12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171221722217322174221752217622177221782217922180221812218222183221842218522186221872218822189221902219122192221932219422195221962219722198221992220022201222022220322204222052220622207222082220922210222112221222213222142221522216222172221822219222202222122222222232222422225222262222722228222292223022231222322223322234222352223622237222382223922240222412224222243222442224522246222472224822249222502225122252222532225422255222562225722258222592226022261222622226322264222652226622267222682226922270222712227222273222742227522276222772227822279222802228122282222832228422285222862228722288222892229022291222922229322294222952229622297222982229922300223012230222303223042230522306223072230822309223102231122312223132231422315223162231722318223192232022321223222232322324223252232622327223282232922330223312233222333223342233522336223372233822339223402234122342223432234422345223462234722348223492235022351223522235322354223552235622357223582235922360223612236222363223642236522366223672236822369223702237122372223732237422375223762237722378223792238022381223822238322384223852238622387223882238922390223912239222393223942239522396223972239822399224002240122402224032240422405224062240722408224092241022411224122241322414224152241622417224182241922420224212242222423224242242522426224272242822429224302243122432224332243422435224362243722438224392244022441224422244322444224452244622447224482244922450224512245222453224542245522456224572245822459224602246122462224632246422465224662246722468224692247022471224722247322474224752247622477224782247922480224812248222483224842248522486224872248822489224902249122492224932249422495224962249722498224992250022501225022250322504225052250622507225082250922510225112251222513225142251522516225172251822519225202252122522225232252422525225262252722528225292253022531225322253322534225352253622537225382253922540225412254222543225442254522546225472254822549225502255122552225532255422555225562255722558225592256022561225622256322564225652256622567225682256922570225712257222573225742257522576225772257822579225802258122582225832258422585225862258722588225892259022591225922259322594225952259622597225982259922600226012260222603226042260522606226072260822609226102261122612226132261422615226162261722618226192262022621226222262322624226252262622627226282262922630226312263222633226342263522636226372263822639226402264122642226432264422645226462264722648226492265022651226522265322654226552265622657226582265922660226612266222663226642266522666226672266822669226702267122672226732267422675226762267722678226792268022681226822268322684226852268622687226882268922690226912269222693226942269522696226972269822699227002270122702227032270422705227062270722708227092271022711227122271322714227152271622717227182271922720227212272222723227242272522726227272272822729227302273122732227332273422735227362273722738227392274022741227422274322744227452274622747227482274922750227512275222753227542275522756227572275822759227602276122762227632276422765227662276722768227692277022771227722277322774227752277622777227782277922780227812278222783227842278522786227872278822789227902279122792227932279422795227962279722798227992280022801228022280322804228052280622807228082280922810228112281222813228142281522816228172281822819228202282122822228232282422825228262282722828228292283022831228322283322834228352283622837228382283922840228412284222843228442284522846228472284822849228502285122852228532285422855228562285722858228592286022861228622286322864228652286622867228682286922870228712287222873228742287522876228772287822879228802288122882228832288422885228862288722888228892289022891228922289322894228952289622897228982289922900229012290222903229042290522906229072290822909229102291122912229132291422915229162291722918229192292022921229222292322924229252292622927229282292922930229312293222933229342293522936229372293822939229402294122942229432294422945229462294722948229492295022951229522295322954229552295622957229582295922960229612296222963229642296522966229672296822969229702297122972229732297422975229762297722978229792298022981229822298322984229852298622987229882298922990229912299222993229942299522996229972299822999230002300123002230032300423005230062300723008230092301023011230122301323014230152301623017230182301923020230212302223023230242302523026230272302823029230302303123032230332303423035230362303723038230392304023041230422304323044230452304623047230482304923050230512305223053230542305523056230572305823059230602306123062230632306423065230662306723068230692307023071230722307323074230752307623077230782307923080230812308223083230842308523086230872308823089230902309123092230932309423095230962309723098230992310023101231022310323104231052310623107231082310923110231112311223113231142311523116231172311823119231202312123122231232312423125231262312723128231292313023131231322313323134231352313623137231382313923140231412314223143231442314523146231472314823149231502315123152231532315423155231562315723158231592316023161231622316323164231652316623167231682316923170231712317223173231742317523176231772317823179231802318123182231832318423185231862318723188231892319023191231922319323194231952319623197231982319923200232012320223203232042320523206232072320823209232102321123212232132321423215232162321723218232192322023221232222322323224232252322623227232282322923230232312323223233232342323523236232372323823239232402324123242232432324423245232462324723248232492325023251232522325323254232552325623257232582325923260232612326223263232642326523266232672326823269232702327123272232732327423275232762327723278232792328023281232822328323284232852328623287232882328923290232912329223293232942329523296232972329823299233002330123302233032330423305233062330723308233092331023311233122331323314233152331623317233182331923320233212332223323233242332523326233272332823329233302333123332233332333423335233362333723338233392334023341233422334323344233452334623347233482334923350233512335223353233542335523356233572335823359233602336123362233632336423365233662336723368233692337023371233722337323374233752337623377233782337923380233812338223383233842338523386233872338823389233902339123392233932339423395233962339723398233992340023401234022340323404234052340623407234082340923410234112341223413234142341523416234172341823419234202342123422234232342423425234262342723428234292343023431234322343323434234352343623437234382343923440234412344223443234442344523446234472344823449234502345123452234532345423455234562345723458234592346023461234622346323464234652346623467234682346923470234712347223473234742347523476234772347823479234802348123482234832348423485234862348723488234892349023491234922349323494234952349623497234982349923500235012350223503235042350523506235072350823509235102351123512235132351423515235162351723518235192352023521235222352323524235252352623527235282352923530235312353223533235342353523536235372353823539235402354123542235432354423545235462354723548235492355023551235522355323554235552355623557235582355923560235612356223563235642356523566235672356823569235702357123572235732357423575235762357723578235792358023581235822358323584235852358623587235882358923590235912359223593235942359523596235972359823599236002360123602236032360423605236062360723608236092361023611236122361323614236152361623617236182361923620236212362223623236242362523626236272362823629236302363123632236332363423635236362363723638236392364023641236422364323644236452364623647236482364923650236512365223653236542365523656236572365823659236602366123662236632366423665236662366723668236692367023671236722367323674236752367623677236782367923680236812368223683236842368523686236872368823689236902369123692236932369423695236962369723698236992370023701237022370323704237052370623707237082370923710237112371223713237142371523716237172371823719237202372123722237232372423725237262372723728237292373023731237322373323734237352373623737237382373923740237412374223743237442374523746237472374823749237502375123752237532375423755237562375723758237592376023761237622376323764237652376623767237682376923770237712377223773237742377523776237772377823779237802378123782237832378423785237862378723788237892379023791237922379323794237952379623797237982379923800238012380223803238042380523806238072380823809238102381123812238132381423815238162381723818238192382023821238222382323824238252382623827238282382923830238312383223833238342383523836238372383823839238402384123842238432384423845238462384723848238492385023851238522385323854238552385623857238582385923860238612386223863238642386523866238672386823869238702387123872238732387423875238762387723878238792388023881238822388323884238852388623887238882388923890238912389223893238942389523896238972389823899239002390123902239032390423905239062390723908239092391023911239122391323914239152391623917239182391923920239212392223923239242392523926239272392823929239302393123932239332393423935239362393723938239392394023941239422394323944239452394623947239482394923950239512395223953239542395523956239572395823959239602396123962239632396423965239662396723968239692397023971239722397323974239752397623977239782397923980239812398223983239842398523986239872398823989239902399123992239932399423995239962399723998239992400024001240022400324004240052400624007240082400924010240112401224013240142401524016240172401824019240202402124022240232402424025240262402724028240292403024031240322403324034240352403624037240382403924040240412404224043240442404524046240472404824049240502405124052240532405424055240562405724058240592406024061240622406324064240652406624067240682406924070240712407224073240742407524076240772407824079240802408124082240832408424085240862408724088240892409024091240922409324094240952409624097240982409924100241012410224103241042410524106241072410824109241102411124112241132411424115241162411724118241192412024121241222412324124241252412624127241282412924130241312413224133241342413524136241372413824139241402414124142241432414424145241462414724148241492415024151241522415324154241552415624157241582415924160241612416224163241642416524166241672416824169241702417124172241732417424175241762417724178241792418024181241822418324184241852418624187241882418924190241912419224193241942419524196241972419824199242002420124202242032420424205242062420724208242092421024211242122421324214242152421624217242182421924220242212422224223242242422524226242272422824229242302423124232242332423424235242362423724238242392424024241242422424324244242452424624247242482424924250242512425224253242542425524256242572425824259242602426124262242632426424265242662426724268242692427024271242722427324274242752427624277242782427924280242812428224283242842428524286242872428824289242902429124292242932429424295242962429724298242992430024301243022430324304243052430624307243082430924310243112431224313243142431524316243172431824319243202432124322243232432424325243262432724328243292433024331243322433324334243352433624337243382433924340243412434224343243442434524346243472434824349243502435124352243532435424355243562435724358243592436024361243622436324364243652436624367243682436924370243712437224373243742437524376243772437824379243802438124382243832438424385243862438724388243892439024391243922439324394243952439624397243982439924400244012440224403244042440524406244072440824409244102441124412244132441424415244162441724418244192442024421244222442324424244252442624427244282442924430244312443224433244342443524436244372443824439244402444124442244432444424445244462444724448244492445024451244522445324454244552445624457244582445924460244612446224463244642446524466244672446824469244702447124472244732447424475244762447724478244792448024481244822448324484244852448624487244882448924490244912449224493244942449524496244972449824499245002450124502245032450424505245062450724508245092451024511245122451324514245152451624517245182451924520245212452224523245242452524526245272452824529245302453124532245332453424535245362453724538245392454024541245422454324544245452454624547245482454924550245512455224553245542455524556245572455824559245602456124562245632456424565245662456724568245692457024571245722457324574245752457624577245782457924580245812458224583245842458524586245872458824589245902459124592245932459424595245962459724598245992460024601246022460324604246052460624607246082460924610246112461224613246142461524616246172461824619246202462124622246232462424625246262462724628246292463024631246322463324634246352463624637246382463924640246412464224643246442464524646246472464824649246502465124652246532465424655246562465724658246592466024661246622466324664246652466624667246682466924670246712467224673246742467524676246772467824679246802468124682246832468424685246862468724688246892469024691246922469324694246952469624697246982469924700247012470224703247042470524706247072470824709247102471124712247132471424715247162471724718247192472024721247222472324724247252472624727247282472924730247312473224733247342473524736247372473824739247402474124742247432474424745247462474724748247492475024751247522475324754247552475624757247582475924760247612476224763247642476524766247672476824769247702477124772247732477424775247762477724778247792478024781247822478324784247852478624787247882478924790247912479224793247942479524796247972479824799248002480124802248032480424805248062480724808248092481024811248122481324814248152481624817248182481924820248212482224823248242482524826248272482824829248302483124832248332483424835248362483724838248392484024841248422484324844248452484624847248482484924850248512485224853248542485524856248572485824859248602486124862248632486424865248662486724868248692487024871248722487324874248752487624877248782487924880248812488224883248842488524886248872488824889248902489124892248932489424895248962489724898248992490024901249022490324904249052490624907249082490924910249112491224913249142491524916249172491824919249202492124922249232492424925249262492724928249292493024931249322493324934249352493624937249382493924940249412494224943249442494524946249472494824949249502495124952249532495424955249562495724958249592496024961249622496324964249652496624967249682496924970249712497224973249742497524976249772497824979249802498124982249832498424985249862498724988249892499024991249922499324994249952499624997249982499925000250012500225003250042500525006250072500825009250102501125012250132501425015250162501725018250192502025021250222502325024250252502625027250282502925030250312503225033250342503525036250372503825039250402504125042250432504425045250462504725048250492505025051250522505325054250552505625057250582505925060250612506225063250642506525066250672506825069250702507125072250732507425075250762507725078250792508025081250822508325084250852508625087250882508925090250912509225093250942509525096250972509825099251002510125102251032510425105251062510725108251092511025111251122511325114251152511625117251182511925120251212512225123251242512525126251272512825129251302513125132251332513425135251362513725138251392514025141251422514325144251452514625147251482514925150251512515225153251542515525156251572515825159251602516125162251632516425165251662516725168251692517025171251722517325174251752517625177251782517925180251812518225183251842518525186251872518825189251902519125192251932519425195251962519725198251992520025201252022520325204252052520625207252082520925210252112521225213252142521525216252172521825219252202522125222252232522425225252262522725228252292523025231252322523325234252352523625237252382523925240252412524225243252442524525246252472524825249252502525125252252532525425255252562525725258252592526025261252622526325264252652526625267252682526925270252712527225273252742527525276252772527825279252802528125282252832528425285252862528725288252892529025291252922529325294252952529625297252982529925300253012530225303253042530525306253072530825309253102531125312253132531425315253162531725318253192532025321253222532325324253252532625327253282532925330253312533225333253342533525336253372533825339