshold>
- <left_val>-0.0619911886751652</left_val>
- <right_val>0.1503033936023712</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 3 4 -1.</_>
- <_>
- 9 9 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0965260230004787e-003</threshold>
- <left_val>0.1481299996376038</left_val>
- <right_val>-0.0813362672924995</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 10 2 3 -1.</_>
- <_>
- 17 11 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0111239803954959</threshold>
- <left_val>-0.4638158082962036</left_val>
- <right_val>0.0152134699746966</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 3 2 -1.</_>
- <_>
- 8 11 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0111039802432060</threshold>
- <left_val>-0.6005380153656006</left_val>
- <right_val>0.0135854296386242</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 0 2 1 -1.</_>
- <_>
- 23 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.2944830600172281e-003</threshold>
- <left_val>-0.4641366004943848</left_val>
- <right_val>0.0262269694358110</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 4 3 -1.</_>
- <_>
- 12 8 2 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0113766100257635</threshold>
- <left_val>-0.0565435998141766</left_val>
- <right_val>0.1575082987546921</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 15 3 -1.</_>
- <_>
- 10 8 5 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0294652003794909</threshold>
- <left_val>0.1486423015594482</left_val>
- <right_val>-0.0651882514357567</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 20 8 -1.</_>
- <_>
- 10 0 10 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0491673015058041</threshold>
- <left_val>-0.0922251716256142</left_val>
- <right_val>0.1015425994992256</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 4 3 -1.</_>
- <_>
- 20 1 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0209590997546911</threshold>
- <left_val>0.1749638020992279</left_val>
- <right_val>-0.0255501996725798</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 4 -1.</_>
- <_>
- 5 1 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.4627470672130585e-003</threshold>
- <left_val>-0.0626592189073563</left_val>
- <right_val>0.1695216000080109</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 3 5 2 -1.</_>
- <_>
- 18 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3515427969396114e-003</threshold>
- <left_val>0.0822615697979927</left_val>
- <right_val>-0.0598390214145184</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 5 2 -1.</_>
- <_>
- 2 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4772499501705170e-003</threshold>
- <left_val>-0.0495455190539360</left_val>
- <right_val>0.2469687014818192</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 2 5 -1.</_>
- <_>
- 13 0 1 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0374278612434864</threshold>
- <left_val>-0.9178332090377808</left_val>
- <right_val>3.5620180424302816e-003</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 12 6 3 -1.</_>
- <_>
- 7 13 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0248439908027649</threshold>
- <left_val>-0.4893918037414551</left_val>
- <right_val>0.0171825792640448</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 2 5 -1.</_>
- <_>
- 13 0 1 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.0120442435145378e-003</threshold>
- <left_val>0.0217423699796200</left_val>
- <right_val>-0.0648176670074463</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 4 2 -1.</_>
- <_>
- 9 7 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.7306028902530670e-003</threshold>
- <left_val>-0.0707883909344673</left_val>
- <right_val>0.1390995979309082</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 9 4 3 -1.</_>
- <_>
- 18 10 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0109893204644322</threshold>
- <left_val>7.0361187681555748e-003</left_val>
- <right_val>-0.3556833863258362</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 4 3 -1.</_>
- <_>
- 3 10 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5342550836503506e-003</threshold>
- <left_val>-0.2303902953863144</left_val>
- <right_val>0.0395394414663315</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 15 6 -1.</_>
- <_>
- 7 12 15 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0326121784746647</threshold>
- <left_val>-0.0834509506821632</left_val>
- <right_val>0.0961622893810272</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 12 6 -1.</_>
- <_>
- 4 1 6 3 2.</_>
- <_>
- 10 4 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0519190989434719</threshold>
- <left_val>-0.3597438931465149</left_val>
- <right_val>0.0235583093017340</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 14 10 -1.</_>
- <_>
- 10 10 14 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2802706062793732</threshold>
- <left_val>0.0191025994718075</left_val>
- <right_val>-0.2738722860813141</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 6 2 3 -1.</_>
- <_>
- 10 7 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8680640496313572e-003</threshold>
- <left_val>0.1557087004184723</left_val>
- <right_val>-0.0592420399188995</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 4 4 6 -1.</_>
- <_>
- 14 5 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0412711799144745</threshold>
- <left_val>9.2102894559502602e-003</left_val>
- <right_val>-0.6225361824035645</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 4 6 4 -1.</_>
- <_>
- 11 5 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0341574586927891</threshold>
- <left_val>-0.6910676956176758</left_val>
- <right_val>0.0140588199719787</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 0 5 3 -1.</_>
- <_>
- 19 1 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0281112492084503</threshold>
- <left_val>6.3892039470374584e-003</left_val>
- <right_val>-0.6016489267349243</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 3 1 -1.</_>
- <_>
- 7 7 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.7675784491002560e-004</threshold>
- <left_val>0.1663821935653687</left_val>
- <right_val>-0.0533109381794930</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 0 5 3 -1.</_>
- <_>
- 19 1 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0284041091799736</threshold>
- <left_val>-0.8431190848350525</left_val>
- <right_val>4.9202498048543930e-003</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 3 1 -1.</_>
- <_>
- 7 7 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7658135928213596e-004</threshold>
- <left_val>-0.0524366609752178</left_val>
- <right_val>0.1696853935718536</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 6 15 -1.</_>
- <_>
- 13 0 2 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0793864428997040</threshold>
- <left_val>-0.7418122291564941</left_val>
- <right_val>4.5842900872230530e-003</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 2 6 -1.</_>
- <_>
- 0 2 1 3 2.</_>
- <_>
- 1 5 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9205000028014183e-003</threshold>
- <left_val>-0.0499707907438278</left_val>
- <right_val>0.1705241948366165</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 2 1 -1.</_>
- <_>
- 21 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.9792099744081497e-003</threshold>
- <left_val>-0.4247047007083893</left_val>
- <right_val>0.0113332699984312</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 2 -1.</_>
- <_>
- 4 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.5309360399842262e-003</threshold>
- <left_val>0.0200634505599737</left_val>
- <right_val>-0.4817556142807007</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 14 8 -1.</_>
- <_>
- 9 0 7 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1206317022442818</threshold>
- <left_val>0.1783839017152786</left_val>
- <right_val>-0.0404023304581642</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 2 -1.</_>
- <_>
- 7 0 1 1 2.</_>
- <_>
- 8 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4506952185183764e-005</threshold>
- <left_val>-0.0858542472124100</left_val>
- <right_val>0.1069532036781311</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 18 4 -1.</_>
- <_>
- 4 6 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1407386958599091</threshold>
- <left_val>-0.0227742493152618</left_val>
- <right_val>0.4258378148078919</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 2 2 -1.</_>
- <_>
- 0 7 1 1 2.</_>
- <_>
- 1 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8708712458610535e-004</threshold>
- <left_val>-0.0585701502859592</left_val>
- <right_val>0.1556326001882553</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 7 2 2 -1.</_>
- <_>
- 24 7 1 1 2.</_>
- <_>
- 23 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.2137140553677455e-005</threshold>
- <left_val>-0.0576708205044270</left_val>
- <right_val>0.0648988783359528</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 2 2 -1.</_>
- <_>
- 0 7 1 1 2.</_>
- <_>
- 1 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4859159718034789e-005</threshold>
- <left_val>0.1383187025785446</left_val>
- <right_val>-0.0935516208410263</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 7 2 2 -1.</_>
- <_>
- 24 7 1 1 2.</_>
- <_>
- 23 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1318263255525380e-005</threshold>
- <left_val>0.0786737129092216</left_val>
- <right_val>-0.0584529899060726</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 2 2 -1.</_>
- <_>
- 0 7 1 1 2.</_>
- <_>
- 1 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0710170317906886e-004</threshold>
- <left_val>-0.1036069020628929</left_val>
- <right_val>0.1105291023850441</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 6 1 4 -1.</_>
- <_>
- 24 7 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9485197998583317e-003</threshold>
- <left_val>0.0124739902094007</left_val>
- <right_val>-0.6046726703643799</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 1 4 -1.</_>
- <_>
- 0 7 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8341151084750891e-003</threshold>
- <left_val>-0.5651066899299622</left_val>
- <right_val>0.0139579800888896</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 6 15 -1.</_>
- <_>
- 13 0 2 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0481832996010780</threshold>
- <left_val>6.8787620402872562e-003</left_val>
- <right_val>-0.2265198975801468</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 2 3 -1.</_>
- <_>
- 0 2 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8468521609902382e-003</threshold>
- <left_val>0.0149204200133681</left_val>
- <right_val>-0.5408421754837036</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 9 3 -1.</_>
- <_>
- 8 2 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0795980282127857e-003</threshold>
- <left_val>-0.0740584135055542</left_val>
- <right_val>0.1212510019540787</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 3 3 -1.</_>
- <_>
- 9 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7187669873237610e-003</threshold>
- <left_val>0.1150275021791458</left_val>
- <right_val>-0.0767944231629372</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 7 5 3 -1.</_>
- <_>
- 18 8 5 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0141321197152138</threshold>
- <left_val>0.0222348105162382</left_val>
- <right_val>-0.3713991045951843</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 3 5 -1.</_>
- <_>
- 7 8 1 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.0704037100076675e-003</threshold>
- <left_val>-0.2536310851573944</left_val>
- <right_val>0.0307344105094671</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 24 14 -1.</_>
- <_>
- 13 0 12 7 2.</_>
- <_>
- 1 7 12 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2283755987882614</threshold>
- <left_val>0.0168569702655077</left_val>
- <right_val>-0.5456647872924805</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 11 9 4 -1.</_>
- <_>
- 8 12 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0106975501403213</threshold>
- <left_val>0.1705504059791565</left_val>
- <right_val>-0.0482324399054050</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 11 14 4 -1.</_>
- <_>
- 6 12 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1057992279529572e-003</threshold>
- <left_val>-0.0747807994484901</left_val>
- <right_val>0.1244964972138405</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 3 4 -1.</_>
- <_>
- 0 12 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5825320519506931e-003</threshold>
- <left_val>0.0343106091022491</left_val>
- <right_val>-0.2529211938381195</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 11 8 2 -1.</_>
- <_>
- 17 12 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7969396263360977e-003</threshold>
- <left_val>0.0227318406105042</left_val>
- <right_val>-0.2092120051383972</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 8 2 -1.</_>
- <_>
- 0 12 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0117600196972489</threshold>
- <left_val>-0.5789325237274170</left_val>
- <right_val>0.0150208799168468</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 13 1 2 -1.</_>
- <_>
- 23 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4420140068978071e-003</threshold>
- <left_val>0.0108067002147436</left_val>
- <right_val>-0.1743503063917160</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 1 2 -1.</_>
- <_>
- 1 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9062469770433381e-005</threshold>
- <left_val>0.0891510024666786</left_val>
- <right_val>-0.0946391522884369</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 14 8 -1.</_>
- <_>
- 9 0 7 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0330546088516712</threshold>
- <left_val>-0.0502973310649395</left_val>
- <right_val>0.0724259391427040</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 14 8 -1.</_>
- <_>
- 0 3 14 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0449321903288364</threshold>
- <left_val>0.0714013203978539</left_val>
- <right_val>-0.1246540024876595</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 4 2 3 -1.</_>
- <_>
- 20 5 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0123274503275752</threshold>
- <left_val>0.2216438055038452</left_val>
- <right_val>-0.0160399992018938</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 14 9 -1.</_>
- <_>
- 0 4 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3724926114082336</threshold>
- <left_val>-0.3693152964115143</left_val>
- <right_val>0.0260022208094597</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 13 9 1 -1.</_>
- <_>
- 12 13 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0152763100340962</threshold>
- <left_val>5.3399899043142796e-003</left_val>
- <right_val>-0.5456783771514893</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 13 9 1 -1.</_>
- <_>
- 10 13 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0145687395706773</threshold>
- <left_val>-0.5883231163024902</left_val>
- <right_val>0.0139877004548907</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 7 2 2 -1.</_>
- <_>
- 21 7 1 1 2.</_>
- <_>
