import numpy as np | |||||
import scipy.fftpack as fftpack | |||||
# Temporal bandpass filter with Fast-Fourier Transform | |||||
def fft_filter(video, freq_min, freq_max, fps): | |||||
fft = fftpack.fft(video, axis=0) | |||||
frequencies = fftpack.fftfreq(video.shape[0], d=1.0 / fps) | |||||
bound_low = (np.abs(frequencies - freq_min)).argmin() | |||||
bound_high = (np.abs(frequencies - freq_max)).argmin() | |||||
fft[:bound_low] = 0 | |||||
fft[bound_high:-bound_high] = 0 | |||||
fft[-bound_low:] = 0 | |||||
iff = fftpack.ifft(fft, axis=0) | |||||
result = np.abs(iff) | |||||
result *= 100 # Amplification factor | |||||
return result, fft, frequencies |
from scipy import signal | |||||
# Calculate heart rate from FFT peaks | |||||
def find_heart_rate(fft, freqs, freq_min, freq_max): | |||||
fft_maximums = [] | |||||
for i in range(fft.shape[0]): | |||||
if freq_min <= freqs[i] <= freq_max: | |||||
fftMap = abs(fft[i]) | |||||
fft_maximums.append(fftMap.max()) | |||||
else: | |||||
fft_maximums.append(0) | |||||
peaks, properties = signal.find_peaks(fft_maximums) | |||||
max_peak = -1 | |||||
max_freq = 0 | |||||
# Find frequency with max amplitude in peaks | |||||
for peak in peaks: | |||||
if fft_maximums[peak] > max_freq: | |||||
max_freq = fft_maximums[peak] | |||||
max_peak = peak | |||||
return freqs[max_peak] * 60 |
from collections import deque | |||||
import threading | |||||
import time | |||||
import cv2 | |||||
import pyramids | |||||
import heartrate | |||||
import preprocessing | |||||
import eulerian | |||||
import numpy as np | |||||
class main(): | |||||
def __init__(self): | |||||
# Frequency range for Fast-Fourier Transform | |||||
self.freq_min = 1 | |||||
self.freq_max = 5 | |||||
self.BUFFER_LEN = 10 | |||||
self.BUFFER = deque(maxlen=self.BUFFER_LEN) | |||||
self.FPS_BUFFER = deque(maxlen=self.BUFFER_LEN) | |||||
self.buffer_lock = threading.Lock() | |||||
self.FPS = [] | |||||
def video(self): | |||||
cap = cv2.VideoCapture(0) | |||||
while len(self.BUFFER) < self.BUFFER_LEN: | |||||
start_time = time.time() | |||||
ret, frame = cap.read() | |||||
frame = cv2.resize(frame, (500, 500)) | |||||
self.BUFFER.append(frame) | |||||
stop_time = time.time() | |||||
self.FPS_BUFFER.append(stop_time-start_time) | |||||
self.FPS = round(1 / np.mean(np.array(self.FPS_BUFFER))) | |||||
print("Buffer ready") | |||||
while True: | |||||
start_time = time.time() | |||||
ret, frame = cap.read() | |||||
frame = cv2.resize(frame, (500, 500)) | |||||
self.BUFFER.append(frame) | |||||
stop_time = time.time() | |||||
self.FPS_BUFFER.append(stop_time-start_time) | |||||
#threading.Event().wait(0.02) | |||||
self.FPS = round(1 / np.mean(np.array(self.FPS_BUFFER))) | |||||
def processing(self): | |||||
# Build Laplacian video pyramid | |||||
while True: | |||||
with self.buffer_lock: | |||||
PROCESS_BUFFER = np.array(self.BUFFER) | |||||
lap_video = pyramids.build_video_pyramid(PROCESS_BUFFER) | |||||
amplified_video_pyramid = [] | |||||
for i, video in enumerate(lap_video): | |||||
if i == 0 or i == len(lap_video)-1: | |||||
continue | |||||
# Eulerian magnification with temporal FFT filtering | |||||
result, fft, frequencies = eulerian.fft_filter(video, self.freq_min, self.freq_max, self.FPS) | |||||
lap_video[i] += result | |||||
# Calculate heart rate | |||||
heart_rate = heartrate.find_heart_rate(fft, frequencies, self.freq_min, self.freq_max) | |||||
# Collapse laplacian pyramid to generate final video | |||||
#amplified_frames = pyramids.collapse_laplacian_video_pyramid(lap_video, len(self.BUFFER)) | |||||
# Output heart rate and final video | |||||
print("Heart rate: ", heart_rate, "bpm") | |||||
threading.Event().wait(2) | |||||
if __name__ == '__main__': | |||||
MAIN = main() | |||||