253402534125342253432534425345253462534725348253492535025351253522535325354253552535625357253582535925360253612536225363253642536525366253672536825369253702537125372253732537425375253762537725378253792538025381253822538325384253852538625387253882538925390253912539225393253942539525396253972539825399254002540125402254032540425405254062540725408254092541025411254122541325414254152541625417254182541925420254212542225423254242542525426254272542825429254302543125432254332543425435254362543725438254392544025441254422544325444254452544625447254482544925450254512545225453254542545525456254572545825459254602546125462254632546425465254662546725468254692547025471254722547325474254752547625477254782547925480254812548225483254842548525486254872548825489254902549125492254932549425495254962549725498254992550025501255022550325504255052550625507255082550925510255112551225513255142551525516255172551825519255202552125522255232552425525255262552725528255292553025531255322553325534255352553625537255382553925540255412554225543255442554525546255472554825549255502555125552255532555425555255562555725558255592556025561255622556325564255652556625567255682556925570255712557225573255742557525576255772557825579255802558125582255832558425585255862558725588255892559025591255922559325594255952559625597255982559925600256012560225603256042560525606256072560825609256102561125612256132561425615256162561725618256192562025621256222562325624256252562625627256282562925630256312563225633256342563525636256372563825639256402564125642256432564425645256462564725648256492565025651256522565325654256552565625657256582565925660256612566225663256642566525666256672566825669256702567125672256732567425675256762567725678256792568025681256822568325684256852568625687256882568925690256912569225693256942569525696256972569825699257002570125702257032570425705257062570725708257092571025711257122571325714257152571625717257182571925720257212572225723257242572525726257272572825729257302573125732257332573425735257362573725738257392574025741257422574325744257452574625747257482574925750257512575225753257542575525756257572575825759257602576125762257632576425765257662576725768257692577025771257722577325774257752577625777257782577925780257812578225783257842578525786257872578825789257902579125792257932579425795257962579725798257992580025801258022580325804258052580625807258082580925810258112581225813258142581525816258172581825819258202582125822258232582425825258262582725828258292583025831258322583325834258352583625837258382583925840258412584225843258442584525846258472584825849258502585125852258532585425855258562585725858258592586025861258622586325864258652586625867258682586925870258712587225873258742587525876258772587825879258802588125882258832588425885258862588725888258892589025891258922589325894258952589625897258982589925900259012590225903259042590525906259072590825909259102591125912259132591425915259162591725918259192592025921259222592325924259252592625927259282592925930259312593225933259342593525936259372593825939259402594125942259432594425945259462594725948259492595025951259522595325954259552595625957259582595925960259612596225963259642596525966259672596825969259702597125972259732597425975259762597725978259792598025981259822598325984259852598625987259882598925990259912599225993259942599525996259972599825999260002600126002260032600426005260062600726008260092601026011260122601326014260152601626017260182601926020260212602226023260242602526026260272602826029260302603126032260332603426035260362603726038260392604026041260422604326044260452604626047260482604926050260512605226053260542605526056260572605826059260602606126062260632606426065260662606726068260692607026071260722607326074260752607626077260782607926080260812608226083260842608526086260872608826089260902609126092260932609426095260962609726098260992610026101261022610326104261052610626107261082610926110261112611226113261142611526116261172611826119261202612126122261232612426125261262612726128261292613026131261322613326134261352613626137261382613926140261412614226143261442614526146261472614826149261502615126152261532615426155261562615726158261592616026161261622616326164261652616626167261682616926170261712617226173261742617526176261772617826179261802618126182261832618426185261862618726188261892619026191261922619326194261952619626197261982619926200262012620226203262042620526206262072620826209262102621126212262132621426215262162621726218262192622026221262222622326224262252622626227262282622926230262312623226233262342623526236262372623826239262402624126242262432624426245262462624726248262492625026251262522625326254262552625626257262582625926260262612626226263262642626526266262672626826269262702627126272262732627426275262762627726278262792628026281262822628326284262852628626287262882628926290262912629226293262942629526296262972629826299263002630126302263032630426305263062630726308263092631026311263122631326314263152631626317263182631926320263212632226323263242632526326263272632826329263302633126332263332633426335263362633726338263392634026341263422634326344263452634626347263482634926350263512635226353263542635526356263572635826359263602636126362263632636426365263662636726368263692637026371263722637326374263752637626377263782637926380263812638226383263842638526386263872638826389263902639126392263932639426395263962639726398263992640026401264022640326404264052640626407264082640926410264112641226413264142641526416264172641826419264202642126422264232642426425264262642726428264292643026431264322643326434264352643626437264382643926440264412644226443264442644526446264472644826449264502645126452264532645426455264562645726458264592646026461264622646326464264652646626467264682646926470264712647226473264742647526476264772647826479264802648126482264832648426485264862648726488264892649026491264922649326494264952649626497264982649926500265012650226503265042650526506265072650826509265102651126512265132651426515265162651726518265192652026521265222652326524265252652626527265282652926530265312653226533265342653526536265372653826539265402654126542265432654426545265462654726548265492655026551265522655326554265552655626557265582655926560265612656226563265642656526566265672656826569265702657126572265732657426575265762657726578265792658026581265822658326584265852658626587265882658926590265912659226593265942659526596265972659826599266002660126602266032660426605266062660726608266092661026611266122661326614266152661626617266182661926620266212662226623266242662526626266272662826629266302663126632266332663426635266362663726638266392664026641266422664326644266452664626647266482664926650266512665226653266542665526656266572665826659266602666126662266632666426665266662666726668266692667026671266722667326674266752667626677266782667926680266812668226683266842668526686266872668826689266902669126692266932669426695266962669726698266992670026701267022670326704267052670626707267082670926710267112671226713267142671526716267172671826719267202672126722267232672426725267262672726728267292673026731267322673326734267352673626737267382673926740267412674226743267442674526746267472674826749267502675126752267532675426755267562675726758267592676026761267622676326764267652676626767267682676926770267712677226773267742677526776267772677826779267802678126782267832678426785267862678726788267892679026791267922679326794267952679626797267982679926800268012680226803268042680526806268072680826809268102681126812268132681426815268162681726818268192682026821268222682326824268252682626827268282682926830268312683226833268342683526836268372683826839268402684126842268432684426845268462684726848268492685026851268522685326854268552685626857268582685926860268612686226863268642686526866268672686826869268702687126872268732687426875268762687726878268792688026881268822688326884268852688626887268882688926890268912689226893268942689526896268972689826899269002690126902269032690426905269062690726908269092691026911269122691326914269152691626917269182691926920269212692226923269242692526926269272692826929269302693126932269332693426935269362693726938269392694026941269422694326944269452694626947269482694926950269512695226953269542695526956269572695826959269602696126962269632696426965269662696726968269692697026971269722697326974269752697626977269782697926980269812698226983269842698526986269872698826989269902699126992269932699426995269962699726998269992700027001270022700327004270052700627007270082700927010270112701227013270142701527016270172701827019270202702127022270232702427025270262702727028270292703027031270322703327034270352703627037270382703927040270412704227043270442704527046270472704827049270502705127052270532705427055270562705727058270592706027061270622706327064270652706627067270682706927070270712707227073270742707527076270772707827079270802708127082270832708427085270862708727088270892709027091270922709327094270952709627097270982709927100271012710227103271042710527106271072710827109271102711127112271132711427115271162711727118271192712027121271222712327124271252712627127271282712927130271312713227133271342713527136271372713827139271402714127142271432714427145271462714727148271492715027151271522715327154271552715627157271582715927160271612716227163271642716527166271672716827169271702717127172271732717427175271762717727178271792718027181271822718327184271852718627187271882718927190271912719227193271942719527196271972719827199272002720127202272032720427205272062720727208272092721027211272122721327214272152721627217272182721927220272212722227223272242722527226272272722827229272302723127232272332723427235272362723727238272392724027241272422724327244272452724627247272482724927250272512725227253272542725527256272572725827259272602726127262272632726427265272662726727268272692727027271272722727327274272752727627277272782727927280272812728227283272842728527286272872728827289272902729127292272932729427295272962729727298272992730027301273022730327304273052730627307273082730927310273112731227313273142731527316273172731827319273202732127322273232732427325273262732727328273292733027331273322733327334273352733627337273382733927340273412734227343273442734527346273472734827349273502735127352273532735427355273562735727358273592736027361273622736327364273652736627367273682736927370273712737227373273742737527376273772737827379273802738127382273832738427385273862738727388273892739027391273922739327394273952739627397273982739927400274012740227403274042740527406274072740827409274102741127412274132741427415274162741727418274192742027421274222742327424274252742627427274282742927430274312743227433274342743527436274372743827439274402744127442274432744427445274462744727448274492745027451274522745327454274552745627457274582745927460274612746227463274642746527466274672746827469274702747127472274732747427475274762747727478274792748027481274822748327484274852748627487274882748927490274912749227493274942749527496274972749827499275002750127502275032750427505275062750727508275092751027511275122751327514275152751627517275182751927520275212752227523275242752527526275272752827529275302753127532275332753427535275362753727538275392754027541275422754327544275452754627547275482754927550275512755227553275542755527556275572755827559275602756127562275632756427565275662756727568275692757027571275722757327574275752757627577275782757927580275812758227583275842758527586275872758827589275902759127592275932759427595275962759727598275992760027601276022760327604276052760627607276082760927610276112761227613276142761527616276172761827619276202762127622276232762427625276262762727628276292763027631276322763327634276352763627637276382763927640276412764227643276442764527646276472764827649276502765127652276532765427655276562765727658276592766027661276622766327664276652766627667276682766927670276712767227673276742767527676276772767827679276802768127682276832768427685276862768727688276892769027691276922769327694276952769627697276982769927700277012770227703277042770527706277072770827709277102771127712277132771427715277162771727718277192772027721277222772327724277252772627727277282772927730277312773227733277342773527736277372773827739277402774127742277432774427745277462774727748277492775027751277522775327754277552775627757277582775927760277612776227763277642776527766277672776827769277702777127772277732777427775277762777727778277792778027781277822778327784277852778627787277882778927790277912779227793277942779527796277972779827799278002780127802278032780427805278062780727808278092781027811278122781327814278152781627817278182781927820278212782227823278242782527826278272782827829278302783127832278332783427835278362783727838278392784027841278422784327844278452784627847278482784927850278512785227853278542785527856278572785827859278602786127862278632786427865278662786727868278692787027871278722787327874278752787627877278782787927880278812788227883278842788527886278872788827889278902789127892278932789427895278962789727898278992790027901279022790327904279052790627907279082790927910279112791227913279142791527916279172791827919279202792127922279232792427925279262792727928279292793027931279322793327934279352793627937279382793927940279412794227943279442794527946279472794827949279502795127952279532795427955279562795727958279592796027961279622796327964279652796627967279682796927970279712797227973279742797527976279772797827979279802798127982279832798427985279862798727988279892799027991279922799327994279952799627997279982799928000280012800228003280042800528006280072800828009280102801128012280132801428015280162801728018280192802028021280222802328024280252802628027280282802928030280312803228033280342803528036280372803828039280402804128042280432804428045280462804728048280492805028051280522805328054280552805628057280582805928060280612806228063280642806528066280672806828069280702807128072280732807428075280762807728078280792808028081280822808328084280852808628087280882808928090280912809228093280942809528096280972809828099281002810128102281032810428105281062810728108281092811028111281122811328114281152811628117281182811928120281212812228123281242812528126281272812828129281302813128132281332813428135281362813728138281392814028141281422814328144281452814628147281482814928150281512815228153281542815528156281572815828159281602816128162281632816428165281662816728168281692817028171281722817328174281752817628177281782817928180281812818228183281842818528186281872818828189281902819128192281932819428195281962819728198281992820028201282022820328204282052820628207282082820928210282112821228213282142821528216282172821828219282202822128222282232822428225282262822728228282292823028231282322823328234282352823628237282382823928240282412824228243282442824528246282472824828249282502825128252282532825428255282562825728258282592826028261282622826328264282652826628267282682826928270282712827228273282742827528276282772827828279282802828128282282832828428285282862828728288282892829028291282922829328294282952829628297282982829928300283012830228303283042830528306283072830828309283102831128312283132831428315283162831728318283192832028321283222832328324283252832628327283282832928330283312833228333283342833528336283372833828339283402834128342283432834428345283462834728348283492835028351283522835328354283552835628357283582835928360283612836228363283642836528366283672836828369283702837128372283732837428375283762837728378283792838028381283822838328384283852838628387283882838928390283912839228393283942839528396283972839828399284002840128402284032840428405284062840728408284092841028411284122841328414284152841628417284182841928420284212842228423284242842528426284272842828429284302843128432284332843428435284362843728438284392844028441284422844328444284452844628447284482844928450284512845228453284542845528456284572845828459284602846128462284632846428465284662846728468284692847028471284722847328474284752847628477284782847928480284812848228483284842848528486284872848828489284902849128492284932849428495284962849728498284992850028501285022850328504285052850628507285082850928510285112851228513285142851528516285172851828519