- 20 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9890248384326696e-004</threshold>
- <left_val>-0.0358810797333717</left_val>
- <right_val>0.1743257045745850</right_val></_></_></trees>
- <stage_threshold>-1.3605639934539795</stage_threshold>
- <parent>13</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 15 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 15 6 -1.</_>
- <_>
- 5 12 15 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0572950802743435</threshold>
- <left_val>-0.1768665015697479</left_val>
- <right_val>0.2448291033506393</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 2 6 -1.</_>
- <_>
- 21 3 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100825401023030</threshold>
- <left_val>0.1378919035196304</left_val>
- <right_val>-0.2031147032976151</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 8 10 -1.</_>
- <_>
- 4 4 4 5 2.</_>
- <_>
- 8 9 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0185250397771597</threshold>
- <left_val>0.1623972952365875</left_val>
- <right_val>-0.1676190942525864</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 8 6 -1.</_>
- <_>
- 16 3 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0527544915676117</threshold>
- <left_val>0.1347105056047440</left_val>
- <right_val>-0.1428814977407455</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 11 2 -1.</_>
- <_>
- 2 1 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0243547502905130</threshold>
- <left_val>-0.0266546793282032</left_val>
- <right_val>0.4326488971710205</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 4 5 6 -1.</_>
- <_>
- 20 6 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0634179636836052</threshold>
- <left_val>0.0422610901296139</left_val>
- <right_val>-0.4013176858425140</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 5 6 -1.</_>
- <_>
- 0 6 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8921029772609472e-003</threshold>
- <left_val>-0.1906750947237015</left_val>
- <right_val>0.1267316043376923</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 11 6 4 -1.</_>
- <_>
- 22 11 3 2 2.</_>
- <_>
- 19 13 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5238909982144833e-003</threshold>
- <left_val>-0.1371546983718872</left_val>
- <right_val>0.1246439963579178</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 4 5 2 -1.</_>
- <_>
- 10 5 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7657418549060822e-003</threshold>
- <left_val>0.2558242976665497</left_val>
- <right_val>-0.0607152618467808</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 11 4 -1.</_>
- <_>
- 7 7 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0241763703525066</threshold>
- <left_val>0.2859889864921570</left_val>
- <right_val>-0.0642128363251686</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 4 4 -1.</_>
- <_>
- 9 2 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.1761918738484383e-003</threshold>
- <left_val>0.1021848022937775</left_val>
- <right_val>-0.1999447047710419</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 24 11 -1.</_>
- <_>
- 7 0 12 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1578399986028671</threshold>
- <left_val>0.2398308068513870</left_val>
- <right_val>-0.0785783529281616</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 10 10 -1.</_>
- <_>
- 9 0 5 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0487401895225048</threshold>
- <left_val>-0.1100914031267166</left_val>
- <right_val>0.1558353006839752</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 8 2 4 -1.</_>
- <_>
- 23 8 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0191179793328047</threshold>
- <left_val>0.0197066999971867</left_val>
- <right_val>-0.3720233142375946</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 4 2 -1.</_>
- <_>
- 2 8 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0127781601622701</threshold>
- <left_val>-0.4160012900829315</left_val>
- <right_val>0.0353787206113338</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 3 2 12 -1.</_>
- <_>
- 24 3 1 6 2.</_>
- <_>
- 23 9 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6996301021426916e-003</threshold>
- <left_val>-0.0985597372055054</left_val>
- <right_val>0.1149144023656845</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 6 12 -1.</_>
- <_>
- 9 3 3 6 2.</_>
- <_>
- 12 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0245021991431713</threshold>
- <left_val>0.0430920794606209</left_val>
- <right_val>-0.3663294017314911</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 24 12 -1.</_>
- <_>
- 13 0 12 6 2.</_>
- <_>
- 1 6 12 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0850031301379204</threshold>
- <left_val>0.0430114008486271</left_val>
- <right_val>-0.2886289954185486</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 12 -1.</_>
- <_>
- 0 3 1 6 2.</_>
- <_>
- 1 9 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1647530850023031e-003</threshold>
- <left_val>-0.1142930984497070</left_val>
- <right_val>0.1279425024986267</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 8 3 4 -1.</_>
- <_>
- 14 8 3 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0116577902808785</threshold>
- <left_val>-0.0515255816280842</left_val>
- <right_val>0.1422376930713654</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 1 -1.</_>
- <_>
- 2 0 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6801449283957481e-003</threshold>
- <left_val>-0.4743103981018066</left_val>
- <right_val>0.0287305805832148</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 16 7 -1.</_>
- <_>
- 13 2 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0388207696378231</threshold>
- <left_val>0.0953134000301361</left_val>
- <right_val>-0.0473909191787243</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 1 6 -1.</_>
- <_>
- 8 7 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0254217702895403</threshold>
- <left_val>-0.4219881892204285</left_val>
- <right_val>0.0284377895295620</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 9 4 -1.</_>
- <_>
- 8 8 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0121460696682334</threshold>
- <left_val>0.1830082982778549</left_val>
- <right_val>-0.0762820765376091</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 10 4 -1.</_>
- <_>
- 7 6 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0267872195690870</threshold>
- <left_val>0.2859373092651367</left_val>
- <right_val>-0.0522297993302345</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 1 6 -1.</_>
- <_>
- 12 4 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0116149904206395</threshold>
- <left_val>0.1138594970107079</left_val>
- <right_val>-0.0663506835699081</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 8 12 -1.</_>
- <_>
- 0 3 4 6 2.</_>
- <_>
- 4 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0599568895995617</threshold>
- <left_val>0.2777940034866333</left_val>
- <right_val>-0.0470041483640671</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 13 6 2 -1.</_>
- <_>
- 19 13 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6737014353275299e-003</threshold>
- <left_val>0.2129196971654892</left_val>
- <right_val>-0.0287764091044664</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 6 2 -1.</_>
- <_>
- 3 13 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8543549124151468e-003</threshold>
- <left_val>-0.1221636980772018</left_val>
- <right_val>0.1421594023704529</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 12 1 3 -1.</_>
- <_>
- 23 13 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2713060025125742e-003</threshold>
- <left_val>0.0182375106960535</left_val>
- <right_val>-0.4104354083538055</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 1 3 -1.</_>
- <_>
- 1 13 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2334890197962523e-003</threshold>
- <left_val>-0.3772745132446289</left_val>
- <right_val>0.0350435785949230</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 12 1 3 -1.</_>
- <_>
- 23 13 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6904400438070297e-003</threshold>
- <left_val>-0.4196098148822784</left_val>
- <right_val>0.0100445803254843</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 10 10 1 -1.</_>
- <_>
- 9 10 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6551370974630117e-003</threshold>
- <left_val>0.1150795966386795</left_val>
- <right_val>-0.1072231009602547</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 12 1 3 -1.</_>
- <_>
- 23 13 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6895318266469985e-005</threshold>
- <left_val>0.0416303612291813</left_val>
- <right_val>-0.0317232310771942</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 1 3 -1.</_>
- <_>
- 1 13 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8731368780136108e-004</threshold>
- <left_val>0.0429715514183044</left_val>
- <right_val>-0.2815021872520447</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 12 4 -1.</_>
- <_>
- 11 3 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0182135794311762</threshold>
- <left_val>-0.0451830588281155</left_val>
- <right_val>0.1914888024330139</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 12 6 -1.</_>
- <_>
- 3 3 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0872772708535194</threshold>
- <left_val>0.1718962937593460</left_val>
- <right_val>-0.1219599992036820</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 0 2 2 -1.</_>
- <_>
- 23 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.3898650221526623e-003</threshold>
- <left_val>-0.3866654038429260</left_val>
- <right_val>0.0155352503061295</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 2 2 -1.</_>
- <_>
- 2 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0108539797365665</threshold>
- <left_val>0.0364841781556606</left_val>
- <right_val>-0.3959751129150391</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 13 4 2 -1.</_>
- <_>
- 15 13 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1801291517913342e-003</threshold>
- <left_val>-0.4820233881473541</left_val>
- <right_val>0.0170424394309521</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 6 3 -1.</_>
- <_>
- 2 7 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0234517697244883</threshold>
- <left_val>0.4986476898193359</left_val>
- <right_val>-0.0220960807055235</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 13 4 2 -1.</_>
- <_>
- 15 13 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9061511158943176e-003</threshold>
- <left_val>0.0269486699253321</left_val>
- <right_val>-0.3256624042987824</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 24 4 -1.</_>
- <_>
- 0 7 12 2 2.</_>
- <_>
- 12 9 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0463646091520786</threshold>
- <left_val>0.0268820300698280</left_val>
- <right_val>-0.3762974143028259</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 0 2 2 -1.</_>
- <_>
- 23 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1972910326439887e-004</threshold>
- <left_val>0.0705367177724838</left_val>
- <right_val>-0.1089593023061752</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 13 4 2 -1.</_>
- <_>
- 8 13 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7804399617016315e-003</threshold>
- <left_val>-0.4887917041778565</left_val>
- <right_val>0.0199932008981705</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 2 2 -1.</_>
- <_>
- 17 11 1 1 2.</_>
- <_>
- 16 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0642170865321532e-005</threshold>
- <left_val>-0.0753576681017876</left_val>
- <right_val>0.0811428874731064</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 11 9 4 -1.</_>
- <_>
- 8 12 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0106888897716999</threshold>
- <left_val>0.2206722944974899</left_val>
- <right_val>-0.0562041401863098</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 21 3 -1.</_>
- <_>
- 9 13 7 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0436831787228584</threshold>
- <left_val>-0.0610822103917599</left_val>
- <right_val>0.1712581962347031</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 21 2 -1.</_>
- <_>
- 8 13 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0202471297234297</threshold>
- <left_val>0.1565587073564529</left_val>
- <right_val>-0.0770068317651749</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 10 1 4 -1.</_>
- <_>
- 21 11 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.9285280294716358e-003</threshold>
- <left_val>-0.4369310140609741</left_val>
- <right_val>0.0202764291316271</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 6 3 -1.</_>
- <_>
- 2 6 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0113492002710700</threshold>
- <left_val>-0.0597750283777714</left_val>
- <right_val>0.1651744991540909</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 8 5 -1.</_>
- <_>
- 15 4 4 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1365716010332108</threshold>
- <left_val>-0.8707361817359924</left_val>
- <right_val>4.2868419550359249e-003</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 8 6 -1.</_>
- <_>
- 4 4 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0663046464323998</threshold>
- <left_val>-0.0388697795569897</left_val>
- <right_val>0.2649452090263367</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 15 4 -1.</_>
- <_>
- 5 2 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0195911191403866</threshold>
- <left_val>-0.0803443267941475</left_val>
- <right_val>0.1665123999118805</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 8 4 -1.</_>
- <_>
- 0 2 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0340932197868824</threshold>
- <left_val>0.0261821094900370</left_val>
- <right_val>-0.4526833891868591</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 15 14 -1.</_>
- <_>
- 10 7 15 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2061661928892136</threshold>
- <left_val>-0.4254589080810547</left_val>
- <right_val>0.0156788490712643</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 13 6 2 -1.</_>
- <_>
- 11 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6675140298902988e-003</threshold>
- <left_val>-0.3513334095478058</left_val>
- <right_val>0.0274340193718672</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 11 4 -1.</_>
- <_>
- 8 10 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0129145104438066</threshold>
- <left_val>0.1359857022762299</left_val>
- <right_val>-0.0633687376976013</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 3 3 -1.</_>
- <_>
- 9 7 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0160742308944464</threshold>
- <left_val>0.0215212907642126</left_val>
- <right_val>-0.4643712937831879</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 5 4 6 -1.</_>
- <_>
- 21 7 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0369430296123028</threshold>
- <left_val>0.0274755004793406</left_val>
- <right_val>-0.3073608875274658</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 3 6 6 -1.</_>
- <_>
- 10 5 6 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0755213573575020</threshold>