video_thread = threading.Thread(target=MAIN.video) | |||||
processing_thread = threading.Thread(target=MAIN.processing) | |||||
# Starte die Threads | |||||
video_thread.start() | |||||
time.sleep(2) | |||||
print("__SYNCING___") | |||||
processing_thread.start() | |||||
import cv2 | |||||
import numpy as np | |||||
faceCascade = cv2.CascadeClassifier("haarcascades/haarcascade_frontalface_alt0.xml") | |||||
# Read in and simultaneously preprocess video | |||||
def read_video(path): | |||||
cap = cv2.VideoCapture(path) | |||||
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |||||
video_frames = [] | |||||
face_rects = () | |||||
while cap.isOpened(): | |||||
ret, img = cap.read() | |||||
if not ret: | |||||
break | |||||
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | |||||
roi_frame = img | |||||
# Detect face | |||||
if len(video_frames) == 0: | |||||
face_rects = faceCascade.detectMultiScale(gray, 1.3, 5) | |||||
# Select ROI | |||||
if len(face_rects) > 0: | |||||
for (x, y, w, h) in face_rects: | |||||
roi_frame = img[y:y + h, x:x + w] | |||||
if roi_frame.size != img.size: | |||||
roi_frame = cv2.resize(roi_frame, (500, 500)) | |||||
frame = np.ndarray(shape=roi_frame.shape, dtype="float") | |||||
frame[:] = roi_frame * (1. / 255) | |||||
video_frames.append(frame) | |||||
frame_ct = len(video_frames) | |||||
cap.release() | |||||
return video_frames, frame_ct, fps |
import cv2 | |||||
import numpy as np | |||||
# Build Gaussian image pyramid | |||||
def build_gaussian_pyramid(img, levels): | |||||
float_img = np.ndarray(shape=img.shape, dtype="float") | |||||
float_img[:] = img | |||||
pyramid = [float_img] | |||||
for i in range(levels-1): | |||||
float_img = cv2.pyrDown(float_img) | |||||
pyramid.append(float_img) | |||||
return pyramid | |||||
# Build Laplacian image pyramid from Gaussian pyramid | |||||
def build_laplacian_pyramid(img, levels): | |||||
gaussian_pyramid = build_gaussian_pyramid(img, levels) | |||||
laplacian_pyramid = [] | |||||
for i in range(levels-1): | |||||
upsampled = cv2.pyrUp(gaussian_pyramid[i+1]) | |||||
(height, width, depth) = upsampled.shape | |||||
gaussian_pyramid[i] = cv2.resize(gaussian_pyramid[i], (height, width)) | |||||
diff = cv2.subtract(gaussian_pyramid[i],upsampled) | |||||
laplacian_pyramid.append(diff) | |||||
laplacian_pyramid.append(gaussian_pyramid[-1]) | |||||
return laplacian_pyramid | |||||
# Build video pyramid by building Laplacian pyramid for each frame | |||||
def build_video_pyramid(frames): | |||||
lap_video = [] | |||||
for i, frame in enumerate(frames): | |||||
pyramid = build_laplacian_pyramid(frame, 3) | |||||
for j in range(3): | |||||
if i == 0: | |||||
lap_video.append(np.zeros((len(frames), pyramid[j].shape[0], pyramid[j].shape[1], 3))) | |||||
lap_video[j][i] = pyramid[j] | |||||
return lap_video | |||||
# Collapse video pyramid by collapsing each frame's Laplacian pyramid | |||||
def collapse_laplacian_video_pyramid(video, frame_ct): | |||||
collapsed_video = [] | |||||
for i in range(frame_ct): | |||||
prev_frame = video[-1][i] | |||||
for level in range(len(video) - 1, 0, -1): | |||||
pyr_up_frame = cv2.pyrUp(prev_frame) | |||||
(height, width, depth) = pyr_up_frame.shape | |||||
prev_level_frame = video[level - 1][i] | |||||
prev_level_frame = cv2.resize(prev_level_frame, (height, width)) | |||||
prev_frame = pyr_up_frame + prev_level_frame | |||||
# Normalize pixel values | |||||
min_val = min(0.0, prev_frame.min()) | |||||
prev_frame = prev_frame + min_val | |||||
max_val = max(1.0, prev_frame.max()) | |||||
prev_frame = prev_frame / max_val | |||||
prev_frame = prev_frame * 255 | |||||
prev_frame = cv2.convertScaleAbs(prev_frame) | |||||
collapsed_video.append(prev_frame) | |||||
return collapsed_video |