285202852128522285232852428525285262852728528285292853028531285322853328534285352853628537285382853928540285412854228543285442854528546285472854828549285502855128552285532855428555285562855728558285592856028561285622856328564285652856628567285682856928570285712857228573285742857528576285772857828579285802858128582285832858428585285862858728588285892859028591285922859328594285952859628597285982859928600286012860228603286042860528606286072860828609286102861128612286132861428615286162861728618286192862028621286222862328624286252862628627286282862928630286312863228633286342863528636286372863828639286402864128642286432864428645286462864728648286492865028651286522865328654286552865628657286582865928660286612866228663286642866528666286672866828669286702867128672286732867428675286762867728678286792868028681286822868328684286852868628687286882868928690286912869228693286942869528696286972869828699287002870128702287032870428705287062870728708287092871028711287122871328714287152871628717287182871928720287212872228723287242872528726287272872828729287302873128732287332873428735287362873728738287392874028741287422874328744287452874628747287482874928750287512875228753287542875528756287572875828759287602876128762287632876428765287662876728768287692877028771287722877328774287752877628777287782877928780287812878228783287842878528786287872878828789287902879128792287932879428795287962879728798287992880028801288022880328804288052880628807288082880928810288112881228813288142881528816288172881828819288202882128822288232882428825288262882728828288292883028831288322883328834288352883628837288382883928840288412884228843288442884528846288472884828849288502885128852288532885428855288562885728858288592886028861288622886328864288652886628867288682886928870288712887228873288742887528876288772887828879288802888128882288832888428885288862888728888288892889028891288922889328894288952889628897288982889928900289012890228903289042890528906289072890828909289102891128912289132891428915289162891728918289192892028921289222892328924289252892628927289282892928930289312893228933289342893528936289372893828939289402894128942289432894428945289462894728948289492895028951289522895328954289552895628957289582895928960289612896228963289642896528966289672896828969289702897128972289732897428975289762897728978289792898028981289822898328984289852898628987289882898928990289912899228993289942899528996289972899828999290002900129002290032900429005290062900729008290092901029011290122901329014290152901629017290182901929020290212902229023290242902529026290272902829029290302903129032290332903429035290362903729038290392904029041290422904329044290452904629047290482904929050290512905229053290542905529056290572905829059290602906129062290632906429065290662906729068290692907029071290722907329074290752907629077290782907929080290812908229083290842908529086290872908829089290902909129092290932909429095290962909729098290992910029101291022910329104291052910629107291082910929110291112911229113291142911529116291172911829119291202912129122291232912429125291262912729128291292913029131291322913329134291352913629137291382913929140291412914229143291442914529146291472914829149291502915129152291532915429155291562915729158291592916029161291622916329164291652916629167291682916929170291712917229173291742917529176291772917829179291802918129182291832918429185291862918729188291892919029191291922919329194291952919629197291982919929200292012920229203292042920529206292072920829209292102921129212292132921429215292162921729218292192922029221292222922329224292252922629227292282922929230292312923229233292342923529236292372923829239292402924129242292432924429245292462924729248292492925029251292522925329254292552925629257292582925929260292612926229263292642926529266292672926829269292702927129272292732927429275292762927729278292792928029281292822928329284292852928629287292882928929290292912929229293292942929529296292972929829299293002930129302293032930429305293062930729308293092931029311293122931329314293152931629317293182931929320293212932229323293242932529326293272932829329293302933129332293332933429335293362933729338293392934029341293422934329344293452934629347293482934929350293512935229353293542935529356293572935829359293602936129362293632936429365293662936729368293692937029371293722937329374293752937629377293782937929380293812938229383293842938529386293872938829389293902939129392293932939429395293962939729398293992940029401294022940329404294052940629407294082940929410294112941229413294142941529416294172941829419294202942129422294232942429425294262942729428294292943029431294322943329434294352943629437294382943929440294412944229443294442944529446294472944829449294502945129452294532945429455294562945729458294592946029461294622946329464294652946629467294682946929470294712947229473294742947529476294772947829479294802948129482294832948429485294862948729488294892949029491294922949329494294952949629497294982949929500295012950229503295042950529506295072950829509295102951129512295132951429515295162951729518295192952029521295222952329524295252952629527295282952929530295312953229533295342953529536295372953829539295402954129542295432954429545295462954729548295492955029551295522955329554295552955629557295582955929560295612956229563295642956529566295672956829569295702957129572295732957429575295762957729578295792958029581295822958329584295852958629587295882958929590295912959229593295942959529596295972959829599296002960129602296032960429605296062960729608296092961029611296122961329614296152961629617296182961929620296212962229623296242962529626296272962829629296302963129632296332963429635296362963729638296392964029641296422964329644296452964629647296482964929650296512965229653296542965529656296572965829659296602966129662296632966429665296662966729668296692967029671296722967329674296752967629677296782967929680296812968229683296842968529686296872968829689296902969129692296932969429695296962969729698296992970029701297022970329704297052970629707297082970929710297112971229713297142971529716297172971829719297202972129722297232972429725297262972729728297292973029731297322973329734297352973629737297382973929740297412974229743297442974529746297472974829749297502975129752297532975429755297562975729758297592976029761297622976329764297652976629767297682976929770297712977229773297742977529776297772977829779297802978129782297832978429785297862978729788297892979029791297922979329794297952979629797297982979929800298012980229803298042980529806298072980829809298102981129812298132981429815298162981729818298192982029821298222982329824298252982629827298282982929830298312983229833298342983529836298372983829839298402984129842298432984429845298462984729848298492985029851298522985329854298552985629857298582985929860298612986229863298642986529866298672986829869298702987129872298732987429875298762987729878298792988029881298822988329884298852988629887298882988929890298912989229893298942989529896298972989829899299002990129902299032990429905299062990729908299092991029911299122991329914299152991629917299182991929920299212992229923299242992529926299272992829929299302993129932299332993429935299362993729938299392994029941299422994329944299452994629947299482994929950299512995229953299542995529956299572995829959299602996129962299632996429965299662996729968299692997029971299722997329974299752997629977299782997929980299812998229983299842998529986299872998829989299902999129992299932999429995299962999729998299993000030001300023000330004300053000630007300083000930010300113001230013300143001530016300173001830019300203002130022300233002430025300263002730028300293003030031300323003330034300353003630037300383003930040300413004230043300443004530046300473004830049300503005130052300533005430055300563005730058300593006030061300623006330064300653006630067300683006930070300713007230073300743007530076300773007830079300803008130082300833008430085300863008730088300893009030091300923009330094300953009630097300983009930100301013010230103301043010530106301073010830109301103011130112301133011430115301163011730118301193012030121301223012330124301253012630127301283012930130301313013230133301343013530136301373013830139301403014130142301433014430145301463014730148301493015030151301523015330154301553015630157301583015930160301613016230163301643016530166301673016830169301703017130172301733017430175301763017730178301793018030181301823018330184301853018630187301883018930190301913019230193301943019530196301973019830199302003020130202302033020430205302063020730208302093021030211302123021330214302153021630217302183021930220302213022230223302243022530226302273022830229302303023130232302333023430235302363023730238302393024030241302423024330244302453024630247302483024930250302513025230253302543025530256302573025830259302603026130262302633026430265302663026730268302693027030271302723027330274302753027630277302783027930280302813028230283302843028530286302873028830289302903029130292302933029430295302963029730298302993030030301303023030330304303053030630307303083030930310303113031230313303143031530316303173031830319303203032130322303233032430325303263032730328303293033030331303323033330334303353033630337303383033930340303413034230343303443034530346303473034830349303503035130352303533035430355303563035730358303593036030361303623036330364303653036630367303683036930370303713037230373303743037530376303773037830379303803038130382303833038430385303863038730388303893039030391303923039330394303953039630397303983039930400304013040230403304043040530406304073040830409304103041130412304133041430415304163041730418304193042030421304223042330424304253042630427304283042930430304313043230433304343043530436304373043830439304403044130442304433044430445304463044730448304493045030451304523045330454304553045630457304583045930460304613046230463304643046530466304673046830469304703047130472304733047430475304763047730478304793048030481304823048330484304853048630487304883048930490304913049230493304943049530496304973049830499305003050130502305033050430505305063050730508305093051030511305123051330514305153051630517305183051930520305213052230523305243052530526305273052830529305303053130532305333053430535305363053730538305393054030541305423054330544305453054630547305483054930550305513055230553305543055530556305573055830559305603056130562305633056430565305663056730568305693057030571305723057330574305753057630577305783057930580305813058230583305843058530586305873058830589305903059130592305933059430595305963059730598305993060030601306023060330604306053060630607306083060930610306113061230613306143061530616306173061830619306203062130622306233062430625306263062730628306293063030631306323063330634306353063630637306383063930640306413064230643306443064530646306473064830649306503065130652306533065430655306563065730658306593066030661306623066330664306653066630667306683066930670306713067230673306743067530676306773067830679306803068130682306833068430685306863068730688306893069030691306923069330694306953069630697306983069930700307013070230703307043070530706307073070830709307103071130712307133071430715307163071730718307193072030721307223072330724307253072630727307283072930730307313073230733307343073530736307373073830739307403074130742307433074430745307463074730748307493075030751307523075330754307553075630757307583075930760307613076230763307643076530766307673076830769307703077130772307733077430775307763077730778307793078030781307823078330784307853078630787307883078930790307913079230793307943079530796307973079830799308003080130802308033080430805308063080730808308093081030811308123081330814308153081630817308183081930820308213082230823308243082530826308273082830829308303083130832308333083430835308363083730838308393084030841308423084330844308453084630847308483084930850308513085230853308543085530856308573085830859308603086130862308633086430865308663086730868308693087030871308723087330874308753087630877308783087930880308813088230883308843088530886308873088830889308903089130892308933089430895308963089730898308993090030901309023090330904309053090630907309083090930910309113091230913309143091530916309173091830919309203092130922309233092430925309263092730928309293093030931309323093330934309353093630937309383093930940309413094230943309443094530946309473094830949309503095130952309533095430955309563095730958309593096030961309623096330964309653096630967309683096930970309713097230973309743097530976309773097830979309803098130982309833098430985309863098730988309893099030991309923099330994309953099630997309983099931000310013100231003310043100531006310073100831009310103101131012310133101431015310163101731018310193102031021310223102331024310253102631027310283102931030310313103231033310343103531036310373103831039310403104131042310433104431045310463104731048310493105031051310523105331054310553105631057310583105931060310613106231063310643106531066310673106831069310703107131072310733107431075310763107731078310793108031081310823108331084310853108631087310883108931090310913109231093310943109531096310973109831099311003110131102311033110431105311063110731108311093111031111311123111331114311153111631117311183111931120311213112231123311243112531126311273112831129311303113131132311333113431135311363113731138311393114031141311423114331144311453114631147311483114931150311513115231153311543115531156311573115831159311603116131162311633116431165311663116731168311693117031171311723117331174311753117631177311783117931180311813118231183311843118531186311873118831189311903119131192311933119431195311963119731198311993120031201312023120331204312053120631207312083120931210312113121231213312143121531216312173121831219312203122131222312233122431225312263122731228312293123031231312323123331234312353123631237312383123931240312413124231243312443124531246312473124831249312503125131252312533125431255312563125731258312593126031261312623126331264312653126631267312683126931270312713127231273312743127531276312773127831279312803128131282312833128431285312863128731288312893129031291312923129331294312953129631297312983129931300313013130231303313043130531306313073130831309313103131131312313133131431315313163131731318313193132031321313223132331324313253132631327313283132931330313313133231333313343133531336313373133831339313403134131342313433134431345313463134731348313493135031351313523135331354313553135631357313583135931360313613136231363313643136531366313673136831369313703137131372313733137431375313763137731378313793138031381313823138331384313853138631387313883138931390313913139231393313943139531396313973139831399314003140131402314033140431405314063140731408314093141031411314123141331414314153141631417314183141931420314213142231423314243142531426314273142831429314303143131432314333143431435314363143731438314393144031441314423144331444314453144631447314483144931450314513145231453314543145531456314573145831459314603146131462314633146431465314663146731468314693147031471314723147331474314753147631477314783147931480314813148231483314843148531486314873148831489314903149131492314933149431495314963149731498314993150031501315023150331504315053150631507315083150931510315113151231513315143151531516315173151831519315203152131522315233152431525315263152731528315293153031531315323153331534315353153631537315383153931540315413154231543315443154531546315473154831549315503155131552315533155431555315563155731558315593156031561315623156331564315653156631567315683156931570315713157231573315743157531576315773157831579315803158131582315833158431585315863158731588315893159031591315923159331594315953159631597315983159931600316013160231603316043160531606316073160831609316103161131612316133161431615316163161731618316193162031621316223162331624316253162631627316283162931630316313163231633316343163531636316373163831639316403164131642316433164431645316463164731648316493165031651316523165331654316553165631657316583165931660316613166231663316643166531666316673166831669316703167131672316733167431675316763167731678316793168031681316823168331684316853168631687316883168931690316913169231693316943169531696316973169831