- <left_val>-0.4241931140422821</left_val>
- <right_val>0.0237817000597715</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 9 10 6 -1.</_>
- <_>
- 12 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0243982393294573</threshold>
- <left_val>-0.0493879318237305</left_val>
- <right_val>0.1672402024269104</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 10 6 -1.</_>
- <_>
- 8 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1157704964280129</threshold>
- <left_val>0.0166440103203058</left_val>
- <right_val>-0.6928011178970337</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 4 1 -1.</_>
- <_>
- 13 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1529998462647200e-004</threshold>
- <left_val>-0.0502800084650517</left_val>
- <right_val>0.1328525990247726</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 4 1 -1.</_>
- <_>
- 4 11 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.6248450633138418e-003</threshold>
- <left_val>-0.3066833913326263</left_val>
- <right_val>0.0284923594444990</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 12 1 2 -1.</_>
- <_>
- 18 12 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.3581631295382977e-004</threshold>
- <left_val>0.0559885688126087</left_val>
- <right_val>-0.0392797887325287</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 20 10 -1.</_>
- <_>
- 12 0 10 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2000436931848526</threshold>
- <left_val>-0.0568408109247684</left_val>
- <right_val>0.1685038954019547</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 2 3 6 -1.</_>
- <_>
- 23 3 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0178776904940605</threshold>
- <left_val>0.1931751966476440</left_val>
- <right_val>-0.0514639392495155</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 6 3 -1.</_>
- <_>
- 2 3 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0113503802567720</threshold>
- <left_val>-0.0489644110202789</left_val>
- <right_val>0.2181939035654068</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 1 4 6 -1.</_>
- <_>
- 23 1 2 3 2.</_>
- <_>
- 21 4 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0125029096379876</threshold>
- <left_val>-0.0419848784804344</left_val>
- <right_val>0.2713862061500549</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 4 6 -1.</_>
- <_>
- 0 1 2 3 2.</_>
- <_>
- 2 4 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3033276498317719e-003</threshold>
- <left_val>0.1590452045202255</left_val>
- <right_val>-0.0626974031329155</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 0 1 6 -1.</_>
- <_>
- 24 3 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8205171525478363e-003</threshold>
- <left_val>0.0155331101268530</left_val>
- <right_val>-0.3304075896739960</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 6 -1.</_>
- <_>
- 0 3 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4993069022893906e-003</threshold>
- <left_val>0.0376702398061752</left_val>
- <right_val>-0.3112137019634247</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 0 6 6 -1.</_>
- <_>
- 18 2 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0140464501455426</threshold>
- <left_val>-0.0434262491762638</left_val>
- <right_val>0.1032719984650612</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 15 4 -1.</_>
- <_>
- 5 2 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0411175191402435</threshold>
- <left_val>0.1867991983890533</left_val>
- <right_val>-0.0664343684911728</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 18 1 -1.</_>
- <_>
- 10 8 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107145197689533</threshold>
- <left_val>0.1244383975863457</left_val>
- <right_val>-0.0663585364818573</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 6 4 -1.</_>
- <_>
- 8 7 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.2895422130823135e-003</threshold>
- <left_val>-0.0821698531508446</left_val>
- <right_val>0.1224353983998299</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 8 2 -1.</_>
- <_>
- 11 5 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0130508001893759</threshold>
- <left_val>-0.4003388881683350</left_val>
- <right_val>0.0166369099169970</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 6 6 -1.</_>
- <_>
- 7 0 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0364681892096996</threshold>
- <left_val>-0.5473737716674805</left_val>
- <right_val>0.0148177295923233</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 8 2 1 -1.</_>
- <_>
- 21 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5372940045781434e-005</threshold>
- <left_val>0.0594716407358646</left_val>
- <right_val>-0.0578790009021759</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 2 2 -1.</_>
- <_>
- 7 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0142522901296616</threshold>
- <left_val>0.0252972692251205</left_val>
- <right_val>-0.3336473107337952</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 8 4 -1.</_>
- <_>
- 17 5 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3469200134277344e-003</threshold>
- <left_val>-0.0707368031144142</left_val>
- <right_val>0.0745013207197189</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 13 2 -1.</_>
- <_>
- 6 1 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4445958919823170e-003</threshold>
- <left_val>-0.0672459527850151</left_val>
- <right_val>0.1451885998249054</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 5 4 6 -1.</_>
- <_>
- 21 7 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7205823510885239e-003</threshold>
- <left_val>-0.2021352946758270</left_val>
- <right_val>0.0275202393531799</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 4 6 -1.</_>
- <_>
- 0 7 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0469216890633106</threshold>
- <left_val>0.0161568503826857</left_val>
- <right_val>-0.5311927795410156</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 8 2 1 -1.</_>
- <_>
- 21 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8387980971019715e-005</threshold>
- <left_val>-0.0557161718606949</left_val>
- <right_val>0.0720106214284897</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 2 1 -1.</_>
- <_>
- 3 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6103101340122521e-005</threshold>
- <left_val>0.0959030091762543</left_val>
- <right_val>-0.0971473827958107</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 0 2 1 -1.</_>
- <_>
- 23 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.0657761059701443e-003</threshold>
- <left_val>0.0240712091326714</left_val>
- <right_val>-0.2376091033220291</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 15 4 -1.</_>
- <_>
- 4 1 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0555203706026077</threshold>
- <left_val>0.3074511885643005</left_val>
- <right_val>-0.0299711804836988</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 10 8 -1.</_>
- <_>
- 15 3 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0365539006888866</threshold>
- <left_val>0.0328120291233063</left_val>
- <right_val>-0.0570152215659618</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 4 2 -1.</_>
- <_>
- 0 5 2 1 2.</_>
- <_>
- 2 6 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8784699495881796e-003</threshold>
- <left_val>-0.0653261989355087</left_val>
- <right_val>0.1390983015298843</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 0 2 1 -1.</_>
- <_>
- 23 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.4822120368480682e-003</threshold>
- <left_val>-0.7748216986656189</left_val>
- <right_val>5.9286328032612801e-003</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 1 4 -1.</_>
- <_>
- 0 6 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3365150447934866e-003</threshold>
- <left_val>-0.3616085052490234</left_val>
- <right_val>0.0226737502962351</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 13 4 2 -1.</_>
- <_>
- 19 14 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122549999505281</threshold>
- <left_val>-0.6580218076705933</left_val>
- <right_val>4.3241591192781925e-003</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 12 2 2 -1.</_>
- <_>
- 7 12 1 1 2.</_>
- <_>
- 8 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5022740010172129e-004</threshold>
- <left_val>0.1368491053581238</left_val>
- <right_val>-0.0613101907074451</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 24 8 -1.</_>
- <_>
- 13 0 12 4 2.</_>
- <_>
- 1 4 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1189583986997604</threshold>
- <left_val>0.0244670100510120</left_val>
- <right_val>-0.3081929087638855</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 3 3 -1.</_>
- <_>
- 2 5 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8534749979153275e-003</threshold>
- <left_val>-0.0657177790999413</left_val>
- <right_val>0.1380506008863449</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 6 4 3 -1.</_>
- <_>
- 19 7 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0139663796871901</threshold>
- <left_val>-0.4281671941280365</left_val>
- <right_val>0.0166652500629425</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 3 4 -1.</_>
- <_>
- 6 7 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0120118902996182</threshold>
- <left_val>-0.4546675086021423</left_val>
- <right_val>0.0174813903868198</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 2 2 -1.</_>
- <_>
- 17 11 1 1 2.</_>
- <_>
- 16 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6380320135504007e-004</threshold>
- <left_val>0.0268306396901608</left_val>
- <right_val>-0.1949577033519745</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 11 2 2 -1.</_>
- <_>
- 7 11 1 1 2.</_>
- <_>
- 8 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4863549303263426e-004</threshold>
- <left_val>0.1728172004222870</left_val>
- <right_val>-0.0519250482320786</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 9 3 -1.</_>
- <_>
- 12 5 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0356420204043388</threshold>
- <left_val>0.0119973402470350</left_val>
- <right_val>-0.2636224925518036</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 1 -1.</_>
- <_>
- 2 0 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.2830741778016090e-003</threshold>
- <left_val>0.0153813296929002</left_val>
- <right_val>-0.5276867151260376</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 8 1 -1.</_>
- <_>
- 19 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3444799482822418e-003</threshold>
- <left_val>-0.0448165088891983</left_val>
- <right_val>0.1556369960308075</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 9 3 -1.</_>
- <_>
- 10 5 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0348524898290634</threshold>
- <left_val>-0.6144651770591736</left_val>
- <right_val>0.0147144095972180</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 8 1 -1.</_>
- <_>
- 19 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6836538929492235e-003</threshold>
- <left_val>0.0679996237158775</left_val>
- <right_val>-0.0403181910514832</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 8 1 -1.</_>
- <_>
- 2 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6370671112090349e-003</threshold>
- <left_val>-0.0527165904641151</left_val>
- <right_val>0.1650273054838181</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 2 2 -1.</_>
- <_>
- 17 11 1 1 2.</_>
- <_>
- 16 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1408380232751369e-003</threshold>
- <left_val>-0.1495666950941086</left_val>
- <right_val>0.0155292097479105</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 11 12 2 -1.</_>
- <_>
- 9 11 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5604642257094383e-003</threshold>
- <left_val>0.1015162020921707</left_val>
- <right_val>-0.0783084183931351</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 20 9 -1.</_>
- <_>
- 9 6 10 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0313040204346180</threshold>
- <left_val>-0.0519621782004833</left_val>
- <right_val>0.1036399006843567</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 12 2 -1.</_>
- <_>
- 6 9 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.2903850600123405e-003</threshold>
- <left_val>-0.0539887212216854</left_val>
- <right_val>0.1653061956167221</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 13 4 -1.</_>
- <_>
- 6 9 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0108930300921202</threshold>
- <left_val>0.1281013935804367</left_val>
- <right_val>-0.0734129622578621</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 13 4 2 -1.</_>
- <_>
- 2 14 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9190609715878963e-003</threshold>
- <left_val>-0.3507530987262726</left_val>
- <right_val>0.0244891606271267</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 3 12 -1.</_>
- <_>
- 11 4 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0811754167079926</threshold>
- <left_val>0.0209406390786171</left_val>
- <right_val>-0.3776533007621765</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 11 4 -1.</_>
- <_>
- 7 11 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1189319714903831e-003</threshold>
- <left_val>0.1320966929197311</left_val>
- <right_val>-0.0743796005845070</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 15 6 -1.</_>
- <_>
- 5 11 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0290335901081562</threshold>
- <left_val>-0.0601534284651279</left_val>
- <right_val>0.1686525046825409</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 14 10 -1.</_>
- <_>
- 1 10 14 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2666859030723572</threshold>
- <left_val>0.0302151106297970</left_val>
- <right_val>-0.3336375057697296</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 10 2 2 -1.</_>
- <_>
- 14 10 1 1 2.</_>
- <_>
- 13 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3437710003927350e-003</threshold>
- <left_val>0.0244619604200125</left_val>
- <right_val>-0.3497652113437653</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 4 2 -1.</_>
- <_>
- 0 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4065970946103334e-005</threshold>
- <left_val>0.0681859701871872</left_val>
- <right_val>-0.1218236982822418</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 3 4 2 -1.</_>
- <_>
- 18 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2273659706115723e-003</threshold>
- <left_val>0.0591664388775826</left_val>
- <right_val>-0.0569609887897968</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 4 4 -1.</_>
- <_>
- 0 8 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0822839976754040e-004</threshold>
- <left_val>-0.1183675006031990</left_val>
- <right_val>0.0699028074741364</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 12 6 2 -1.</_>
- <_>
- 14 12 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7762501314282417e-003</threshold>
- <left_val>0.0182663407176733</left_val>
- <right_val>-0.3238837122917175</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 3 1 -1.</_>
- <_>
- 8 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5627898806706071e-004</threshold>
