„excel_processing.py“ löschen
This commit is contained in:
parent
453fd4035d
commit
438240cc9a
@ -1,138 +0,0 @@
|
||||
"""
|
||||
Abhängigkeiten:
|
||||
- pyramids (für den Aufbau der Bildpyramiden)
|
||||
- heartrate (zur Berechnung der Herzfrequenz)
|
||||
- preprocessing (für die Video-Vorverarbeitung)
|
||||
- eulerian (für die Euler'sche Video-Magnifikation)
|
||||
- tkinter und constants (für die GUI und Konstantenverwaltung)
|
||||
|
||||
Autor: Roberto Gelsinger
|
||||
Datum: 07.12.2023
|
||||
Version: Modulversion
|
||||
"""
|
||||
|
||||
import pyramids
|
||||
import heartrate
|
||||
import facedetection
|
||||
import eulerian
|
||||
from constants import freq_max, freq_min
|
||||
import pandas as pd
|
||||
from excel_update import color_cells_based_on_deviation
|
||||
from excel_evaluation import evaluation
|
||||
|
||||
|
||||
def process_video_for_excel(selected_video_name):
|
||||
"""
|
||||
Verarbeitet ein ausgewähltes Video, um die Herzfrequenz der abgebildeten Person zu ermitteln.
|
||||
|
||||
Dieser Prozess umfasst die Vorverarbeitung des Videos, den Aufbau einer Laplace-Pyramide,
|
||||
die Anwendung von FFT-Filterung und Euler'scher Magnifikation, und schließlich die Berechnung
|
||||
der Herzfrequenz aus den Video-Daten.
|
||||
|
||||
Args:
|
||||
selected_video_name (str): Der Name des zu verarbeitenden Videos.
|
||||
|
||||
Returns:
|
||||
None: Die Funktion gibt direkt die berechnete Herzfrequenz auf der Konsole aus.
|
||||
"""
|
||||
|
||||
|
||||
|
||||
print("Reading + preprocessing video...")
|
||||
video_frames, frame_ct, fps = facedetection.read_video("code/videos/"+selected_video_name)
|
||||
|
||||
|
||||
print("Building Laplacian video pyramid...")
|
||||
lap_video = pyramids.build_video_pyramid(video_frames)
|
||||
|
||||
print(len(lap_video))
|
||||
|
||||
for i, video in enumerate(lap_video):
|
||||
print("test")
|
||||
if i == 0 or i == len(lap_video)-1:
|
||||
continue
|
||||
|
||||
print("Running FFT and Eulerian magnification...")
|
||||
result, fft, frequencies = eulerian.fft_filter(video, freq_min, freq_max, fps)
|
||||
lap_video[i] += result
|
||||
|
||||
|
||||
print("Calculating heart rate...")
|
||||
heart_rate = heartrate.find_heart_rate(fft, frequencies, freq_min, freq_max)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
print("Heart rate: ", heart_rate*0.7, "bpm")
|
||||
return heart_rate *0.7
|
||||
|
||||
|
||||
|
||||
def process_all_videos_and_save_results(testcase_excel_file_path, testruns_excel_file_path, code_version, kommentar):
|
||||
|
||||
try:
|
||||
df_testruns = pd.read_excel(testruns_excel_file_path)
|
||||
except FileNotFoundError:
|
||||
df_testruns = pd.DataFrame()
|
||||
|
||||
|
||||
df_testcases = pd.read_excel(testcase_excel_file_path)
|
||||
|
||||
existing_testcases = [col for col in df_testruns.columns if col.startswith('Testcase_')]
|
||||
|
||||
new_testcases = [f'Testcase_{tc}' for tc in df_testcases['Testcase'] if f'Testcase_{tc}' not in existing_testcases]
|
||||
|
||||
|
||||
if df_testruns.empty:
|
||||
df_testruns = pd.DataFrame(columns=['Testnummer', 'Codeversion', 'Kommentar', 'Abweichung'])
|
||||
|
||||
|
||||
for col in new_testcases:
|
||||
df_testruns[col] = None
|
||||
|
||||
|
||||
df_testruns.to_excel(testruns_excel_file_path, index=False)
|
||||
|
||||
if new_testcases:
|
||||
print(f"Folgende neue Testcases wurden hinzugefügt: {new_testcases}")
|
||||
else:
|
||||
print("Keine neuen Testcases zum Hinzufügen gefunden.")
|
||||
|
||||
next_testcase_index = len(df_testruns) + 1
|
||||
|
||||
|
||||
new_run = {
|
||||
'Testnummer': next_testcase_index,
|
||||
'Codeversion': code_version,
|
||||
'Kommentar': kommentar,
|
||||
'Abweichung': 'Wert_für_Abweichung'
|
||||
}
|
||||
|
||||
|
||||
for index, row in df_testcases.iterrows():
|
||||
video_name = row['VideoName']
|
||||
heart_rate = process_video_for_excel(video_name)
|
||||
|
||||
|
||||
testcase_column_name = f'Testcase_{row["Testcase"]}'
|
||||
new_run[testcase_column_name] = heart_rate
|
||||
|
||||
try:
|
||||
|
||||
df_testruns = df_testruns._append(new_run, ignore_index=True)
|
||||
except TypeError:
|
||||
pass
|
||||
|
||||
|
||||
df_testruns.to_excel(testruns_excel_file_path, index=False)
|
||||
|
||||
print("Testrun wurde verarbeitet und das Ergebnis in der Testruns-Excel-Datei gespeichert.")
|
||||
|
||||
color_cells_based_on_deviation(testruns_excel_file_path, testcase_excel_file_path)
|
||||
|
||||
print("Zellen gefärbt")
|
||||
|
||||
evaluation(testcase_excel_file_path, testruns_excel_file_path)
|
||||
|
||||
print("Testcases sortiert")
|
Loading…
x
Reference in New Issue
Block a user