699317003170131702317033170431705317063170731708317093171031711317123171331714317153171631717317183171931720317213172231723317243172531726317273172831729317303173131732317333173431735317363173731738317393174031741317423174331744317453174631747317483174931750317513175231753317543175531756317573175831759317603176131762317633176431765317663176731768317693177031771317723177331774317753177631777317783177931780317813178231783317843178531786317873178831789317903179131792317933179431795317963179731798317993180031801318023180331804318053180631807318083180931810318113181231813318143181531816318173181831819318203182131822318233182431825318263182731828318293183031831318323183331834318353183631837318383183931840318413184231843318443184531846318473184831849318503185131852318533185431855318563185731858318593186031861318623186331864318653186631867318683186931870318713187231873318743187531876318773187831879318803188131882318833188431885318863188731888318893189031891318923189331894318953189631897318983189931900319013190231903319043190531906319073190831909319103191131912319133191431915319163191731918319193192031921319223192331924319253192631927319283192931930319313193231933319343193531936319373193831939319403194131942319433194431945319463194731948319493195031951319523195331954319553195631957319583195931960319613196231963319643196531966319673196831969319703197131972319733197431975319763197731978319793198031981319823198331984319853198631987319883198931990319913199231993319943199531996319973199831999320003200132002320033200432005320063200732008320093201032011320123201332014320153201632017320183201932020320213202232023320243202532026320273202832029320303203132032320333203432035320363203732038320393204032041320423204332044320453204632047320483204932050320513205232053320543205532056320573205832059320603206132062320633206432065320663206732068320693207032071320723207332074320753207632077320783207932080320813208232083320843208532086320873208832089320903209132092320933209432095320963209732098320993210032101321023210332104321053210632107321083210932110321113211232113321143211532116321173211832119321203212132122321233212432125321263212732128321293213032131321323213332134321353213632137321383213932140321413214232143321443214532146321473214832149321503215132152321533215432155321563215732158321593216032161321623216332164321653216632167321683216932170321713217232173321743217532176321773217832179321803218132182321833218432185321863218732188321893219032191321923219332194321953219632197321983219932200322013220232203322043220532206322073220832209322103221132212322133221432215322163221732218322193222032221322223222332224322253222632227322283222932230322313223232233322343223532236322373223832239322403224132242322433224432245322463224732248322493225032251322523225332254322553225632257322583225932260322613226232263322643226532266322673226832269322703227132272322733227432275322763227732278322793228032281322823228332284322853228632287322883228932290322913229232293322943229532296322973229832299323003230132302323033230432305323063230732308323093231032311323123231332314323153231632317323183231932320323213232232323323243232532326323273232832329323303233132332323333233432335323363233732338323393234032341323423234332344323453234632347323483234932350323513235232353323543235532356323573235832359323603236132362323633236432365323663236732368323693237032371323723237332374323753237632377323783237932380323813238232383323843238532386323873238832389323903239132392323933239432395323963239732398323993240032401324023240332404324053240632407324083240932410324113241232413324143241532416324173241832419324203242132422324233242432425324263242732428324293243032431324323243332434324353243632437324383243932440324413244232443324443244532446324473244832449324503245132452324533245432455324563245732458324593246032461324623246332464324653246632467324683246932470324713247232473324743247532476324773247832479324803248132482324833248432485324863248732488324893249032491324923249332494324953249632497324983249932500325013250232503325043250532506325073250832509325103251132512325133251432515325163251732518325193252032521325223252332524325253252632527325283252932530325313253232533325343253532536325373253832539325403254132542325433254432545325463254732548325493255032551325523255332554325553255632557325583255932560325613256232563325643256532566325673256832569325703257132572325733257432575325763257732578325793258032581325823258332584325853258632587325883258932590325913259232593325943259532596325973259832599326003260132602326033260432605326063260732608326093261032611326123261332614326153261632617326183261932620326213262232623326243262532626326273262832629326303263132632326333263432635326363263732638326393264032641326423264332644326453264632647326483264932650326513265232653326543265532656326573265832659326603266132662326633266432665326663266732668326693267032671326723267332674326753267632677326783267932680326813268232683326843268532686326873268832689326903269132692326933269432695326963269732698326993270032701327023270332704327053270632707327083270932710327113271232713327143271532716327173271832719327203272132722327233272432725327263272732728327293273032731327323273332734327353273632737327383273932740327413274232743327443274532746327473274832749327503275132752327533275432755327563275732758327593276032761327623276332764327653276632767327683276932770327713277232773327743277532776327773277832779327803278132782327833278432785327863278732788327893279032791327923279332794327953279632797327983279932800328013280232803328043280532806328073280832809328103281132812328133281432815328163281732818328193282032821328223282332824328253282632827328283282932830328313283232833328343283532836328373283832839328403284132842328433284432845328463284732848328493285032851328523285332854328553285632857328583285932860328613286232863328643286532866328673286832869328703287132872328733287432875328763287732878328793288032881328823288332884328853288632887328883288932890328913289232893328943289532896328973289832899329003290132902329033290432905329063290732908329093291032911329123291332914329153291632917329183291932920329213292232923329243292532926329273292832929329303293132932329333293432935329363293732938329393294032941329423294332944329453294632947329483294932950329513295232953329543295532956329573295832959329603296132962329633296432965329663296732968329693297032971329723297332974329753297632977329783297932980329813298232983329843298532986329873298832989329903299132992329933299432995329963299732998329993300033001330023300333004330053300633007330083300933010330113301233013330143301533016330173301833019330203302133022330233302433025330263302733028330293303033031330323303333034330353303633037330383303933040330413304233043330443304533046330473304833049330503305133052330533305433055330563305733058330593306033061330623306333064330653306633067330683306933070330713307233073330743307533076330773307833079330803308133082330833308433085330863308733088330893309033091330923309333094330953309633097330983309933100331013310233103331043310533106331073310833109331103311133112331133311433115331163311733118331193312033121331223312333124331253312633127331283312933130331313313233133331343313533136331373313833139331403314133142331433314433145331463314733148331493315033151331523315333154331553315633157331583315933160331613316233163331643316533166331673316833169331703317133172331733317433175331763317733178331793318033181331823318333184331853318633187331883318933190331913319233193331943319533196331973319833199332003320133202332033320433205332063320733208332093321033211332123321333214332153321633217332183321933220332213322233223332243322533226332273322833229332303323133232332333323433235332363323733238332393324033241332423324333244332453324633247332483324933250332513325233253332543325533256332573325833259332603326133262332633326433265332663326733268332693327033271332723327333274332753327633277332783327933280332813328233283332843328533286332873328833289332903329133292332933329433295332963329733298332993330033301333023330333304333053330633307333083330933310333113331233313333143331533316333173331833319333203332133322333233332433325333263332733328333293333033331333323333333334333353333633337333383333933340333413334233343333443334533346333473334833349333503335133352333533335433355333563335733358333593336033361333623336333364333653336633367333683336933370333713337233373333743337533376333773337833379333803338133382333833338433385333863338733388333893339033391333923339333394333953339633397333983339933400334013340233403334043340533406334073340833409334103341133412334133341433415334163341733418334193342033421334223342333424334253342633427334283342933430334313343233433334343343533436334373343833439334403344133442334433344433445334463344733448334493345033451334523345333454334553345633457334583345933460334613346233463334643346533466334673346833469334703347133472334733347433475334763347733478334793348033481334823348333484334853348633487334883348933490334913349233493334943349533496334973349833499335003350133502335033350433505335063350733508335093351033511335123351333514335153351633517335183351933520335213352233523335243352533526335273352833529335303353133532335333353433535335363353733538335393354033541335423354333544335453354633547335483354933550335513355233553335543355533556335573355833559335603356133562335633356433565335663356733568335693357033571335723357333574335753357633577335783357933580335813358233583335843358533586335873358833589335903359133592335933359433595335963359733598335993360033601336023360333604336053360633607336083360933610336113361233613336143361533616336173361833619336203362133622336233362433625336263362733628336293363033631336323363333634336353363633637336383363933640336413364233643336443364533646336473364833649336503365133652336533365433655336563365733658336593366033661336623366333664336653366633667336683366933670336713367233673336743367533676336773367833679336803368133682336833368433685336863368733688336893369033691336923369333694336953369633697336983369933700337013370233703337043370533706337073370833709337103371133712337133371433715337163371733718337193372033721337223372333724337253372633727337283372933730337313373233733337343373533736337373373833739337403374133742337433374433745337463374733748337493375033751337523375333754337553375633757337583375933760337613376233763337643376533766337673376833769337703377133772337733377433775337763377733778337793378033781337823378333784337853378633787337883378933790337913379233793337943379533796337973379833799338003380133802338033380433805338063380733808338093381033811338123381333814338153381633817338183381933820338213382233823338243382533826338273382833829338303383133832338333383433835338363383733838338393384033841338423384333844338453384633847338483384933850338513385233853338543385533856338573385833859338603386133862338633386433865338663386733868338693387033871338723387333874338753387633877338783387933880338813388233883338843388533886338873388833889338903389133892338933389433895338963389733898338993390033901339023390333904339053390633907339083390933910339113391233913339143391533916339173391833919339203392133922339233392433925339263392733928339293393033931339323393333934339353393633937339383393933940339413394233943339443394533946339473394833949339503395133952339533395433955339563395733958339593396033961339623396333964339653396633967339683396933970339713397233973339743397533976339773397833979339803398133982339833398433985339863398733988339893399033991339923399333994339953399633997339983399934000340013400234003340043400534006340073400834009340103401134012340133401434015340163401734018340193402034021340223402334024340253402634027340283402934030340313403234033340343403534036340373403834039340403404134042340433404434045340463404734048340493405034051340523405334054340553405634057340583405934060340613406234063340643406534066340673406834069340703407134072340733407434075340763407734078340793408034081340823408334084340853408634087340883408934090340913409234093340943409534096340973409834099341003410134102341033410434105341063410734108341093411034111341123411334114341153411634117341183411934120341213412234123341243412534126341273412834129341303413134132341333413434135341363413734138341393414034141341423414334144341453414634147341483414934150341513415234153341543415534156341573415834159341603416134162341633416434165341663416734168341693417034171341723417334174341753417634177341783417934180341813418234183341843418534186341873418834189341903419134192341933419434195341963419734198341993420034201342023420334204342053420634207342083420934210342113421234213342143421534216342173421834219342203422134222342233422434225342263422734228342293423034231342323423334234342353423634237342383423934240342413424234243342443424534246342473424834249342503425134252342533425434255342563425734258342593426034261342623426334264342653426634267342683426934270342713427234273342743427534276342773427834279342803428134282342833428434285342863428734288342893429034291342923429334294342953429634297342983429934300343013430234303343043430534306343073430834309343103431134312343133431434315343163431734318343193432034321343223432334324343253432634327343283432934330343313433234333343343433534336343373433834339343403434134342343433434434345343463434734348343493435034351343523435334354343553435634357343583435934360343613436234363343643436534366343673436834369343703437134372343733437434375343763437734378343793438034381343823438334384343853438634387343883438934390343913439234393343943439534396343973439834399344003440134402344033440434405344063440734408344093441034411344123441334414344153441634417344183441934420344213442234423344243442534426344273442834429344303443134432344333443434435344363443734438344393444034441344423444334444344453444634447344483444934450344513445234453344543445534456344573445834459344603446134462344633446434465344663446734468344693447034471344723447334474344753447634477344783447934480344813448234483344843448534486344873448834489344903449134492344933449434495344963449734498344993450034501345023450334504345053450634507345083450934510345113451234513345143451534516345173451834519345203452134522345233452434525345263452734528345293453034531345323453334534345353453634537345383453934540345413454234543345443454534546345473454834549345503455134552345533455434555345563455734558345593456034561345623456334564345653456634567345683456934570345713457234573345743457534576345773457834579345803458134582345833458434585345863458734588345893459034591345923459334594345953459634597345983459934600346013460234603346043460534606346073460834609346103461134612346133461434615346163461734618346193462034621346223462334624346253462634627346283462934630346313463234633346343463534636346373463834639346403464134642346433464434645346463464734648346493465034651346523465334654346553465634657346583465934660346613466234663346643466534666346673466834669346703467134672346733467434675346763467734678346793468034681346823468334684346853468634687346883468934690346913469234693346943469534696346973469834699347003470134702347033470434705347063470734708347093471034711347123471334714347153471634717347183471934720347213472234723347243472534726347273472834729347303473134732347333473434735347363473734738347393474034741347423474334744347453474634747347483474934750347513475234753347543475534756347573475834759347603476134762347633476434765347663476734768347693477034771347723477334774347753477634777347783477934780347813478234783347843478534786347873478834789347903479134792347933479434795347963479734798347993480034801348023480334804348053480634807348083480934810348113481234813348143481534816348173481834819348203482134822348233482434825348263482734828348293483034831348323483334834348353483634837348383483934840348413484234843348443484534846348473484834849348503485134852348533485434855348563485734858348593486034861348623486334864348653486634867348683486934870348713487234873348743487534876348773487