- <left_val>0.1596496999263763</left_val>
- <right_val>-0.0523401089012623</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 2 1 -1.</_>
- <_>
- 15 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9805951528251171e-003</threshold>
- <left_val>5.6993248872458935e-003</left_val>
- <right_val>-0.6384922862052918</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 1 -1.</_>
- <_>
- 9 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9052381655201316e-004</threshold>
- <left_val>0.1629474014043808</left_val>
- <right_val>-0.0742301419377327</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 3 2 10 -1.</_>
- <_>
- 18 3 1 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0184035003185272</threshold>
- <left_val>-0.6773443222045898</left_val>
- <right_val>0.0107059404253960</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 2 2 -1.</_>
- <_>
- 7 1 1 1 2.</_>
- <_>
- 8 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9714571367949247e-004</threshold>
- <left_val>0.1691973060369492</left_val>
- <right_val>-0.0477185398340225</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 0 7 3 -1.</_>
- <_>
- 18 1 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0167341101914644</threshold>
- <left_val>-0.3151237964630127</left_val>
- <right_val>0.0124420495703816</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 12 6 2 -1.</_>
- <_>
- 9 12 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119769899174571</threshold>
- <left_val>-0.5293223857879639</left_val>
- <right_val>0.0144362701103091</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 7 4 3 -1.</_>
- <_>
- 20 8 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0368088781833649e-003</threshold>
- <left_val>0.0264915898442268</left_val>
- <right_val>-0.2470992058515549</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 2 10 -1.</_>
- <_>
- 6 3 1 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0105798998847604</threshold>
- <left_val>-0.4092808067798615</left_val>
- <right_val>0.0187591798603535</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 2 -1.</_>
- <_>
- 17 0 1 1 2.</_>
- <_>
- 16 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0849997680634260e-004</threshold>
- <left_val>-0.0334094502031803</left_val>
- <right_val>0.0843884497880936</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 2 -1.</_>
- <_>
- 7 0 1 1 2.</_>
- <_>
- 8 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9445307124406099e-004</threshold>
- <left_val>0.1412419974803925</left_val>
- <right_val>-0.0555582903325558</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 6 2 -1.</_>
- <_>
- 17 0 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0157594103366137</threshold>
- <left_val>-0.3833500146865845</left_val>
- <right_val>0.0156633593142033</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 4 -1.</_>
- <_>
- 0 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0101080304011703</threshold>
- <left_val>-0.3391439020633698</left_val>
- <right_val>0.0209970101714134</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 1 2 12 -1.</_>
- <_>
- 18 5 2 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.8242385536432266e-003</threshold>
- <left_val>0.0468829013407230</left_val>
- <right_val>-0.0345581099390984</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 12 3 -1.</_>
- <_>
- 8 4 4 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1695280969142914</threshold>
- <left_val>-0.0297883804887533</left_val>
- <right_val>0.2978200018405914</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 13 2 2 -1.</_>
- <_>
- 15 13 1 1 2.</_>
- <_>
- 14 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4175090473145247e-003</threshold>
- <left_val>0.0145506802946329</left_val>
- <right_val>-0.2557711899280548</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 3 3 -1.</_>
- <_>
- 12 7 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2455357983708382e-003</threshold>
- <left_val>0.1703144013881683</left_val>
- <right_val>-0.0457185097038746</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 10 8 -1.</_>
- <_>
- 15 3 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0829719901084900</threshold>
- <left_val>-0.0108856502920389</left_val>
- <right_val>0.2358570992946625</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 10 8 -1.</_>
- <_>
- 0 3 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0363879613578320</threshold>
- <left_val>0.0720635578036308</left_val>
- <right_val>-0.1351491957902908</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 14 10 -1.</_>
- <_>
- 11 8 14 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2605817019939423</threshold>
- <left_val>0.0307604894042015</left_val>
- <right_val>-0.2081860005855560</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 24 12 -1.</_>
- <_>
- 0 0 12 6 2.</_>
- <_>
- 12 6 12 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1837086975574493</threshold>
- <left_val>-0.4619984030723572</left_val>
- <right_val>0.0176900699734688</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 7 4 3 -1.</_>
- <_>
- 20 8 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9726989343762398e-003</threshold>
- <left_val>-0.1660892963409424</left_val>
- <right_val>0.0209467206150293</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 7 3 -1.</_>
- <_>
- 0 2 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0214559100568295</threshold>
- <left_val>0.0231478307396173</left_val>
- <right_val>-0.3625465929508209</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 7 4 3 -1.</_>
- <_>
- 20 8 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0144318202510476</threshold>
- <left_val>4.4689280912280083e-003</left_val>
- <right_val>-0.2445929050445557</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 1 8 -1.</_>
- <_>
- 0 9 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3524229656904936e-003</threshold>
- <left_val>-0.2480840981006622</left_val>
- <right_val>0.0316352993249893</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 4 3 4 -1.</_>
- <_>
- 23 5 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0156694706529379</threshold>
- <left_val>0.3172483146190643</left_val>
- <right_val>-0.0374899208545685</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 12 1 -1.</_>
- <_>
- 15 6 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0400774292647839</threshold>
- <left_val>-0.2589775919914246</left_val>
- <right_val>0.0327349714934826</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 4 3 4 -1.</_>
- <_>
- 23 5 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0123612098395824</threshold>
- <left_val>-0.0450748614966869</left_val>
- <right_val>0.1690649986267090</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 4 3 -1.</_>
- <_>
- 1 8 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0109678898006678</threshold>
- <left_val>0.0187921095639467</left_val>
- <right_val>-0.4384852945804596</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 9 6 2 -1.</_>
- <_>
- 15 9 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0137434704229236</threshold>
- <left_val>-0.4609765112400055</left_val>
- <right_val>0.0122369602322578</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 2 2 -1.</_>
- <_>
- 6 7 1 1 2.</_>
- <_>
- 7 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0322439484298229e-003</threshold>
- <left_val>0.1648599952459335</left_val>
- <right_val>-0.0516587682068348</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 9 6 2 -1.</_>
- <_>
- 15 9 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8313361629843712e-003</threshold>
- <left_val>0.0159355308860540</left_val>
- <right_val>-0.2015953958034515</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 6 2 -1.</_>
- <_>
- 6 0 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0144206797704101</threshold>
- <left_val>0.0160773508250713</left_val>
- <right_val>-0.4641633033752441</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 9 6 2 -1.</_>
- <_>
- 15 9 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8205989617854357e-003</threshold>
- <left_val>0.0433134213089943</left_val>
- <right_val>-0.0280837193131447</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 2 6 -1.</_>
- <_>
- 7 7 1 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.9304671809077263e-003</threshold>
- <left_val>0.0497011989355087</left_val>
- <right_val>-0.1514773964881897</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 0 1 10 -1.</_>
- <_>
- 24 5 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3210691809654236e-003</threshold>
- <left_val>-0.1029928028583527</left_val>
- <right_val>0.0179813895374537</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 3 1 -1.</_>
- <_>
- 7 7 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1277500307187438e-003</threshold>
- <left_val>0.1659521013498306</left_val>
- <right_val>-0.0483443103730679</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 13 2 2 -1.</_>
- <_>
- 15 13 1 1 2.</_>
- <_>
- 14 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8385067172348499e-004</threshold>
- <left_val>-0.1946461051702499</left_val>
- <right_val>0.0250845197588205</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 4 1 -1.</_>
- <_>
- 9 7 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5464341100305319e-004</threshold>
- <left_val>0.1473073959350586</left_val>
- <right_val>-0.0529893897473812</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 4 1 9 -1.</_>
- <_>
- 21 7 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.1449417844414711e-003</threshold>
- <left_val>0.0951583385467529</left_val>
- <right_val>-0.0323545187711716</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 9 1 -1.</_>
- <_>
- 4 7 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0537422299385071</threshold>
- <left_val>-0.0160139091312885</left_val>
- <right_val>0.5178387761116028</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 6 13 -1.</_>
- <_>
- 13 1 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1773690655827522e-003</threshold>
- <left_val>0.0658730715513229</left_val>
- <right_val>-0.0286986008286476</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 4 7 -1.</_>
- <_>
- 11 2 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6262140125036240e-003</threshold>
- <left_val>0.1165013015270233</left_val>
- <right_val>-0.0662005692720413</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 6 13 -1.</_>
- <_>
- 13 1 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0702467709779739</threshold>
- <left_val>-0.5561671257019043</left_val>
- <right_val>3.3650770783424377e-003</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 6 13 -1.</_>
- <_>
- 10 1 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0457130484282970</threshold>
- <left_val>-0.5554363131523132</left_val>
- <right_val>0.0145238302648067</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 9 4 1 -1.</_>
- <_>
- 16 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6252630157396197e-003</threshold>
- <left_val>0.0774459466338158</left_val>
- <right_val>-0.0477535910904408</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 4 1 -1.</_>
- <_>
- 7 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7784547358751297e-003</threshold>
- <left_val>-0.6660557985305786</left_val>
- <right_val>0.0114997997879982</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 1 9 -1.</_>
- <_>
- 14 7 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0581780597567558</threshold>
- <left_val>-0.0126901902258396</left_val>
- <right_val>0.2431164979934692</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 2 2 -1.</_>
- <_>
- 7 4 1 1 2.</_>
- <_>
- 8 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0166700230911374e-003</threshold>
- <left_val>0.1701835989952087</left_val>
- <right_val>-0.0434626787900925</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 9 2 2 -1.</_>
- <_>
- 14 9 1 1 2.</_>
- <_>
- 13 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3186908159404993e-004</threshold>
- <left_val>-0.1554417014122009</left_val>
- <right_val>0.0277679692953825</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 11 2 2 -1.</_>
- <_>
- 7 11 1 1 2.</_>
- <_>
- 8 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0635660146363080e-004</threshold>
- <left_val>-0.0799610763788223</left_val>
- <right_val>0.0975525230169296</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 9 2 2 -1.</_>
- <_>
- 14 9 1 1 2.</_>
- <_>
- 13 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7358598355203867e-004</threshold>
- <left_val>0.0280197393149138</left_val>
- <right_val>-0.1640979051589966</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 13 10 1 -1.</_>
- <_>
- 11 13 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1288288086652756e-003</threshold>
- <left_val>0.1435500979423523</left_val>
- <right_val>-0.0521811507642269</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 10 7 -1.</_>
- <_>
- 9 8 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0296237897127867</threshold>
- <left_val>0.1256711930036545</left_val>
- <right_val>-0.0727018266916275</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 15 10 -1.</_>
- <_>
- 9 5 5 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0479203201830387</threshold>
- <left_val>-0.0627507865428925</left_val>
- <right_val>0.1496749967336655</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 6 5 4 -1.</_>
- <_>
- 20 7 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0299077890813351</threshold>
- <left_val>3.3279890194535255e-003</left_val>
- <right_val>-0.5352283716201782</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 5 4 -1.</_>
- <_>
- 0 7 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1103161163628101e-003</threshold>
- <left_val>-0.1846338063478470</left_val>
- <right_val>0.0402609407901764</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 7 3 1 -1.</_>
- <_>
- 12 7 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1777599574998021e-003</threshold>
- <left_val>-0.0421488806605339</left_val>
- <right_val>0.1833201944828033</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 7 3 -1.</_>
- <_>
- 9 5 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0149721698835492</threshold>
- <left_val>-0.0501780100166798</left_val>
- <right_val>0.1479559987783432</right_val></_></_>
- <_>
- <!-- tree 181 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 4 4 3 -1.</_>
- <_>
- 15 4 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0226974897086620</threshold>
- <left_val>8.8858045637607574e-003</left_val>
- <right_val>-0.3510260879993439</right_val></_></_>
- <_>
- <!-- tree 182 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 4 3 -1.</_>
- <_>
- 8 4 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0128841297701001</threshold>
- <left_val>0.0346549116075039</left_val>
- <right_val>-0.2406193017959595</right_val></_></_>
- <_>
- <!-- tree 183 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 6 2 2 -1.</_>
- <_>
- 17 6 1 1 2.</_>
- <_>
- 16 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1240700259804726e-003</threshold>
- <left_val>0.1314530968666077</left_val>
- <right_val>-0.0288430396467447</right_val></_></_>
- <_>
- <!-- tree 184 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 2 2 -1.</_>
- <_>
- 7 6 1 1 2.</_>
- <_>
- 8 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3627869775518775e-003</threshold>
- <left_val>0.2013843953609467</left_val>
- <right_val>-0.0379555486142635</right_val></_></_>
- <_>
- <!-- tree 185 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 13 2 2 -1.</_>
- <_>
- 15 13 1 1 2.</_>
- <_>
- 14 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3557957289740443e-004</threshold>
- <left_val>0.0279592797160149</left_val>
- <right_val>-0.1196514964103699</right_val></_></_>
- <_>
- <!-- tree 186 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 4 2 -1.</_>
- <_>
- 6 0 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0152801796793938</threshold>
- <left_val>-0.4851869940757752</left_val>
- <right_val>0.0156223699450493</right_val></_></_>
- <_>
- <!-- tree 187 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 14 2 1 -1.</_>
- <_>
- 20 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6412500523729250e-005</threshold>
- <left_val>-0.0589389093220234</left_val>
- <right_val>0.0601089298725128</right_val></_></_>
- <_>
- <!-- tree 188 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 6 2 -1.</_>
- <_>
- 1 13 3 1 2.</_>
- <_>
- 4 14 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6553878393024206e-005</threshold>
- <left_val>-0.0965948700904846</left_val>
- <right_val>0.0779175236821175</right_val></_></_>
- <_>
- <!-- tree 189 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 2 2 -1.</_>
- <_>
- 12 2 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8991239853203297e-003</threshold>
- <left_val>-0.0261822007596493</left_val>
- <right_val>0.1902385950088501</right_val></_></_>
- <_>
- <!-- tree 190 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 8 -1.</_>
- <_>
- 8 0 4 4 2.</_>
- <_>
- 12 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0237854700535536</threshold>
- <left_val>0.0403596796095371</left_val>
- <right_val>-0.1793317049741745</right_val></_></_>
- <_>
- <!-- tree 191 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 2 2 -1.</_>
- <_>
- 17 12 1 1 2.</_>
- <_>
- 16 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9117228374816477e-005</threshold>
- <left_val>-0.0676945373415947</left_val>
- <right_val>0.0789666101336479</right_val></_></_>
- <_>
- <!-- tree 192 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 8 8 -1.</_>
- <_>
- 0 4 4 4 2.</_>
- <_>
- 4 8 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0585355199873447</threshold>
- <left_val>-0.0279133208096027</left_val>
- <right_val>0.2635962069034576</right_val></_></_>
- <_>
- <!-- tree 193 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 4 2 1 -1.</_>
- <_>
- 19 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7125670611858368e-003</threshold>
- <left_val>-0.8246011137962341</left_val>
- <right_val>3.6960430443286896e-003</right_val></_></_>
- <_>
- <!-- tree 194 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 2 1 -1.</_>
- <_>
- 5 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6747662127017975e-003</threshold>
- <left_val>-0.7625464797019959</left_val>
- <right_val>9.2743840068578720e-003</right_val></_></_>
- <_>
- <!-- tree 195 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 0 2 2 -1.</_>
- <_>
- 21 0 1 1 2.</_>
- <_>
- 20 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3981528617441654e-003</threshold>
- <left_val>1.9147379789501429e-003</left_val>
- <right_val>-0.8057739734649658</right_val></_></_>
- <_>
- <!-- tree 196 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 15 3 -1.</_>
- <_>
- 0 6 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7252141200006008e-003</threshold>
- <left_val>-0.0822006091475487</left_val>
- <right_val>0.0925986021757126</right_val></_></_>
- <_>
- <!-- tree 197 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 5 1 3 -1.</_>
- <_>
- 13 6 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1672140099108219e-003</threshold>
- <left_val>0.1147938966751099</left_val>
- <right_val>-0.0459650196135044</right_val></_></_>
- <_>
- <!-- tree 198 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 3 2 -1.</_>
- <_>
- 5 10 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.4022258631885052e-003</threshold>
- <left_val>-0.4262216091156006</left_val>
- <right_val>0.0174518898129463</right_val></_></_>
- <_>
- <!-- tree 199 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 0 2 2 -1.</_>
- <_>
- 21 0 1 1 2.</_>
- <_>
- 20 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5430802351329476e-005</threshold>
- <left_val>-0.0445476993918419</left_val>
- <right_val>0.0498182512819767</right_val></_></_>
- <_>
- <!-- tree 200 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 2 2 -1.</_>
- <_>
- 3 0 1 1 2.</_>
- <_>
- 4 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6353430661838502e-005</threshold>
- <left_val>-0.0820099934935570</left_val>
- <right_val>0.0922331288456917</right_val></_></_></trees>
- <stage_threshold>-1.2964390516281128</stage_threshold>
- <parent>14</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 16 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 12 4 -1.</_>
- <_>
- 0 11 6 2 2.</_>
- <_>
- 6 13 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0105607798323035</threshold>
- <left_val>-0.1728546023368835</left_val>
- <right_val>0.2072951048612595</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 1 8 4 -1.</_>
- <_>
- 17 3 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0382373891770840</threshold>
- <left_val>0.1771112978458405</left_val>
- <right_val>-0.1585303992033005</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 13 6 -1.</_>
- <_>
- 6 8 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0541206710040569</threshold>
- <left_val>0.2564443051815033</left_val>
- <right_val>-0.0884335711598396</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 4 2 3 -1.</_>
- <_>
- 23 4 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2004460915923119e-003</threshold>
- <left_val>0.2010346055030823</left_val>
- <right_val>-0.1101640984416008</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 13 10 2 -1.</_>
- <_>
- 2 14 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0654388666152954</threshold>
- <left_val>7.8213139204308391e-004</left_val>
- <right_val>-4.3508232421875000e+003</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 4 2 3 -1.</_>
- <_>
- 23 4 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0135645801201463</threshold>
- <left_val>-0.5407810807228088</left_val>
- <right_val>4.8653590492904186e-003</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 2 3 -1.</_>
- <_>
- 1 4 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8708320567384362e-003</threshold>
- <left_val>0.1633561998605728</left_val>
- <right_val>-0.1228590980172157</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 21 3 -1.</_>
- <_>
- 9 8 7 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1699268966913223</threshold>
- <left_val>-4.5410599559545517e-003</left_val>
- <right_val>0.4810850024223328</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 11 2 2 -1.</_>
- <_>
- 2 11 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.5981500986963511e-003</threshold>
- <left_val>0.0356757305562496</left_val>
- <right_val>-0.4236158132553101</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 21 6 -1.</_>
- <_>
- 9 4 7 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5448976159095764</threshold>
- <left_val>-0.0198735594749451</left_val>
- <right_val>0.5460472106933594</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 8 6 -1.</_>
- <_>
- 1 3 8 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0627753064036369</threshold>
- <left_val>0.1722137033939362</left_val>
- <right_val>-0.1143800020217896</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 15 4 -1.</_>
- <_>
- 6 5 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0459444113075733</threshold>
- <left_val>0.2595784068107605</left_val>
- <right_val>-0.0732216089963913</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 10 4 1 -1.</_>
- <_>
- 3 11 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.1809421014040709e-003</threshold>
- <left_val>0.0495434813201427</left_val>
- <right_val>-0.3175086975097656</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 14 18 1 -1.</_>
- <_>
- 4 14 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6566081047058105e-003</threshold>
- <left_val>0.1581763029098511</left_val>
- <right_val>-0.0890468433499336</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 24 10 -1.</_>
- <_>
- 0 3 12 5 2.</_>
- <_>
- 12 8 12 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0808042436838150</threshold>
- <left_val>0.0503276288509369</left_val>
- <right_val>-0.2887117862701416</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 10 12 -1.</_>
- <_>
- 20 3 5 6 2.</_>
- <_>
- 15 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0987789332866669</threshold>
- <left_val>-0.0381883382797241</left_val>
- <right_val>0.3119831085205078</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 6 3 -1.</_>
- <_>
- 9 6 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4114018827676773e-003</threshold>
- <left_val>-0.0949936509132385</left_val>
- <right_val>0.1344850063323975</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 13 21 1 -1.</_>
- <_>
- 9 13 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0147700998932123</threshold>
- <left_val>0.1715719997882843</left_val>
- <right_val>-0.0750405564904213</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 10 12 -1.</_>
- <_>
- 0 3 5 6 2.</_>
- <_>
- 5 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1057564020156860</threshold>
- <left_val>-0.0440231785178185</left_val>
- <right_val>0.3495194017887116</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 15 4 -1.</_>
- <_>
- 5 4 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0401043891906738</threshold>
- <left_val>-0.0572791509330273</left_val>
- <right_val>0.2763915061950684</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 9 3 -1.</_>
- <_>
- 8 7 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0135993398725986</threshold>
- <left_val>-0.0886402428150177</left_val>
- <right_val>0.1596630066633225</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 13 3 1 -1.</_>
- <_>
- 15 13 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3378789667040110e-003</threshold>
- <left_val>-0.4990870058536530</left_val>
- <right_val>7.1760369464755058e-003</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 10 2 -1.</_>
- <_>
- 7 2 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5490198321640491e-003</threshold>
- <left_val>-0.0597806982696056</left_val>
- <right_val>0.2110590040683746</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 13 3 1 -1.</_>
- <_>
- 15 13 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2758670537732542e-005</threshold>
- <left_val>0.0655476525425911</left_val>
- <right_val>-0.0541992485523224</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 13 3 1 -1.</_>
- <_>
- 9 13 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0889551211148500e-004</threshold>
- <left_val>0.0425700992345810</left_val>
- <right_val>-0.2828716039657593</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 24 12 -1.</_>
- <_>
- 13 0 12 6 2.</_>
- <_>
- 1 6 12 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0881031826138496</threshold>
- <left_val>0.0406627096235752</left_val>
- <right_val>-0.2983728945255280</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 13 14 -1.</_>
- <_>
- 0 7 13 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1351538002490997</threshold>
- <left_val>-0.4011076092720032</left_val>
- <right_val>0.0259989295154810</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 6 3 3 -1.</_>
- <_>
- 20 7 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0105496803298593</threshold>
- <left_val>0.0265602301806211</left_val>
- <right_val>-0.3554666042327881</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 8 4 -1.</_>
- <_>
- 8 10 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109745198860765</threshold>
- <left_val>0.1540209054946899</left_val>
- <right_val>-0.0715849623084068</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 10 6 4 -1.</_>
- <_>
- 15 10 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0128105496987700</threshold>
- <left_val>-0.2680475115776062</left_val>
- <right_val>0.0205432493239641</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 4 4 -1.</_>
- <_>
- 11 3 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0673751235008240</threshold>
- <left_val>-0.5299177169799805</left_val>
- <right_val>0.0192500203847885</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 10 6 4 -1.</_>
- <_>
- 15 10 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0133285904303193</threshold>
- <left_val>0.0141924796625972</left_val>
- <right_val>-0.2692896127700806</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 10 4 -1.</_>
- <_>
- 7 12 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0349247902631760</threshold>
- <left_val>0.2877762019634247</left_val>
- <right_val>-0.0366922505199909</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 10 6 4 -1.</_>
- <_>
- 15 10 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0259607005864382</threshold>
- <left_val>-0.5250588059425354</left_val>
- <right_val>4.2013241909444332e-003</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 10 6 4 -1.</_>
- <_>
- 8 10 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0144326100125909</threshold>
- <left_val>-0.4404621124267578</left_val>
- <right_val>0.0239412691444159</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 14 4 1 -1.</_>
- <_>
- 21 14 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0242980206385255e-003</threshold>
- <left_val>-0.0813294127583504</left_val>
- <right_val>0.1090075969696045</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 4 4 -1.</_>
- <_>
- 0 8 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3913699444383383e-003</threshold>
- <left_val>-0.2744260132312775</left_val>
- <right_val>0.0353980511426926</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 3 6 12 -1.</_>
- <_>
- 22 3 3 6 2.</_>
- <_>
- 19 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0254591107368469</threshold>
- <left_val>0.1884281933307648</left_val>
- <right_val>-0.0505212917923927</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 15 2 -1.</_>
- <_>
- 5 2 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0250639300793409</threshold>
- <left_val>0.1583306044340134</left_val>
- <right_val>-0.0679820179939270</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 1 3 4 -1.</_>
- <_>
- 19 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5757358893752098e-003</threshold>
- <left_val>-0.0512838996946812</left_val>
- <right_val>0.1146584972739220</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 20 4 -1.</_>
- <_>
- 12 5 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1538352966308594</threshold>