834879348803488134882348833488434885348863488734888348893489034891348923489334894348953489634897348983489934900349013490234903349043490534906349073490834909349103491134912349133491434915349163491734918349193492034921349223492334924349253492634927349283492934930349313493234933349343493534936349373493834939349403494134942349433494434945349463494734948349493495034951349523495334954349553495634957349583495934960349613496234963349643496534966349673496834969349703497134972349733497434975349763497734978349793498034981349823498334984349853498634987349883498934990349913499234993349943499534996349973499834999350003500135002350033500435005350063500735008350093501035011350123501335014350153501635017350183501935020350213502235023350243502535026350273502835029350303503135032350333503435035350363503735038350393504035041350423504335044350453504635047350483504935050350513505235053350543505535056350573505835059350603506135062350633506435065350663506735068350693507035071350723507335074350753507635077350783507935080350813508235083350843508535086350873508835089350903509135092350933509435095350963509735098350993510035101351023510335104351053510635107351083510935110351113511235113351143511535116351173511835119351203512135122351233512435125351263512735128351293513035131351323513335134351353513635137351383513935140351413514235143351443514535146351473514835149351503515135152351533515435155351563515735158351593516035161351623516335164351653516635167351683516935170351713517235173351743517535176351773517835179351803518135182351833518435185351863518735188351893519035191351923519335194351953519635197351983519935200352013520235203352043520535206352073520835209352103521135212352133521435215352163521735218352193522035221352223522335224352253522635227352283522935230352313523235233352343523535236352373523835239352403524135242352433524435245352463524735248352493525035251352523525335254352553525635257352583525935260352613526235263352643526535266352673526835269352703527135272352733527435275352763527735278352793528035281352823528335284352853528635287352883528935290352913529235293352943529535296352973529835299353003530135302353033530435305353063530735308353093531035311353123531335314353153531635317353183531935320353213532235323353243532535326353273532835329353303533135332353333533435335353363533735338353393534035341353423534335344353453534635347353483534935350353513535235353353543535535356353573535835359353603536135362353633536435365353663536735368353693537035371353723537335374353753537635377353783537935380353813538235383353843538535386353873538835389353903539135392353933539435395353963539735398353993540035401354023540335404354053540635407354083540935410354113541235413354143541535416354173541835419354203542135422354233542435425354263542735428354293543035431354323543335434354353543635437354383543935440354413544235443354443544535446354473544835449354503545135452354533545435455354563545735458354593546035461354623546335464354653546635467354683546935470354713547235473354743547535476354773547835479354803548135482354833548435485354863548735488354893549035491354923549335494354953549635497354983549935500355013550235503355043550535506355073550835509355103551135512355133551435515355163551735518355193552035521355223552335524355253552635527355283552935530355313553235533355343553535536355373553835539355403554135542355433554435545355463554735548355493555035551355523555335554355553555635557355583555935560355613556235563355643556535566355673556835569355703557135572355733557435575355763557735578355793558035581355823558335584355853558635587355883558935590355913559235593355943559535596355973559835599356003560135602356033560435605356063560735608356093561035611356123561335614356153561635617356183561935620356213562235623356243562535626356273562835629356303563135632356333563435635356363563735638356393564035641356423564335644356453564635647356483564935650356513565235653356543565535656356573565835659356603566135662356633566435665356663566735668356693567035671356723567335674356753567635677356783567935680356813568235683356843568535686356873568835689356903569135692356933569435695356963569735698356993570035701357023570335704357053570635707357083570935710357113571235713357143571535716357173571835719357203572135722357233572435725357263572735728357293573035731357323573335734357353573635737357383573935740357413574235743357443574535746357473574835749357503575135752357533575435755357563575735758357593576035761357623576335764357653576635767357683576935770357713577235773357743577535776357773577835779357803578135782357833578435785357863578735788357893579035791357923579335794357953579635797357983579935800358013580235803358043580535806358073580835809358103581135812358133581435815358163581735818358193582035821358223582335824358253582635827358283582935830358313583235833358343583535836358373583835839358403584135842358433584435845358463584735848358493585035851358523585335854358553585635857358583585935860358613586235863358643586535866358673586835869358703587135872358733587435875358763587735878358793588035881358823588335884358853588635887358883588935890358913589235893358943589535896358973589835899359003590135902359033590435905359063590735908359093591035911359123591335914359153591635917359183591935920359213592235923359243592535926359273592835929359303593135932359333593435935359363593735938359393594035941359423594335944359453594635947359483594935950359513595235953359543595535956359573595835959359603596135962359633596435965359663596735968359693597035971359723597335974359753597635977359783597935980359813598235983359843598535986359873598835989359903599135992359933599435995359963599735998359993600036001360023600336004360053600636007360083600936010360113601236013360143601536016360173601836019360203602136022360233602436025360263602736028360293603036031360323603336034360353603636037360383603936040360413604236043360443604536046360473604836049360503605136052360533605436055360563605736058360593606036061360623606336064360653606636067360683606936070360713607236073360743607536076360773607836079360803608136082360833608436085360863608736088360893609036091360923609336094360953609636097360983609936100361013610236103361043610536106361073610836109361103611136112361133611436115361163611736118361193612036121361223612336124361253612636127361283612936130361313613236133361343613536136361373613836139361403614136142361433614436145361463614736148361493615036151361523615336154361553615636157361583615936160361613616236163361643616536166361673616836169361703617136172361733617436175361763617736178361793618036181361823618336184361853618636187361883618936190361913619236193361943619536196361973619836199362003620136202362033620436205362063620736208362093621036211362123621336214362153621636217362183621936220362213622236223362243622536226362273622836229362303623136232362333623436235362363623736238362393624036241362423624336244362453624636247362483624936250362513625236253362543625536256362573625836259362603626136262362633626436265362663626736268362693627036271362723627336274362753627636277362783627936280362813628236283362843628536286362873628836289362903629136292362933629436295362963629736298362993630036301363023630336304363053630636307363083630936310363113631236313363143631536316363173631836319363203632136322363233632436325363263632736328363293633036331363323633336334363353633636337363383633936340363413634236343363443634536346363473634836349363503635136352363533635436355363563635736358363593636036361363623636336364363653636636367363683636936370363713637236373363743637536376363773637836379363803638136382363833638436385363863638736388363893639036391363923639336394363953639636397363983639936400364013640236403364043640536406364073640836409364103641136412364133641436415364163641736418364193642036421364223642336424364253642636427364283642936430364313643236433364343643536436364373643836439364403644136442364433644436445364463644736448364493645036451364523645336454364553645636457364583645936460364613646236463364643646536466364673646836469364703647136472364733647436475364763647736478364793648036481364823648336484364853648636487364883648936490364913649236493364943649536496364973649836499365003650136502365033650436505365063650736508365093651036511365123651336514365153651636517365183651936520365213652236523365243652536526365273652836529365303653136532365333653436535365363653736538365393654036541365423654336544365453654636547365483654936550365513655236553365543655536556365573655836559365603656136562365633656436565365663656736568365693657036571365723657336574365753657636577365783657936580365813658236583365843658536586365873658836589365903659136592365933659436595365963659736598365993660036601366023660336604366053660636607366083660936610366113661236613366143661536616366173661836619366203662136622366233662436625366263662736628366293663036631366323663336634366353663636637366383663936640366413664236643366443664536646366473664836649366503665136652366533665436655366563665736658366593666036661366623666336664366653666636667366683666936670366713667236673366743667536676366773667836679366803668136682366833668436685366863668736688366893669036691366923669336694366953669636697366983669936700367013670236703367043670536706367073670836709367103671136712367133671436715367163671736718367193672036721367223672336724367253672636727367283672936730367313673236733367343673536736367373673836739367403674136742367433674436745367463674736748367493675036751367523675336754367553675636757367583675936760367613676236763367643676536766367673676836769367703677136772367733677436775367763677736778367793678036781367823678336784367853678636787367883678936790367913679236793367943679536796367973679836799368003680136802368033680436805368063680736808368093681036811368123681336814368153681636817368183681936820368213682236823368243682536826368273682836829368303683136832368333683436835368363683736838368393684036841368423684336844368453684636847368483684936850368513685236853368543685536856368573685836859368603686136862368633686436865368663686736868368693687036871368723687336874368753687636877368783687936880368813688236883368843688536886368873688836889368903689136892368933689436895368963689736898368993690036901369023690336904369053690636907369083690936910369113691236913369143691536916369173691836919369203692136922369233692436925369263692736928369293693036931369323693336934369353693636937369383693936940369413694236943369443694536946369473694836949369503695136952369533695436955369563695736958369593696036961369623696336964369653696636967369683696936970369713697236973369743697536976369773697836979369803698136982369833698436985369863698736988369893699036991369923699336994369953699636997369983699937000370013700237003370043700537006370073700837009370103701137012370133701437015370163701737018370193702037021370223702337024370253702637027370283702937030370313703237033370343703537036370373703837039370403704137042370433704437045370463704737048370493705037051370523705337054370553705637057370583705937060370613706237063370643706537066370673706837069370703707137072370733707437075370763707737078370793708037081370823708337084370853708637087370883708937090370913709237093370943709537096370973709837099371003710137102371033710437105371063710737108371093711037111371123711337114371153711637117371183711937120371213712237123371243712537126371273712837129371303713137132371333713437135371363713737138371393714037141371423714337144371453714637147371483714937150371513715237153371543715537156371573715837159371603716137162371633716437165371663716737168371693717037171371723717337174371753717637177371783717937180371813718237183371843718537186371873718837189371903719137192371933719437195371963719737198371993720037201372023720337204372053720637207372083720937210372113721237213372143721537216372173721837219372203722137222372233722437225372263722737228372293723037231372323723337234372353723637237372383723937240372413724237243372443724537246372473724837249372503725137252372533725437255372563725737258372593726037261372623726337264372653726637267372683726937270372713727237273372743727537276372773727837279372803728137282372833728437285372863728737288372893729037291372923729337294372953729637297372983729937300373013730237303373043730537306373073730837309373103731137312373133731437315373163731737318373193732037321373223732337324373253732637327373283732937330373313733237333373343733537336373373733837339373403734137342373433734437345373463734737348373493735037351373523735337354373553735637357373583735937360373613736237363373643736537366373673736837369373703737137372373733737437375373763737737378373793738037381373823738337384373853738637387373883738937390373913739237393373943739537396373973739837399374003740137402374033740437405374063740737408374093741037411374123741337414374153741637417374183741937420374213742237423374243742537426374273742837429374303743137432374333743437435374363743737438374393744037441374423744337444374453744637447374483744937450374513745237453374543745537456374573745837459374603746137462374633746437465374663746737468374693747037471374723747337474374753747637477374783747937480374813748237483374843748537486374873748837489374903749137492374933749437495374963749737498374993750037501375023750337504375053750637507375083750937510375113751237513375143751537516375173751837519375203752137522375233752437525375263752737528375293753037531375323753337534375353753637537375383753937540375413754237543375443754537546375473754837549375503755137552375533755437555375563755737558375593756037561375623756337564375653756637567375683756937570375713757237573375743757537576375773757837579375803758137582375833758437585375863758737588375893759037591375923759337594375953759637597375983759937600376013760237603376043760537606376073760837609376103761137612376133761437615376163761737618376193762037621376223762337624376253762637627376283762937630376313763237633376343763537636376373763837639376403764137642376433764437645376463764737648376493765037651376523765337654376553765637657376583765937660376613766237663376643766537666376673766837669376703767137672376733767437675376763767737678376793768037681376823768337684376853768637687376883768937690376913769237693376943769537696376973769837699377003770137702377033770437705377063770737708377093771037711377123771337714377153771637717377183771937720377213772237723377243772537726377273772837729377303773137732377333773437735377363773737738377393774037741377423774337744377453774637747377483774937750377513775237753377543775537756377573775837759377603776137762377633776437765377663776737768377693777037771377723777337774377753777637777377783777937780377813778237783377843778537786377873778837789377903779137792377933779437795377963779737798377993780037801378023780337804378053780637807378083780937810378113781237813378143781537816378173781837819378203782137822378233782437825378263782737828378293783037831378323783337834378353783637837378383783937840378413784237843378443784537846378473784837849378503785137852378533785437855378563785737858378593786037861378623786337864378653786637867378683786937870378713787237873378743787537876378773787837879378803788137882378833788437885378863788737888378893789037891378923789337894378953789637897378983789937900379013790237903379043790537906379073790837909379103791137912379133791437915379163791737918379193792037921379223792337924379253792637927379283792937930379313793237933379343793537936379373793837939379403794137942379433794437945379463794737948379493795037951379523795337954379553795637957379583795937960379613796237963379643796537966379673796837969379703797137972379733797437975379763797737978379793798037981379823798337984379853798637987379883798937990379913799237993379943799537996379973799837999380003800138002380033800438005380063800738008380093801038011380123801338014380153801638017380183801938020380213802238023380243802538026380273802838029380303803138032380333803438035380363803738038380393804038041380423804338044380453804638047380483804938050380513805238053380543805538056380573