- <left_val>0.4274145960807800</left_val>
- <right_val>-0.0233538504689932</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 14 4 1 -1.</_>
- <_>
- 21 14 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7441980354487896e-003</threshold>
- <left_val>0.0116364201530814</left_val>
- <right_val>-0.1990616023540497</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 14 4 1 -1.</_>
- <_>
- 2 14 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9857632257044315e-004</threshold>
- <left_val>-0.1112217977643013</left_val>
- <right_val>0.0913273170590401</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 3 6 12 -1.</_>
- <_>
- 22 3 3 6 2.</_>
- <_>
- 19 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0416502095758915</threshold>
- <left_val>-0.0342307090759277</left_val>
- <right_val>0.1340909004211426</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 6 12 -1.</_>
- <_>
- 0 3 3 6 2.</_>
- <_>
- 3 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0486865788698196</threshold>
- <left_val>0.3840608894824982</left_val>
- <right_val>-0.0367092713713646</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 1 3 4 -1.</_>
- <_>
- 19 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0142661100253463</threshold>
- <left_val>0.1904101967811585</left_val>
- <right_val>-0.0373262614011765</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 3 4 -1.</_>
- <_>
- 3 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0738251041620970e-003</threshold>
- <left_val>-0.0940800234675407</left_val>
- <right_val>0.1367546021938324</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 10 2 -1.</_>
- <_>
- 10 1 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0127805396914482</threshold>
- <left_val>0.0790209397673607</left_val>
- <right_val>-0.0321417711675167</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 3 -1.</_>
- <_>
- 9 0 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7420884519815445e-003</threshold>
- <left_val>-0.0805833786725998</left_val>
- <right_val>0.1433219015598297</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 2 1 -1.</_>
- <_>
- 21 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.9780537160113454e-005</threshold>
- <left_val>-0.1539752036333084</left_val>
- <right_val>0.0694082602858543</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 4 2 -1.</_>
- <_>
- 3 9 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.9981610178947449e-003</threshold>
- <left_val>-0.4497911930084229</left_val>
- <right_val>0.0232297703623772</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 2 1 -1.</_>
- <_>
- 21 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.3804512135684490e-003</threshold>
- <left_val>0.0246548391878605</left_val>
- <right_val>-0.1725358963012695</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 21 1 -1.</_>
- <_>
- 9 0 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0200069397687912</threshold>
- <left_val>0.1652639061212540</left_val>
- <right_val>-0.0625987574458122</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 2 1 -1.</_>
- <_>
- 21 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.4656409882009029e-003</threshold>
- <left_val>-0.3730463087558746</left_val>
- <right_val>0.0105512700974941</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 2 -1.</_>
- <_>
- 4 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.1919090542942286e-003</threshold>
- <left_val>-0.4411549866199493</left_val>
- <right_val>0.0209588091820478</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 24 4 -1.</_>
- <_>
- 13 11 12 2 2.</_>
- <_>
- 1 13 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0622704289853573</threshold>
- <left_val>-0.5413467884063721</left_val>
- <right_val>0.0132205402478576</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 24 4 -1.</_>
- <_>
- 0 11 12 2 2.</_>
- <_>
- 12 13 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0449563488364220</threshold>
- <left_val>-0.4331294000148773</left_val>
- <right_val>0.0206683203577995</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 5 2 2 -1.</_>
- <_>
- 17 5 1 1 2.</_>
- <_>
- 16 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1595709947869182e-003</threshold>
- <left_val>-0.0236924402415752</left_val>
- <right_val>0.1087998002767563</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 2 2 -1.</_>
- <_>
- 7 5 1 1 2.</_>
- <_>
- 8 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8405620772391558e-004</threshold>
- <left_val>0.1649617999792099</left_val>
- <right_val>-0.0524947308003902</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 1 6 2 -1.</_>
- <_>
- 18 1 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0266917701810598</threshold>
- <left_val>0.0148458201438189</left_val>
- <right_val>-0.5571644902229309</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 21 2 -1.</_>
- <_>
- 9 0 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0182767305523157</threshold>
- <left_val>-0.0662862136960030</left_val>
- <right_val>0.1257701069116592</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 10 15 -1.</_>
- <_>
- 13 0 5 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0809113383293152</threshold>
- <left_val>0.1131376996636391</left_val>
- <right_val>-0.0498078204691410</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 13 4 -1.</_>
- <_>
- 6 1 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0364037007093430</threshold>
- <left_val>0.2336605936288834</left_val>
- <right_val>-0.0383339710533619</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 9 3 -1.</_>
- <_>
- 11 4 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0139478798955679</threshold>
- <left_val>0.0991646125912666</left_val>
- <right_val>-0.0678260922431946</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 10 3 -1.</_>
- <_>
- 2 3 10 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0224205106496811</threshold>
- <left_val>0.1904506981372833</left_val>
- <right_val>-0.0484246909618378</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 16 8 -1.</_>
- <_>
- 6 6 8 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0995163321495056</threshold>
- <left_val>-0.0482200607657433</left_val>
- <right_val>0.2056124061346054</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 15 -1.</_>
- <_>
- 8 0 6 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1495629996061325</threshold>
- <left_val>0.0141723398119211</left_val>
- <right_val>-0.6450886726379395</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 8 2 4 -1.</_>
- <_>
- 23 8 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6693442901596427e-004</threshold>
- <left_val>-0.0378436110913754</left_val>
- <right_val>0.0635498985648155</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 3 3 -1.</_>
- <_>
- 0 6 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120417503640056</threshold>
- <left_val>0.0180350895971060</left_val>
- <right_val>-0.4774137139320374</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 5 4 2 -1.</_>
- <_>
- 22 5 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3097700905054808e-003</threshold>
- <left_val>-0.0415334291756153</left_val>
- <right_val>0.1302794069051743</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 4 2 -1.</_>
- <_>
- 1 5 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2019869647920132e-003</threshold>
- <left_val>-0.0514689311385155</left_val>
- <right_val>0.1736146062612534</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 2 3 4 -1.</_>
- <_>
- 22 3 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0272558908909559</threshold>
- <left_val>-0.0153390001505613</left_val>
- <right_val>0.3625235855579376</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 4 3 -1.</_>
- <_>
- 3 3 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.8747506961226463e-003</threshold>
- <left_val>-0.0426916293799877</left_val>
- <right_val>0.2076780050992966</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 2 2 2 -1.</_>
- <_>
- 23 2 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.7241621650755405e-003</threshold>
- <left_val>-0.0500567816197872</left_val>
- <right_val>0.0873611792922020</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 4 4 -1.</_>
- <_>
- 0 6 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3167313530575484e-005</threshold>
- <left_val>-0.1244131028652191</left_val>
- <right_val>0.0726777836680412</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 7 2 5 -1.</_>
- <_>
- 23 7 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2639940250664949e-003</threshold>
- <left_val>0.0776199027895927</left_val>
- <right_val>-0.0404986217617989</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 4 -1.</_>
- <_>
- 0 1 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6909559275954962e-003</threshold>
- <left_val>0.0311388503760099</left_val>
- <right_val>-0.3086219131946564</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 1 2 4 -1.</_>
- <_>
- 23 3 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0283522401005030</threshold>
- <left_val>-0.3550184071063995</left_val>
- <right_val>0.0135328602045774</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 2 4 -1.</_>
- <_>
- 0 3 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6667202888056636e-004</threshold>
- <left_val>0.0676028430461884</left_val>
- <right_val>-0.1432974934577942</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 3 5 4 -1.</_>
- <_>
- 19 4 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0587403103709221</threshold>
- <left_val>-0.5506312847137451</left_val>
- <right_val>4.2741261422634125e-003</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 6 2 -1.</_>
- <_>
- 12 1 6 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0272757392376661</threshold>
- <left_val>-0.6493160724639893</left_val>
- <right_val>0.0125345299020410</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 11 6 4 -1.</_>
- <_>
- 19 12 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0117558799684048</threshold>
- <left_val>-0.5648565292358398</left_val>
- <right_val>0.0137637602165341</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 6 4 -1.</_>
- <_>
- 1 4 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5923758558928967e-003</threshold>
- <left_val>-0.0431140698492527</left_val>
- <right_val>0.2005586028099060</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 0 2 1 -1.</_>
- <_>
- 23 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.1979401400312781e-004</threshold>
- <left_val>-0.1374174952507019</left_val>
- <right_val>0.0340671092271805</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.1190441697835922e-003</threshold>
- <left_val>0.0367105789482594</left_val>
- <right_val>-0.2477497011423111</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 0 4 2 -1.</_>
- <_>
- 20 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5443051755428314e-003</threshold>
- <left_val>7.2344779036939144e-003</left_val>
- <right_val>-0.4473736882209778</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 12 -1.</_>
- <_>
- 0 0 1 6 2.</_>
- <_>
- 1 6 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2358289249241352e-003</threshold>
- <left_val>0.2173164039850235</left_val>
- <right_val>-0.0386803299188614</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 4 2 8 -1.</_>
- <_>
- 23 4 1 4 2.</_>
- <_>
- 22 8 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4686598964035511e-004</threshold>
- <left_val>-0.0371707193553448</left_val>
- <right_val>0.0385193713009357</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 2 8 -1.</_>
- <_>
- 1 4 1 4 2.</_>
- <_>
- 2 8 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8468490866944194e-004</threshold>
- <left_val>-0.1020980030298233</left_val>
- <right_val>0.0926149412989616</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 9 4 1 -1.</_>
- <_>
- 17 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1738609755411744e-003</threshold>
- <left_val>0.1108791977167130</left_val>
- <right_val>-0.0856960415840149</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 2 5 8 -1.</_>
- <_>
- 10 4 5 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0989599674940109</threshold>
- <left_val>-0.4499149918556213</left_val>
- <right_val>0.0212421305477619</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 18 13 2 2 -1.</_>
- <_>
- 19 13 1 1 2.</_>
- <_>
- 18 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8248471729457378e-004</threshold>
- <left_val>0.0228975899517536</left_val>
- <right_val>-0.1995048969984055</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 13 6 -1.</_>
- <_>
- 6 11 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0413776896893978</threshold>
- <left_val>0.1549389958381653</left_val>
- <right_val>-0.0591393709182739</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 10 13 4 -1.</_>
- <_>
- 6 11 13 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7946789786219597e-003</threshold>
- <left_val>-0.0783610120415688</left_val>
- <right_val>0.1739570051431656</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 24 4 -1.</_>
- <_>
- 0 8 12 2 2.</_>
- <_>
- 12 10 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0447585098445416</threshold>
- <left_val>0.0260890107601881</left_val>
- <right_val>-0.3311159014701843</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 10 8 3 -1.</_>
- <_>
- 17 11 8 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9978479724377394e-003</threshold>
- <left_val>0.0459281504154205</left_val>
- <right_val>-0.1491470038890839</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 16 8 -1.</_>
- <_>
- 4 0 8 4 2.</_>
- <_>
- 12 4 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0595893599092960</threshold>
- <left_val>-0.2485350966453552</left_val>
- <right_val>0.0325236506760120</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 1 2 -1.</_>
- <_>
- 14 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.4199320301413536e-004</threshold>
- <left_val>-0.0425546802580357</left_val>
- <right_val>0.1344856023788452</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 6 6 -1.</_>
- <_>
- 5 9 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0239475108683109</threshold>
- <left_val>-0.4583190977573395</left_val>
- <right_val>0.0178181305527687</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 10 12 3 -1.</_>
- <_>
- 16 10 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4462359771132469e-003</threshold>
- <left_val>-0.0423585288226604</left_val>
- <right_val>0.0580310709774494</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 12 3 -1.</_>
- <_>
- 3 10 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0129095697775483</threshold>
- <left_val>0.1973039060831070</left_val>
- <right_val>-0.0445232689380646</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 8 5 3 -1.</_>
- <_>
- 19 9 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8930921107530594e-003</threshold>
- <left_val>0.0428810603916645</left_val>
- <right_val>-0.1371746063232422</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 3 1 -1.</_>
- <_>