805838059380603806138062380633806438065380663806738068380693807038071380723807338074380753807638077380783807938080380813808238083380843808538086380873808838089380903809138092380933809438095380963809738098380993810038101381023810338104381053810638107381083810938110381113811238113381143811538116381173811838119381203812138122381233812438125381263812738128381293813038131381323813338134381353813638137381383813938140381413814238143381443814538146381473814838149381503815138152381533815438155381563815738158381593816038161381623816338164381653816638167381683816938170381713817238173381743817538176381773817838179381803818138182381833818438185381863818738188381893819038191381923819338194381953819638197381983819938200382013820238203382043820538206382073820838209382103821138212382133821438215382163821738218382193822038221382223822338224382253822638227382283822938230382313823238233382343823538236382373823838239382403824138242382433824438245382463824738248382493825038251382523825338254382553825638257382583825938260382613826238263382643826538266382673826838269382703827138272382733827438275382763827738278382793828038281382823828338284382853828638287382883828938290382913829238293382943829538296382973829838299383003830138302383033830438305383063830738308383093831038311383123831338314383153831638317383183831938320383213832238323383243832538326383273832838329383303833138332383333833438335383363833738338383393834038341383423834338344383453834638347383483834938350383513835238353383543835538356383573835838359383603836138362383633836438365383663836738368383693837038371383723837338374383753837638377383783837938380383813838238383383843838538386383873838838389383903839138392383933839438395383963839738398383993840038401384023840338404384053840638407384083840938410384113841238413384143841538416384173841838419384203842138422384233842438425384263842738428384293843038431384323843338434384353843638437384383843938440384413844238443384443844538446384473844838449384503845138452384533845438455384563845738458384593846038461384623846338464384653846638467384683846938470384713847238473384743847538476384773847838479384803848138482384833848438485384863848738488384893849038491384923849338494384953849638497384983849938500385013850238503385043850538506385073850838509385103851138512385133851438515385163851738518385193852038521385223852338524385253852638527385283852938530385313853238533385343853538536385373853838539385403854138542385433854438545385463854738548385493855038551385523855338554385553855638557385583855938560385613856238563385643856538566385673856838569385703857138572385733857438575385763857738578385793858038581385823858338584385853858638587385883858938590385913859238593385943859538596385973859838599386003860138602386033860438605386063860738608386093861038611386123861338614386153861638617386183861938620386213862238623386243862538626386273862838629386303863138632386333863438635386363863738638386393864038641386423864338644386453864638647386483864938650386513865238653386543865538656386573865838659386603866138662386633866438665386663866738668386693867038671386723867338674386753867638677386783867938680386813868238683386843868538686386873868838689386903869138692386933869438695386963869738698386993870038701387023870338704387053870638707387083870938710387113871238713387143871538716387173871838719387203872138722387233872438725387263872738728387293873038731387323873338734387353873638737387383873938740387413874238743387443874538746387473874838749387503875138752387533875438755387563875738758387593876038761387623876338764387653876638767387683876938770387713877238773387743877538776387773877838779387803878138782387833878438785387863878738788387893879038791387923879338794387953879638797387983879938800388013880238803388043880538806388073880838809388103881138812388133881438815388163881738818388193882038821388223882338824388253882638827388283882938830388313883238833388343883538836388373883838839388403884138842388433884438845388463884738848388493885038851388523885338854388553885638857388583885938860388613886238863388643886538866388673886838869388703887138872388733887438875388763887738878388793888038881388823888338884388853888638887388883888938890388913889238893388943889538896388973889838899389003890138902389033890438905389063890738908389093891038911389123891338914389153891638917389183891938920389213892238923389243892538926389273892838929389303893138932389333893438935389363893738938389393894038941389423894338944389453894638947389483894938950389513895238953389543895538956389573895838959389603896138962389633896438965389663896738968389693897038971389723897338974389753897638977389783897938980389813898238983389843898538986389873898838989389903899138992389933899438995389963899738998389993900039001390023900339004390053900639007390083900939010390113901239013390143901539016390173901839019390203902139022390233902439025390263902739028390293903039031390323903339034390353903639037390383903939040390413904239043390443904539046390473904839049390503905139052390533905439055390563905739058390593906039061390623906339064390653906639067390683906939070390713907239073390743907539076390773907839079390803908139082390833908439085390863908739088390893909039091390923909339094390953909639097390983909939100391013910239103391043910539106391073910839109391103911139112391133911439115391163911739118391193912039121391223912339124391253912639127391283912939130391313913239133391343913539136391373913839139391403914139142391433914439145391463914739148391493915039151391523915339154391553915639157391583915939160391613916239163391643916539166391673916839169391703917139172391733917439175391763917739178391793918039181391823918339184391853918639187391883918939190391913919239193391943919539196391973919839199392003920139202392033920439205392063920739208392093921039211392123921339214392153921639217392183921939220392213922239223392243922539226392273922839229392303923139232392333923439235392363923739238392393924039241392423924339244392453924639247392483924939250392513925239253392543925539256392573925839259392603926139262392633926439265392663926739268392693927039271392723927339274392753927639277392783927939280392813928239283392843928539286392873928839289392903929139292392933929439295392963929739298392993930039301393023930339304393053930639307393083930939310393113931239313393143931539316393173931839319393203932139322393233932439325393263932739328393293933039331393323933339334393353933639337393383933939340393413934239343393443934539346393473934839349393503935139352393533935439355393563935739358393593936039361393623936339364393653936639367393683936939370393713937239373393743937539376393773937839379393803938139382393833938439385393863938739388393893939039391393923939339394393953939639397393983939939400394013940239403394043940539406394073940839409394103941139412394133941439415394163941739418394193942039421394223942339424394253942639427394283942939430394313943239433394343943539436394373943839439394403944139442394433944439445394463944739448394493945039451394523945339454394553945639457394583945939460394613946239463394643946539466394673946839469394703947139472394733947439475394763947739478394793948039481394823948339484394853948639487394883948939490394913949239493394943949539496394973949839499395003950139502395033950439505395063950739508395093951039511395123951339514395153951639517395183951939520395213952239523395243952539526395273952839529395303953139532395333953439535395363953739538395393954039541395423954339544395453954639547395483954939550395513955239553395543955539556395573955839559395603956139562395633956439565395663956739568395693957039571395723957339574395753957639577395783957939580395813958239583395843958539586395873958839589395903959139592395933959439595395963959739598395993960039601396023960339604396053960639607396083960939610396113961239613396143961539616396173961839619396203962139622396233962439625396263962739628396293963039631396323963339634396353963639637396383963939640396413964239643396443964539646396473964839649396503965139652396533965439655396563965739658396593966039661396623966339664396653966639667396683966939670396713967239673396743967539676396773967839679396803968139682396833968439685396863968739688396893969039691396923969339694396953969639697396983969939700397013970239703397043970539706397073970839709397103971139712397133971439715397163971739718397193972039721397223972339724397253972639727397283972939730397313973239733397343973539736397373973839739397403974139742397433974439745397463974739748397493975039751397523975339754397553975639757397583975939760397613976239763397643976539766397673976839769397703977139772397733977439775397763977739778397793978039781397823978339784397853978639787397883978939790397913979239793397943979539796397973979839799398003980139802398033980439805398063980739808398093981039811398123981339814398153981639817398183981939820398213982239823398243982539826398273982839829398303983139832398333983439835398363983739838398393984039841398423984339844398453984639847398483984939850398513985239853398543985539856398573985839859398603986139862398633986439865398663986739868398693987039871398723987339874398753987639877398783987939880398813988239883398843988539886398873988839889398903989139892398933989439895398963989739898398993990039901399023990339904399053990639907399083990939910399113991239913399143991539916399173991839919399203992139922399233992439925399263992739928399293993039931399323993339934399353993639937399383993939940399413994239943399443994539946399473994839949399503995139952399533995439955399563995739958399593996039961399623996339964399653996639967399683996939970399713997239973399743997539976399773997839979399803998139982399833998439985399863998739988399893999039991399923999339994399953999639997399983999940000400014000240003400044000540006400074000840009400104001140012400134001440015400164001740018400194002040021400224002340024400254002640027400284002940030400314003240033400344003540036400374003840039400404004140042400434004440045400464004740048400494005040051400524005340054400554005640057400584005940060400614006240063400644006540066400674006840069400704007140072400734007440075400764007740078400794008040081400824008340084400854008640087400884008940090400914009240093400944009540096400974009840099401004010140102401034010440105401064010740108401094011040111401124011340114401154011640117401184011940120401214012240123401244012540126401274012840129401304013140132401334013440135401364013740138401394014040141401424014340144401454014640147401484014940150401514015240153401544015540156401574015840159401604016140162401634016440165401664016740168401694017040171401724017340174401754017640177401784017940180401814018240183401844018540186401874018840189401904019140192401934019440195401964019740198401994020040201402024020340204402054020640207402084020940210402114021240213402144021540216402174021840219402204022140222402234022440225402264022740228402294023040231402324023340234402354023640237402384023940240402414024240243402444024540246402474024840249402504025140252402534025440255402564025740258402594026040261402624026340264402654026640267402684026940270402714027240273402744027540276402774027840279402804028140282402834028440285402864028740288402894029040291402924029340294402954029640297402984029940300403014030240303403044030540306403074030840309403104031140312403134031440315403164031740318403194032040321403224032340324403254032640327403284032940330403314033240333403344033540336403374033840339403404034140342403434034440345403464034740348403494035040351403524035340354403554035640357403584035940360403614036240363403644036540366403674036840369403704037140372403734037440375403764037740378403794038040381403824038340384403854038640387403884038940390403914039240393403944039540396403974039840399404004040140402404034040440405404064040740408404094041040411404124041340414404154041640417404184041940420404214042240423404244042540426404274042840429404304043140432404334043440435404364043740438404394044040441404424044340444404454044640447404484044940450404514045240453404544045540456404574045840459404604046140462404634046440465404664046740468404694047040471404724047340474404754047640477404784047940480404814048240483404844048540486404874048840489404904049140492404934049440495404964049740498404994050040501405024050340504405054050640507405084050940510405114051240513405144051540516405174051840519405204052140522405234052440525405264052740528405294053040531405324053340534405354053640537405384053940540405414054240543405444054540546405474054840549405504055140552405534055440555405564055740558405594056040561405624056340564405654056640567405684056940570405714057240573405744057540576405774057840579405804058140582405834058440585405864058740588405894059040591405924059340594405954059640597405984059940600406014060240603406044060540606406074060840609406104061140612406134061440615406164061740618406194062040621406224062340624406254062640627406284062940630406314063240633406344063540636406374063840639406404064140642406434064440645406464064740648406494065040651406524065340654406554065640657406584065940660406614066240663406644066540666406674066840669406704067140672406734067440675406764067740678406794068040681406824068340684406854068640687406884068940690406914069240693406944069540696406974069840699407004070140702407034070440705407064070740708407094071040711407124071340714407154071640717407184071940720407214072240723407244072540726407274072840729407304073140732407334073440735407364073740738407394074040741407424074340744407454074640747407484074940750407514075240753407544075540756407574075840759407604076140762407634076440765407664076740768407694077040771407724077340774407754077640777407784077940780407814078240783407844078540786407874078840789407904079140792407934079440795407964079740798407994080040801408024080340804408054080640807408084080940810408114081240813408144081540816408174081840819408204082140822408234082440825408264082740828408294083040831408324083340834408354083640837408384083940840408414084240843408444084540846408474084840849408504085140852408534085440855408564085740858408594086040861408624086340864408654086640867408684086940870408714087240873408744087540876408774087840879408804088140882408834088440885408864088740888408894089040891408924089340894408954089640897408984089940900409014090240903409044090540906409074090840909409104091140912409134091440915409164091740918409194092040921409224092340924409254092640927409284092940930409314093240933409344093540936409374093840939409404094140942409434094440945409464094740948409494095040951409524095340954409554095640957409584095940960409614096240963409644096540966409674096840969409704097140972409734097440975409764097740978409794098040981409824098340984409854098640987409884098940990409914099240993409944099540996409974099840999410004100141002410034100441005410064100741008410094101041011410124101341014410154101641017410184101941020410214102241023410244102541026410274102841029410304103141032410334103441035410364103741038410394104041041410424104341044410454104641047410484104941050410514105241053410544105541056410574105841059410604106141062410634106441065410664106741068410694107041071410724107341074410754107641077410784107941080410814108241083410844108541086410874108841089410904109141092410934109441095410964109741098410994110041101411024110341104411054110641107411084110941110411114111241113411144111541116411174111841119411204112141122411234112441125411264112741128411294113041131411324113341134411354113641137411384113941140411414114241143411444114541146411474114841149411504115141152411534115441155411564115741158411594116041161411624116341164411654116641167411684116941170411714117241173411744117541176411774117841179411804118141182411834118441185411864118741188411894119041191411924119341194411954119641197411984119941200412014120241203412044120541206412074120841209412104121141212412134121441215412164121741218412194122041221412224122341224412254122641227412284122941230412314123241233412344123541236412374123841239412404124141242412434124441245412464124741248412494125041251412524125341254412554125641257412584125941260412614126241263412644126541266412674126841269412704127141272412734127441275412764127741278412794128041281412824128341284412854128641287412884128941290412914129241293412944129541296412974129841299413004130141302413034130441305413064130741308413094131041311413124131341314413154131641317413184131941320413214132241323413244132541326413274132841329413304133141332413334133441335413364133741338413394134041341413424134341344413454134641347413484134941350413514135241353413544135541356413574135841359413604136141362413634136441365413664136741368413694137041371413724137341374413754137641377413784137941380413814138241383413844138541386413874138841389413904139141392413934139441395413964139741398413994140041401414024140341404414054140641407414084140941410414114141241413414144141541416414174141841419414204142141422414234142441425414264142741428414294143041431414324143341434414354143641437414384143941440414414144241443414444144541446414474144841449414504145141452414534145441455414564145741458414594146041461414624146341464414654146641467414684146941470414714147241473414744147541476414774147841479414804148141482414834148441485414864148741488414894149041491414924149341494414954149641497414984149941500415014150241503415044150541506415074150841509415104151141512415134151441515415164151741518415194152041521415224152341524415254152641527415284152941530415314153241533415344153541536415374153841539415404154141542415434154441545415464154741548415494155041551415524155341554415554155641557415584155941560415614156241563415644156541566415674156841569415704157141572415734157441575415764157741578415794158041581415824158341584415854158641587415884158941590415914159241593415944159541596415974159841599416004160141602416034160441605416064160741608416094161041611416124161341614416154161641617416184161941620416214162241623416244162541626416274162841629416304163141632416334163441635416364163741638416394164041641416424164341644416454164641647416484164941650416514165241653416544165541656416574165841659416604166141662416634166441665416664166741668416694167041671416724167341674416754167641677416784167941680416814168241683416844168541686416874168841689416904169141692416934169441695416964169741698416994170041701417024170341704417054170641707417084170941710417114171241713417144171541716417174171841719417204172141722417234172441725417264172741728417294173041731417324173341734417354173641737417384173941740417414174241743417444174541746417474174841749417504175141752417534175441755417564175741758417594176041761417624176341764417654176641767417684176941770417714177241773417744177541776417774177841779417804178141782417834178441785417864178741788417894179041791417924179341794417954179641797417984179941800418014180241803418044180541806418074180841809418104181141812418134181441815418164181741818418194182041821418224182341824418254182641827418284182941830418314183241833418344183541836418374183841839418404184141842418434184441845418464184741848418494185041851418524185341854418554185641857418584185941860418614186241863418644186541866418674186841869418704187141872418734187441875418764187741878418794188041881418824188341884418854188641887418884188941890418914189241893418944189541896418974189841899419004190141902419034190441905419064190741908419094191041911419124191341914419154191641917419184191941920419214192241923419244192541926419274192841929419304193141932419334193441935419364193741938419394194041941419424194341944419454194641947419484194941950419514195241953419544195541956419574195841959419604196141962419634196441965419664196741968419694197041971419724197341974419754197641977419784197941980419814198241983419844198541986419874198841989419904199141992419934199441995419964199741998419994200042001420024200342004420054200642007420084200942010420114201242013420144201542016420174201842019420204202142022420234202442025420264202742028420294203042031420324203342034420354203642037420384203942040420414204242043420444204542046420474204842049420504205142052420534205442055420564205742058420594206042061420624206342064420654206642067420684206942070420714207242073420744207542076420774207842079420804208142082420834208442085420864208742088420894209042091420924209342094420954209642097420984209942100421014210242103421044210542106421074210842109421104211142112421134211442115421164211742118421194212042121421224212342124421254212642127421284212942130421314213242133421344213542136421374213842139421404214142142421434214442145421464214742148421494215042151421524215342154421554215642157421584215942160421614216242163421644216542166421674216842169421704217142172421734217442175421764217742178421794218042181421824218342184421854218642187421884218942190421914219242193421944219542196421974219842199422004220142202422034220442205422064220742208422094221042211422124221342214422154221642217422184221942220422214222242223422244222542226422274222842229422304223142232422334223442235422364223742238422394224042241422424224342244422454224642247422484224942250422514225242253422544225542256422574225842259422604226142262422634226442265422664226742268422694227042271422724227342274422754227642277422784227942280422814228242283422844228542286422874228842289422904229142292422934229442295422964229742298422994230042301423024230342304423054230642307423084230942310423114231242313423144231542316423174231842319423204232142322423234232442325423264232742328423294233042331423324233342334423354233642337423384233942340423414234242343423444234542346423474234842349423504235142352423534235442355423564235742358423594236042361423624236342364423654236642367423684236942370423714237242373423744237542376423774237842379423804238142382423834238442385423864238742388423894239042391423924239342394423954239642397423984239942400424014240242403424044240542406424074240842409424104241142412424134241442415424164241742418424194242042421424224242342424424254242642427424284242942430424314243242433424344243542436424374243842439424404244142442424434244442445424464244742448424494245042451424524245342454424554245642457424584245942460424614246242463424644246542466424674246842469424704247142472424734247442475424764247742478424794248042481424824248342484424854248642487424884248942490424914249242493424944249542496424974249842499425004250142502425034250442505425064250742508425094251042511425124251342514425154251642517425184251942520425214252242523425244252542526425274252842529425304253142532425334253442535425364253742538425394254042541425424254342544425454254642547425484254942550425514255242553425544255542556425574255842559425604256142562425634256442565425664256742568425694257042571425724257342574425754257642577425784257942580425814258242583425844258542586425874258842589425904259142592425934259442595425964259742598425994260042601426024260342604426054260642607426084260942610426114261242613426144261542616426174261842619426204262142622426234262442625426264262742628426294263042631426324263342634426354263642637426384263942640426414264242643426444264542646426474264842649426504265142652426534265442655426564265742658426594266042661426624266342664426654266642667426684266942670426714267242673426744267542676426774267842679426804268142682426834268442685426864268742688426894269042691426924269342694426954269642697426984269942700427014270242703427044270542706427074270842709427104271142712427134271442715427164271742718427194272042721427224272342724427254272642727427284272942730427314273242733427344273542736427374273842739427404274142742427434274442745427464274742748427494275042751427524275342754427554275642757427584275942760427614276242763427644276542766427674276842769427704277142772427734277442775427764277742778427794278042781427824278342784427854278642787427884278942790427914279242793427944279542796427974279842799428004280142802428034280442805428064280742808428094281042811428124281342814428154281642817428184281942820428214282242823428244282542826428274282842829428304283142832428334283442835428364283742838428394284042841428424284342844428454284642847428484284942850428514285242853428544285542856428574285842859428604286142862428634286442865428664286742868428694287042871428724287342874428754287642877428784287942880428814288242883428844288542886428874288842889428904289142892428934289442895428964289742898428994290042901429024290342904429054290642907429084290942910429114291242913429144291542916429174291842919429204292142922429234292442925429264292742928429294293042931429324293342934429354293642937429384293942940429414294242943429444294542946429474294842949429504295142952429534295442955429564295742958429594296042961429624296342964429654296642967429684296942970429714297242973429744297542976429774297842979429804298142982429834298442985429864298742988429894299042991429924299342994429954299642997429984299943000430014300243003430044300543006430074300843009430104301143012430134301443015430164301743018430194302043021430224302343024430254302643027430284302943030430314303243033430344303543036430374303843039430404304143042430434304443045430464304743048430494305043051430524305343054430554305643057430584305943060430614306243063430644306543066430674306843069430704307143072430734307443075430764307743078430794308043081430824308343084430854308643087430884308943090430914309243093430944309543096430974309843099431004310143102431034310443105431064310743108431094311043111431124311343114431154311643117431184311943120431214312243123431244312543126431274312843129431304313143132431334313443135431364313743138431394314043141431424314343144431454314643147431484314943150431514315243153431544315543156431574315843159431604316143162431634316443165431664316743168431694317043171431724317343174431754317643177431784317943180431814318243183431844318543186431874318843189431904319143192431934319443195431964319743198431994320043201432024320343204432054320643207432084320943210432114321243213432144321543216432174321843219432204322143222432234322443225432264322743228432294323043231432324323343234432354323643237432384323943240432414324243243432444324543246432474324843249432504325143252432534325443255432564325743258432594326043261432624326343264432654326643267432684326943270432714327243273432744327543276432774327843279432804328143282432834328443285432864328743288432894329043291432924329343294432954329643297432984329943300433014330243303433044330543306433074330843309433104331143312433134331443315433164331743318433194332043321433224332343324433254332643327433284332943330433314333243333433344333543336433374333843339433404334143342433434334443345433464334743348433494335043351433524335343354433554335643357433584335943360433614336243363433644336543366433674336843369433704337143372433734337443375433764337743378433794338043381433824338343384433854338643387433884338943390433914339243393433944339543396433974339843399434004340143402434034340443405434064340743408434094341043411434124341343414434154341643417434184341943420434214342243423434244342543426434274342843429434304343143432434334343443435434364343743438434394344043441434424344343444434454344643447434484344943450434514345243453434544345543456434574345843459434604346143462434634346443465434664346743468434694347043471434724347343474434754347643477434784347943480434814348243483434844348543486434874348843489434904349143492434934349443495434964349743498434994350043501435024350343504435054350643507435084350943510435114351243513435144351543516435174351843519435204352143522435234352443525435264352743528435294353043531435324353343534435354353643537435384353943540435414354243543435444354543546435474354843549435504355143552435534355443555435564355743558435594356043561435624356343564435654356643567435684356943570435714357243573435744357543576435774357843579435804358143582435834358443585435864358743588435894359043591435924359343594435954359643597435984359943600436014360243603436044360543606436074360843609436104361143612436134361443615436164361743618436194362043621436224362343624436254362643627436284362943630436314363243633436344363543636436374363843639436404364143642436434364443645436464364743648436494365043651436524365343654436554365643657436584365943660436614366243663436644366543666436674366843669436704367143672436734367443675436764367743678436794368043681436824368343684436854368643687436884368943690436914369243693436944369543696436974369843699437004370143702437034370443705437064370743708437094371043711437124371343714437154371643717437184371943720437214372243723437244372543726437274372843729437304373143732437334373443735437364373743738437394374043741437424374343744437454374643747437484374943750437514375243753437544375543756437574375843759437604376143762437634376443765437664376743768437694377043771437724377343774437754377643777437784377943780437814378243783437844378543786437874378843789437904379143792437934379443795437964379743798437994380043801438024380343804438054380643807438084380943810438114381243813438144381543816438174381843819438204382143822438234382443825438264382743828438294383043831438324383343834438354383643837438384383943840438414384243843438444384543846438474384843849438504385143852438534385443855438564385743858438594386043861438624386343864438654386643867438684386943870438714387243873438744387543876438774387843879438804388143882438834388443885438864388743888438894389043891438924389343894438954389643897438984389943900439014390243903439044390543906439074390843909439104391143912439134391443915439164391743918439194392043921439224392343924439254392643927439284392943930439314393243933439344393543936439374393843939439404394143942439434394443945439464394743948439494395043951439524395343954439554395643957439584395943960439614396243963439644396543966439674396843969439704397143972439734397443975439764397743978439794398043981439824398343984439854398643987439884398943990439914399243993439944399543996439974399843999440004400144002440034400444005440064400744008440094401044011440124401344014440154401644017440184401944020440214402244023440244402544026440274402844029440304403144032440334403444035440364403744038440394404044041440424404344044440454404644047440484404944050440514405244053440544405544056440574405844059440604406144062440634406444065440664406744068440694407044071440724407344074440754407644077440784407944080440814408244083440844408544086440874408844089440904409144092440934409444095440964409744098440994410044101441024410344104441054410644107441084410944110441114411244113441144411544116441174411844119441204412144122441234412444125441264412744128441294413044131441324413344134441354413644137441384413944140441414414244143441444414544146441474414844149441504415144152441534415444155441564415744158441594416044161441624416344164441654416644167441684416944170441714417244173441744417544176441774417844179441804418144182441834418444185441864418744188441894419044191441924419344194441954419644197441984419944200442014420244203442044420544206442074420844209442104421144212442134421444215442164421744218442194422044221442224422344224442254422644227442284422944230442314423244233442344423544236442374423844239442404424144242442434424444245442464424744248442494425044251442524425344254442554425644257442584425944260442614426244263442644426544266442674426844269442704427144272442734427444275442764427744278442794428044281442824428344284442854428644287442884428944290442914429244293442944429544296442974429844299443004430144302443034430444305443064430744308443094431044311443124431344314443154431644317443184431944320443214432244323443244432544326443274432844329443304433144332443334433444335443364433744338443394434044341443424434344344443454434644347443484434944350443514435244353443544435544356443574435844359443604436144362443634436444365443664436744368443694437044371443724437344374443754437644377443784437944380443814438244383443844438544386443874438844389443904439144392443934439444395443964439744398443994440044401444024440344404444054440644407444084440944410444114441244413444144441544416444