- 8 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8186258431524038e-004</threshold>
- <left_val>0.1337869018316269</left_val>
- <right_val>-0.0565496906638145</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 1 -1.</_>
- <_>
- 16 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0884382370859385e-004</threshold>
- <left_val>-0.0361675098538399</left_val>
- <right_val>0.1220118999481201</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 3 1 -1.</_>
- <_>
- 8 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.2305429815314710e-004</threshold>
- <left_val>-0.0695094764232636</left_val>
- <right_val>0.1302513927221298</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 8 2 3 -1.</_>
- <_>
- 20 9 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6460029873996973e-003</threshold>
- <left_val>-0.1300535947084427</left_val>
- <right_val>0.0327382087707520</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 4 2 -1.</_>
- <_>
- 3 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2493818588554859e-003</threshold>
- <left_val>0.0122888395562768</left_val>
- <right_val>-0.6227869987487793</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 8 5 3 -1.</_>
- <_>
- 19 9 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8207803890109062e-003</threshold>
- <left_val>7.4369488283991814e-003</left_val>
- <right_val>-0.1486981958150864</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 6 11 -1.</_>
- <_>
- 6 1 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0359272807836533</threshold>
- <left_val>0.0188675802201033</left_val>
- <right_val>-0.3921496868133545</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 9 2 1 -1.</_>
- <_>
- 16 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1618811741936952e-005</threshold>
- <left_val>0.0568877793848515</left_val>
- <right_val>-0.0677392184734344</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 15 4 -1.</_>
- <_>
- 5 3 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0374080687761307</threshold>
- <left_val>-0.0385471209883690</left_val>
- <right_val>0.2218790054321289</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 3 3 -1.</_>
- <_>
- 11 3 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2155661396682262e-003</threshold>
- <left_val>0.1363334953784943</left_val>
- <right_val>-0.0673948600888252</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 18 6 -1.</_>
- <_>
- 11 7 9 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0935681909322739</threshold>
- <left_val>0.1743745058774948</left_val>
- <right_val>-0.0487747117877007</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 24 9 -1.</_>
- <_>
- 7 6 12 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0762281417846680</threshold>
- <left_val>-0.0574758499860764</left_val>
- <right_val>0.1471180021762848</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 10 -1.</_>
- <_>
- 0 5 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0200377702713013</threshold>
- <left_val>-0.4157789945602417</left_val>
- <right_val>0.0179230198264122</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 10 2 -1.</_>
- <_>
- 9 4 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0118243796750903</threshold>
- <left_val>0.1144623011350632</left_val>
- <right_val>-0.0700482204556465</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 1 3 -1.</_>
- <_>
- 12 7 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6057320171967149e-003</threshold>
- <left_val>0.1678820997476578</left_val>
- <right_val>-0.0499466583132744</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 9 2 1 -1.</_>
- <_>
- 16 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5517439935356379e-003</threshold>
- <left_val>-0.3828516900539398</left_val>
- <right_val>0.0113612702116370</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 2 1 -1.</_>
- <_>
- 8 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.9515629699453712e-005</threshold>
- <left_val>0.0925496816635132</left_val>
- <right_val>-0.0903496667742729</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 7 6 6 -1.</_>
- <_>
- 19 7 3 3 2.</_>
- <_>
- 16 10 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0167104993015528</threshold>
- <left_val>0.1787143051624298</left_val>
- <right_val>-0.0413177497684956</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 2 2 -1.</_>
- <_>
- 10 10 1 1 2.</_>
- <_>
- 11 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6687301993370056e-004</threshold>
- <left_val>-0.2522006928920746</left_val>
- <right_val>0.0305528100579977</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 9 2 2 -1.</_>
- <_>
- 17 9 1 1 2.</_>
- <_>
- 16 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0828930145362392e-005</threshold>
- <left_val>0.0542593784630299</left_val>
- <right_val>-0.0474381409585476</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 2 2 -1.</_>
- <_>
- 7 9 1 1 2.</_>
- <_>
- 8 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6335372179746628e-004</threshold>
- <left_val>0.1779994070529938</left_val>
- <right_val>-0.0423120781779289</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 10 2 2 -1.</_>
- <_>
- 14 10 1 1 2.</_>
- <_>
- 13 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9218461653217673e-004</threshold>
- <left_val>-0.1845878958702087</left_val>
- <right_val>0.0251416098326445</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 7 2 3 -1.</_>
- <_>
- 11 8 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4870179370045662e-003</threshold>
- <left_val>0.1677664965391159</left_val>
- <right_val>-0.0460440590977669</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 0 6 3 -1.</_>
- <_>
- 19 1 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0195988900959492</threshold>
- <left_val>0.0180558506399393</left_val>
- <right_val>-0.3022567927837372</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 3 -1.</_>
- <_>
- 0 1 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109872100874782</threshold>
- <left_val>-0.3727653026580811</left_val>
- <right_val>0.0197681505233049</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 0 1 2 -1.</_>
- <_>
- 24 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6390639403834939e-005</threshold>
- <left_val>0.0768569633364677</left_val>
- <right_val>-0.1268360018730164</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 16 1 -1.</_>
- <_>
- 4 0 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2606238275766373e-003</threshold>
- <left_val>0.1132820025086403</left_val>
- <right_val>-0.0696604028344154</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 11 6 4 -1.</_>
- <_>
- 19 12 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3147160001099110e-003</threshold>
- <left_val>0.0329976715147495</left_val>
- <right_val>-0.2646273076534271</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 6 4 -1.</_>
- <_>
- 0 12 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0101194800809026</threshold>
- <left_val>-0.4706184864044190</left_val>
- <right_val>0.0138464700430632</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 15 6 -1.</_>
- <_>
- 5 6 15 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0921443328261375</threshold>
- <left_val>-0.0886306688189507</left_val>
- <right_val>0.0808285027742386</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 9 3 -1.</_>
- <_>
- 8 4 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0118425898253918</threshold>
- <left_val>-0.0542713403701782</left_val>
- <right_val>0.1590622961521149</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 1 12 -1.</_>
- <_>
- 12 3 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0260604508221149</threshold>
- <left_val>0.0202190801501274</left_val>
- <right_val>-0.3709642887115479</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 14 8 -1.</_>
- <_>
- 1 7 14 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2863250076770783</threshold>
- <left_val>0.0171639006584883</left_val>
- <right_val>-0.3946934938430786</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 6 4 -1.</_>
- <_>
- 17 0 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0193374603986740</threshold>
- <left_val>-0.2173891961574554</left_val>
- <right_val>0.0148878796026111</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 7 4 2 -1.</_>
- <_>
- 3 7 2 1 2.</_>
- <_>
- 5 8 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8996037589386106e-004</threshold>
- <left_val>-0.0642509534955025</left_val>
- <right_val>0.1074123978614807</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 5 1 8 -1.</_>
- <_>
- 14 9 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0273154806345701</threshold>
- <left_val>5.0893737934529781e-003</left_val>
- <right_val>-0.5541477799415588</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 3 3 -1.</_>
- <_>
- 0 8 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3149320669472218e-003</threshold>
- <left_val>-0.5788456201553345</left_val>
- <right_val>0.0114226602017879</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 12 6 3 -1.</_>
- <_>
- 13 12 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0134929800406098</threshold>
- <left_val>6.9531891494989395e-003</left_val>
- <right_val>-0.3359794020652771</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 12 6 3 -1.</_>
- <_>
- 10 12 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0170349292457104</threshold>
- <left_val>9.6587073057889938e-003</left_val>
- <right_val>-0.6638085842132568</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 5 6 10 -1.</_>
- <_>
- 19 5 3 5 2.</_>
- <_>
- 16 10 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0495363213121891</threshold>
- <left_val>-0.1099594011902809</left_val>
- <right_val>7.1444557979702950e-003</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 6 10 -1.</_>
- <_>
- 3 5 3 5 2.</_>
- <_>
- 6 10 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0326232202351093</threshold>
- <left_val>0.1888170987367630</left_val>
- <right_val>-0.0416569598019123</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 8 8 1 -1.</_>
- <_>
- 19 8 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5752598885446787e-003</threshold>
- <left_val>-0.0510260090231895</left_val>
- <right_val>0.1057118028402329</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 8 1 -1.</_>
- <_>
- 2 8 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4968909565359354e-003</threshold>
- <left_val>-0.0559858083724976</left_val>
- <right_val>0.1347001940011978</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 13 14 2 -1.</_>
- <_>
- 9 13 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0116916997358203</threshold>
- <left_val>0.0694792568683624</left_val>
- <right_val>-0.0498108491301537</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 14 20 1 -1.</_>
- <_>
- 6 14 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0966278649866581e-003</threshold>
- <left_val>-0.0719841867685318</left_val>
- <right_val>0.1201341003179550</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 7 2 2 -1.</_>
- <_>
- 18 7 1 1 2.</_>
- <_>
- 17 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6429098155349493e-004</threshold>
- <left_val>-0.0280915908515453</left_val>
- <right_val>0.1105908975005150</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 2 2 -1.</_>
- <_>
- 0 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0658349860459566e-003</threshold>
- <left_val>-0.4070394039154053</left_val>
- <right_val>0.0187105592340231</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 7 2 2 -1.</_>
- <_>
- 18 7 1 1 2.</_>
- <_>
- 17 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5272910685744137e-005</threshold>
- <left_val>0.0707912817597389</left_val>
- <right_val>-0.0700317397713661</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 2 2 -1.</_>
- <_>
- 6 7 1 1 2.</_>
- <_>
- 7 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5698497928678989e-004</threshold>
- <left_val>-0.0492957085371017</left_val>
- <right_val>0.1548248976469040</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 10 2 2 -1.</_>
- <_>
- 14 10 1 1 2.</_>
- <_>
- 13 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3707341430708766e-004</threshold>
- <left_val>0.0302961803972721</left_val>
- <right_val>-0.1238510981202126</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 6 4 -1.</_>
- <_>
- 6 0 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0272689107805490</threshold>
- <left_val>-0.4674024879932404</left_val>
- <right_val>0.0149874398484826</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 6 2 -1.</_>
- <_>
- 12 0 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6138951070606709e-003</threshold>
- <left_val>0.1166682019829750</left_val>
- <right_val>-0.0615368783473969</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 8 3 -1.</_>
- <_>
- 10 1 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0277075897902250</threshold>
- <left_val>-0.6434546709060669</left_val>
- <right_val>0.0120052499696612</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 6 7 2 -1.</_>
- <_>
- 14 6 7 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0200542695820332</threshold>
- <left_val>-0.3493579030036926</left_val>
- <right_val>0.0109763201326132</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 10 4 1 -1.</_>
- <_>
- 9 10 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9170317146927118e-004</threshold>
- <left_val>0.0442647784948349</left_val>
- <right_val>-0.1491888016462326</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 2 2 -1.</_>
- <_>
- 17 11 1 1 2.</_>
- <_>
- 16 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4560663304291666e-005</threshold>
- <left_val>-0.0422041602432728</left_val>
- <right_val>0.0473436005413532</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 11 2 2 -1.</_>
- <_>
- 7 11 1 1 2.</_>
- <_>
- 8 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8378103100694716e-005</threshold>
- <left_val>0.1016054973006249</left_val>
- <right_val>-0.0740641728043556</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 2 2 -1.</_>
- <_>
- 17 11 1 1 2.</_>
- <_>
- 16 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6106527810916305e-005</threshold>
- <left_val>0.0759406536817551</left_val>
- <right_val>-0.0495208092033863</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 11 2 2 -1.</_>
- <_>
- 7 11 1 1 2.</_>
- <_>
- 8 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.2288508848287165e-004</threshold>
- <left_val>-0.0588600113987923</left_val>
- <right_val>0.1385688036680222</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 9 4 1 -1.</_>
- <_>
- 17 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5251980405300856e-003</threshold>
- <left_val>-0.0302844792604446</left_val>
- <right_val>0.1643659025430679</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 4 1 -1.</_>
- <_>
- 6 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0347938239574432e-003</threshold>
- <left_val>-0.6502289175987244</left_val>
- <right_val>0.0117079298943281</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 3 4 -1.</_>
- <_>
- 11 9 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2698681354522705e-003</threshold>
- <left_val>0.1213309019804001</left_val>
- <right_val>-0.0608336813747883</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 3 2 -1.</_>
- <_>
- 10 7 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0166539791971445</threshold>
- <left_val>0.0145571101456881</left_val>
- <right_val>-0.5031678080558777</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 21 0 4 8 -1.</_>
- <_>
- 19 2 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1178558021783829</threshold>
- <left_val>-0.3486539125442505</left_val>
- <right_val>5.8299610391259193e-003</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 8 4 -1.</_>
- <_>
- 6 2 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0389890410006046</threshold>
- <left_val>0.1082129999995232</left_val>
- <right_val>-0.0824354067444801</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 1 5 2 -1.</_>
- <_>
- 20 1 5 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.9744870997965336e-003</threshold>
- <left_val>0.0920993909239769</left_val>
- <right_val>-0.0447417609393597</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 6 4 -1.</_>
- <_>
- 0 7 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0154374102130532</threshold>
- <left_val>0.0294817406684160</left_val>
- <right_val>-0.2408691942691803</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 6 5 4 -1.</_>
- <_>
- 20 7 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9599988162517548e-003</threshold>
- <left_val>-0.2254153043031693</left_val>
- <right_val>0.0256420802325010</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 3 1 -1.</_>
- <_>
- 7 8 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3358142031356692e-004</threshold>
- <left_val>0.1183808967471123</left_val>
- <right_val>-0.0571242086589336</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 24 2 -1.</_>
- <_>
- 13 8 12 1 2.</_>
- <_>
- 1 9 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0176937691867352</threshold>
- <left_val>0.0266077890992165</left_val>
- <right_val>-0.3055857121944428</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 8 3 -1.</_>
- <_>
- 8 9 8 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3599448874592781e-003</threshold>
- <left_val>-0.0569497905671597</left_val>
- <right_val>0.1210888996720314</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 11 6 4 -1.</_>
- <_>
- 19 11 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158548094332218</threshold>
- <left_val>0.0215572193264961</left_val>
- <right_val>-0.2521420121192932</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 1 -1.</_>
- <_>
- 9 0 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0549633502960205</threshold>
- <left_val>0.0106362197548151</left_val>
- <right_val>-0.5730599761009216</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 6 3 2 -1.</_>
- <_>
- 15 7 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.7383600138127804e-003</threshold>
- <left_val>0.0774415433406830</left_val>
- <right_val>-0.0306048095226288</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 13 2 -1.</_>
- <_>
- 5 7 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0182623900473118</threshold>
- <left_val>-0.0549028292298317</left_val>
- <right_val>0.1176588013768196</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 6 3 2 -1.</_>
- <_>
- 15 7 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0318278707563877</threshold>
- <left_val>-0.9110031723976135</left_val>
- <right_val>1.3938200427219272e-003</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 6 2 6 -1.</_>
- <_>
- 10 8 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6466179881244898e-003</threshold>
- <left_val>0.1085240989923477</left_val>
- <right_val>-0.0722526162862778</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 20 1 5 2 -1.</_>
- <_>
- 20 1 5 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0517431795597076</threshold>
- <left_val>-0.9186943173408508</left_val>
- <right_val>1.8797840457409620e-003</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 2 5 -1.</_>
- <_>
- 5 1 1 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.0449545532464981e-003</threshold>
- <left_val>0.1787680983543396</left_val>
- <right_val>-0.0388442091643810</right_val></_></_>
- <_>
- <!-- tree 181 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 7 1 8 -1.</_>
- <_>
- 24 9 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5340228825807571e-003</threshold>
- <left_val>-0.2472573071718216</left_val>
- <right_val>0.0297267790883780</right_val></_></_>
- <_>
- <!-- tree 182 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 11 3 -1.</_>
- <_>
- 7 8 11 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8734101951122284e-003</threshold>
- <left_val>-0.0675214827060699</left_val>
- <right_val>0.1065412983298302</right_val></_></_>
- <_>
- <!-- tree 183 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 11 2 2 -1.</_>
- <_>
- 14 11 1 1 2.</_>
- <_>
- 13 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7327789040282369e-004</threshold>
- <left_val>0.0221925694495440</left_val>
- <right_val>-0.1398307979106903</right_val></_></_>
- <_>
- <!-- tree 184 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 11 3 1 -1.</_>
- <_>
- 11 11 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5252941062208265e-005</threshold>
- <left_val>0.0903024971485138</left_val>
- <right_val>-0.0786189734935761</right_val></_></_>
- <_>
- <!-- tree 185 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 7 1 8 -1.</_>
- <_>
- 24 9 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8931739293038845e-003</threshold>
- <left_val>0.0311242006719112</left_val>
- <right_val>-0.1617130041122437</right_val></_></_>
- <_>
- <!-- tree 186 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 2 4 -1.</_>
- <_>
- 10 5 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0357618294656277</threshold>
- <left_val>-0.3406237065792084</left_val>
- <right_val>0.0201859101653099</right_val></_></_>
- <_>
- <!-- tree 187 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 1 2 3 -1.</_>
- <_>
- 21 2 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0110698901116848</threshold>
- <left_val>0.1165141984820366</left_val>
- <right_val>-0.0340334698557854</right_val></_></_>
- <_>
- <!-- tree 188 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 3 2 -1.</_>
- <_>
- 4 2 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.4201510716229677e-003</threshold>
- <left_val>-0.0530161187052727</left_val>
- <right_val>0.1339436024427414</right_val></_></_>
- <_>
- <!-- tree 189 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 3 3 -1.</_>
- <_>
- 17 5 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0499692708253860</threshold>
- <left_val>-0.8493295907974243</left_val>
- <right_val>2.7547380886971951e-003</right_val></_></_>
- <_>
- <!-- tree 190 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 3 2 -1.</_>
- <_>
- 3 0 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.1221430031582713e-003</threshold>
- <left_val>-0.1629413068294525</left_val>
- <right_val>0.0413381010293961</right_val></_></_>
- <_>
- <!-- tree 191 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 8 3 -1.</_>
- <_>
- 17 0 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0371481291949749</threshold>
- <left_val>0.0171750299632549</left_val>
- <right_val>-0.2840433120727539</right_val></_></_>
- <_>
- <!-- tree 192 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 4 3 -1.</_>
- <_>
- 0 13 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3847341071814299e-003</threshold>
- <left_val>0.0348382107913494</left_val>
- <right_val>-0.1844726949930191</right_val></_></_>
- <_>
- <!-- tree 193 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 21 3 -1.</_>
- <_>
- 9 3 7 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1431124955415726</threshold>
- <left_val>0.0252217296510935</left_val>
- <right_val>-0.2543725967407227</right_val></_></_>
- <_>
- <!-- tree 194 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 2 5 -1.</_>
- <_>
- 8 1 1 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0119188595563173</threshold>
- <left_val>0.1655784994363785</left_val>
- <right_val>-0.0447442717850208</right_val></_></_>
- <_>
- <!-- tree 195 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 19 7 6 4 -1.</_>
- <_>
- 22 7 3 2 2.</_>
- <_>
- 19 9 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4779450185596943e-003</threshold>
- <left_val>-0.0250237993896008</left_val>
- <right_val>0.0799132883548737</right_val></_></_>
- <_>
- <!-- tree 196 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 6 4 -1.</_>
- <_>
- 0 7 3 2 2.</_>
- <_>
- 3 9 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4581739669665694e-003</threshold>
- <left_val>-0.0797923728823662</left_val>
- <right_val>0.0829188674688339</right_val></_></_>
- <_>
- <!-- tree 197 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 24 4 1 4 -1.</_>
- <_>
- 24 5 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2418850138783455e-003</threshold>
- <left_val>0.0132909296080470</left_val>
- <right_val>-0.2995111048221588</right_val></_></_>
- <_>
- <!-- tree 198 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 3 4 -1.</_>
- <_>
- 3 8 3 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0227145906537771</threshold>
- <left_val>0.4398984909057617</left_val>
- <right_val>-0.0150371296331286</right_val></_></_>
- <_>
- <!-- tree 199 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 9 4 1 -1.</_>
- <_>
- 18 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3001482263207436e-003</threshold>
- <left_val>-0.3546585142612457</left_val>
- <right_val>7.9521266743540764e-003</right_val></_></_>
- <_>
- <!-- tree 200 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 4 1 -1.</_>
- <_>
- 5 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0604769922792912e-003</threshold>
- <left_val>0.0385937690734863</left_val>
- <right_val>-0.1762923002243042</right_val></_></_>
- <_>
- <!-- tree 201 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 23 6 2 2 -1.</_>
- <_>
- 23 7 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3205441907048225e-003</threshold>
- <left_val>0.0171245392411947</left_val>
- <right_val>-0.1075016036629677</right_val></_></_>
- <_>
- <!-- tree 202 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 2 2 -1.</_>
- <_>
- 0 7 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8217399269342422e-003</threshold>
- <left_val>-0.4589209854602814</left_val>
- <right_val>0.0141258295625448</right_val></_></_>
- <_>
- <!-- tree 203 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 3 1 -1.</_>
- <_>
- 13 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7336847102269530e-004</threshold>
- <left_val>-0.0361551195383072</left_val>
- <right_val>0.1268056929111481</right_val></_></_>
- <_>
- <!-- tree 204 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 2 2 -1.</_>
- <_>
- 1 7 1 1 2.</_>
- <_>
- 2 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9081847798079252e-004</threshold>
- <left_val>0.1707147061824799</left_val>
- <right_val>-0.0376146212220192</right_val></_></_>
- <_>
- <!-- tree 205 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 7 2 2 -1.</_>
- <_>
- 23 7 1 1 2.</_>
- <_>
- 22 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6159887248650193e-004</threshold>
- <left_val>0.2311398983001709</left_val>
- <right_val>-0.0603629797697067</right_val></_></_>
- <_>
- <!-- tree 206 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 11 6 4 -1.</_>
- <_>
- 4 11 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0210315398871899</threshold>
- <left_val>-0.4918564856052399</left_val>
- <right_val>0.0156012997031212</right_val></_></_>
- <_>
- <!-- tree 207 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 10 4 -1.</_>
- <_>
- 19 1 5 2 2.</_>
- <_>
- 14 3 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0180973205715418</threshold>
- <left_val>-0.0467358492314816</left_val>
- <right_val>0.1050693020224571</right_val></_></_>
- <_>
- <!-- tree 208 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 12 2 -1.</_>
- <_>
- 6 3 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0131208598613739</threshold>
- <left_val>0.1018344014883041</left_val>
- <right_val>-0.0857265591621399</right_val></_></_>
- <_>
- <!-- tree 209 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 8 9 -1.</_>
- <_>
- 9 9 8 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2012819051742554</threshold>
- <left_val>-9.4874696806073189e-003</left_val>
- <right_val>0.5418189764022827</right_val></_></_>
- <_>
- <!-- tree 210 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 8 3 3 -1.</_>
- <_>
- 4 9 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3326090350747108e-003</threshold>
- <left_val>0.0282447207719088</left_val>
- <right_val>-0.2452981024980545</right_val></_></_>
- <_>
- <!-- tree 211 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 7 2 2 -1.</_>
- <_>
- 23 7 1 1 2.</_>
- <_>
- 22 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0540642850100994e-004</threshold>
- <left_val>-0.0559650883078575</left_val>
- <right_val>0.2322594970464706</right_val></_></_>
- <_>
- <!-- tree 212 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 10 2 2 -1.</_>
- <_>
- 11 10 1 1 2.</_>
- <_>
- 12 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3532002493739128e-004</threshold>
- <left_val>0.0432194508612156</left_val>
- <right_val>-0.1652047038078308</right_val></_></_>
- <_>
- <!-- tree 213 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 7 2 2 -1.</_>
- <_>
- 23 7 1 1 2.</_>
- <_>
- 22 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.0239711678586900e-005</threshold>
- <left_val>0.0588538907468319</left_val>
- <right_val>-0.0475415214896202</right_val></_></_>
- <_>
- <!-- tree 214 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 13 10 1 -1.</_>
- <_>
- 9 13 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8403399996459484e-003</threshold>
- <left_val>-0.0541158504784107</left_val>
- <right_val>0.1303326934576035</right_val></_></_>
- <_>
- <!-- tree 215 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 20 15 -1.</_>
- <_>
- 3 0 10 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6619219779968262</threshold>
- <left_val>-0.0147952698171139</left_val>
- <right_val>0.5785722732543945</right_val></_></_>
- <_>
- <!-- tree 216 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 24 1 -1.</_>
- <_>
- 6 13 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5441237315535545e-003</threshold>
- <left_val>0.1165743991732597</left_val>
- <right_val>-0.0628988370299339</right_val></_></_>
- <_>
- <!-- tree 217 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 22 7 2 2 -1.</_>
- <_>
- 23 7 1 1 2.</_>
- <_>
- 22 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4021849791752174e-005</threshold>
- <left_val>-0.0602008998394012</left_val>
- <right_val>0.0699716731905937</right_val></_></_></trees>
- <stage_threshold>-1.2540320158004761</stage_threshold>
- <parent>15</parent>
- <next>-1</next></_></stages></Boca_17stages>
- </opencv_storage>
|