174441844419444204442144422444234442444425444264442744428444294443044431444324443344434444354443644437444384443944440444414444244443444444444544446444474444844449444504445144452444534445444455444564445744458444594446044461444624446344464444654446644467444684446944470444714447244473444744447544476444774447844479444804448144482444834448444485444864448744488444894449044491444924449344494444954449644497444984449944500445014450244503445044450544506445074450844509445104451144512445134451444515445164451744518445194452044521445224452344524445254452644527445284452944530445314453244533445344453544536445374453844539445404454144542445434454444545445464454744548445494455044551445524455344554445554455644557445584455944560445614456244563445644456544566445674456844569445704457144572445734457444575445764457744578445794458044581445824458344584445854458644587445884458944590445914459244593445944459544596445974459844599446004460144602446034460444605446064460744608446094461044611446124461344614446154461644617446184461944620446214462244623446244462544626446274462844629446304463144632446334463444635446364463744638446394464044641446424464344644446454464644647446484464944650446514465244653446544465544656446574465844659446604466144662446634466444665446664466744668446694467044671446724467344674446754467644677446784467944680446814468244683446844468544686446874468844689446904469144692446934469444695446964469744698446994470044701447024470344704447054470644707447084470944710447114471244713447144471544716447174471844719447204472144722447234472444725447264472744728447294473044731447324473344734447354473644737447384473944740447414474244743447444474544746447474474844749447504475144752447534475444755447564475744758447594476044761447624476344764447654476644767447684476944770447714477244773447744477544776447774477844779447804478144782447834478444785447864478744788447894479044791447924479344794447954479644797447984479944800448014480244803448044480544806448074480844809448104481144812448134481444815448164481744818448194482044821448224482344824448254482644827448284482944830448314483244833448344483544836448374483844839448404484144842448434484444845448464484744848448494485044851448524485344854448554485644857448584485944860448614486244863448644486544866448674486844869448704487144872448734487444875448764487744878448794488044881448824488344884448854488644887448884488944890448914489244893448944489544896448974489844899449004490144902449034490444905449064490744908449094491044911449124491344914449154491644917449184491944920449214492244923449244492544926449274492844929449304493144932449334493444935449364493744938449394494044941449424494344944449454494644947449484494944950449514495244953449544495544956449574495844959449604496144962449634496444965449664496744968449694497044971449724497344974449754497644977449784497944980449814498244983449844498544986449874498844989449904499144992449934499444995449964499744998449994500045001450024500345004450054500645007450084500945010450114501245013450144501545016450174501845019450204502145022450234502445025450264502745028450294503045031450324503345034450354503645037450384503945040450414504245043450444504545046450474504845049450504505145052450534505445055450564505745058450594506045061450624506345064450654506645067450684506945070450714507245073450744507545076450774507845079450804508145082450834508445085450864508745088450894509045091450924509345094450954509645097450984509945100451014510245103451044510545106451074510845109451104511145112451134511445115451164511745118451194512045121451224512345124451254512645127451284512945130451314513245133451344513545136451374513845139451404514145142451434514445145451464514745148451494515045151451524515345154451554515645157451584515945160451614516245163451644516545166451674516845169451704517145172451734517445175451764517745178451794518045181451824518345184451854518645187451884518945190451914519245193451944519545196451974519845199452004520145202452034520445205452064520745208452094521045211452124521345214452154521645217452184521945220452214522245223452244522545226452274522845229452304523145232452334523445235452364523745238452394524045241452424524345244452454524645247452484524945250452514525245253452544525545256452574525845259452604526145262452634526445265452664526745268452694527045271452724527345274452754527645277452784527945280452814528245283452844528545286452874528845289452904529145292452934529445295452964529745298452994530045301453024530345304453054530645307453084530945310453114531245313453144531545316453174531845319453204532145322453234532445325453264532745328453294533045331453324533345334453354533645337453384533945340453414534245343453444534545346453474534845349453504535145352453534535445355453564535745358453594536045361453624536345364453654536645367453684536945370453714537245373453744537545376453774537845379453804538145382453834538445385453864538745388453894539045391453924539345394453954539645397453984539945400454014540245403454044540545406454074540845409454104541145412454134541445415454164541745418454194542045421454224542345424454254542645427454284542945430454314543245433454344543545436454374543845439454404544145442454434544445445454464544745448454494545045451454524545345454454554545645457454584545945460454614546245463454644546545466454674546845469454704547145472454734547445475454764547745478454794548045481454824548345484454854548645487454884548945490454914549245493454944549545496454974549845499455004550145502455034550445505455064550745508455094551045511455124551345514455154551645517455184551945520455214552245523455244552545526455274552845529455304553145532455334553445535455364553745538455394554045541455424554345544455454554645547455484554945550455514555245553455544555545556455574555845559455604556145562455634556445565455664556745568455694557045571455724557345574455754557645577455784557945580455814558245583455844558545586455874558845589455904559145592455934559445595455964559745598455994560045601456024560345604456054560645607456084560945610456114561245613456144561545616456174561845619456204562145622456234562445625456264562745628456294563045631456324563345634456354563645637456384563945640456414564245643456444564545646456474564845649456504565145652456534565445655456564565745658456594566045661456624566345664456654566645667456684566945670456714567245673456744567545676456774567845679456804568145682456834568445685456864568745688456894569045691456924569345694456954569645697456984569945700457014570245703457044570545706457074570845709457104571145712457134571445715457164571745718457194572045721457224572345724457254572645727457284572945730457314573245733457344573545736457374573845739457404574145742457434574445745457464574745748457494575045751457524575345754457554575645757457584575945760457614576245763457644576545766457674576845769457704577145772457734577445775457764577745778457794578045781457824578345784457854578645787457884578945790457914579245793457944579545796457974579845799458004580145802458034580445805458064580745808458094581045811458124581345814458154581645817458184581945820458214582245823458244582545826458274582845829458304583145832458334583445835458364583745838458394584045841458424584345844458454584645847458484584945850458514585245853458544585545856458574585845859458604586145862458634586445865458664586745868458694587045871458724587345874458754587645877458784587945880458814588245883458844588545886458874588845889458904589145892458934589445895458964589745898458994590045901459024590345904459054590645907459084590945910459114591245913459144591545916459174591845919459204592145922459234592445925459264592745928459294593045931459324593345934459354593645937459384593945940459414594245943459444594545946459474594845949459504595145952459534595445955459564595745958459594596045961459624596345964459654596645967459684596945970459714597245973459744597545976459774597845979459804598145982459834598445985459864598745988459894599045991459924599345994459954599645997459984599946000460014600246003460044600546006460074600846009460104601146012460134601446015460164601746018460194602046021460224602346024460254602646027460284602946030460314603246033460344603546036460374603846039460404604146042460434604446045460464604746048460494605046051460524605346054460554605646057460584605946060460614606246063460644606546066460674606846069460704607146072460734607446075460764607746078460794608046081460824608346084460854608646087460884608946090460914609246093460944609546096460974609846099461004610146102461034610446105461064610746108461094611046111461124611346114461154611646117461184611946120461214612246123461244612546126461274612846129461304613146132461334613446135461364613746138461394614046141461424614346144461454614646147461484614946150461514615246153461544615546156461574615846159461604616146162461634616446165461664616746168461694617046171461724617346174461754617646177461784617946180461814618246183461844618546186461874618846189461904619146192461934619446195461964619746198461994620046201462024620346204462054620646207462084620946210462114621246213462144621546216462174621846219462204622146222462234622446225462264622746228462294623046231462324623346234462354623646237462384623946240462414624246243462444624546246462474624846249462504625146252462534625446255462564625746258462594626046261462624626346264462654626646267462684626946270462714627246273462744627546276462774627846279462804628146282462834628446285462864628746288462894629046291462924629346294462954629646297462984629946300463014630246303463044630546306463074630846309463104631146312463134631446315463164631746318463194632046321463224632346324463254632646327463284632946330463314633246333463344633546336463374633846339463404634146342463434634446345463464634746348463494635046351463524635346354463554635646357463584635946360463614636246363463644636546366463674636846369463704637146372463734637446375463764637746378463794638046381463824638346384463854638646387463884638946390463914639246393463944639546396463974639846399464004640146402464034640446405464064640746408464094641046411464124641346414464154641646417464184641946420464214642246423464244642546426464274642846429464304643146432464334643446435464364643746438464394644046441464424644346444464454644646447464484644946450464514645246453464544645546456464574645846459464604646146462464634646446465464664646746468464694647046471464724647346474464754647646477464784647946480464814648246483464844648546486464874648846489464904649146492464934649446495464964649746498464994650046501465024650346504465054650646507465084650946510465114651246513465144651546516465174651846519465204652146522465234652446525465264652746528465294653046531465324653346534465354653646537465384653946540465414654246543465444654546546465474654846549465504655146552465534655446555465564655746558465594656046561465624656346564465654656646567465684656946570465714657246573465744657546576465774657846579465804658146582465834658446585465864658746588465894659046591465924659346594465954659646597465984659946600466014660246603466044660546606466074660846609466104661146612466134661446615466164661746618466194662046621466224662346624466254662646627466284662946630466314663246633466344663546636466374663846639466404664146642466434664446645466464664746648466494665046651466524665346654466554665646657466584665946660466614666246663466644666546666466674666846669466704667146672466734667446675466764667746678466794668046681466824668346684466854668646687466884668946690466914669246693466944669546696466974669846699467004670146702467034670446705467064670746708467094671046711467124671346714467154671646717467184671946720467214672246723467244672546726467274672846729467304673146732467334673446735467364673746738467394674046741467424674346744467454674646747467484674946750467514675246753467544675546756467574675846759467604676146762467634676446765467664676746768467694677046771467724677346774467754677646777467784677946780467814678246783467844678546786467874678846789467904679146792467934679446795467964679746798467994680046801468024680346804468054680646807468084680946810468114681246813468144681546816468174681846819468204682146822468234682446825468264682746828468294683046831468324683346834468354683646837468384683946840468414684246843468444684546846468474684846849468504685146852468534685446855468564685746858468594686046861468624686346864468654686646867468684686946870468714687246873468744687546876468774687846879468804688146882468834688446885468864688746888468894689046891468924689346894468954689646897468984689946900469014690246903469044690546906469074690846909469104691146912469134691446915469164691746918469194692046921469224692346924469254692646927469284692946930469314693246933469344693546936469374693846939469404694146942469434694446945469464694746948469494695046951469524695346954469554695646957469584695946960469614696246963469644696546966469674696846969469704697146972469734697446975469764697746978469794698046981469824698346984469854698646987469884698946990469914699246993469944699546996469974699846999470004700147002470034700447005470064700747008470094701047011470124701347014470154701647017470184701947020470214702247023470244702547026470274702847029470304703147032470334703447035470364703747038470394704047041470424704347044470454704647047470484704947050470514705247053470544705547056470574705847059470604706147062470634706447065470664706747068470694707047071470724707347074470754707647077470784707947080470814708247083470844708547086470874708847089470904709147092470934709447095470964709747098470994710047101471024710347104471054710647107471084710947110471114711247113471144711547116471174711847119471204712147122471234712447125471264712747128471294713047131471324713347134471354713647137471384713947140471414714247143471444714547146471474714847149471504715147152471534715447155471564715747158471594716047161471624716347164471654716647167471684716947170471714717247173471744717547176471774717847179471804718147182471834718447185471864718747188471894719047191471924719347194471954719647197471984719947200472014720247203472044720547206472074720847209472104721147212472134721447215472164721747218472194722047221472224722347224472254722647227472284722947230472314723247233472344723547236472374723847239472404724147242472434724447245472464724747248472494725047251472524725347254472554725647257472584725947260472614726247263472644726547266472674726847269472704727147272472734727447275472764727747278472794728047281472824728347284472854728647287472884728947290472914729247293472944729547296472974729847299473004730147302473034730447305473064730747308473094731047311473124731347314473154731647317473184731947320473214732247323473244732547326473274732847329473304733147332473334733447335473364733747338473394734047341473424734347344473454734647347473484734947350473514735247353473544735547356473574735847359473604736147362473634736447365473664736747368473694737047371473724737347374473754737647377473784737947380473814738247383473844738547386473874738847389473904739147392473934739447395473964739747398473994740047401474024740347404474054740647407474084740947410474114741247413474144741547416474174741847419474204742147422474234742447425474264742747428474294743047431474324743347434474354743647437474384743947440474414744247443474444744547446474474744847449474504745147452474534745447455474564745747458474594746047461474624746347464474654746647467474684746947470474714747247473474744747547476474774747847479474804748147482474834748447485474864748747488474894749047491474924749347494474954749647497474984749947500475014750247503475044750547506475074750847509475104751147512475134751447515475164751747518475194752047521475224752347524475254752647527475284752947530475314753247533475344753547536475374753847539475404754147542475434754447545475464754747548475494755047551475524755347554475554755647557475584755947560475614756247563475644756547566475674756847569475704757147572475734757447575475764757747578475794758047581475824758347584475854758647587475884758947590475914759247593475944759547596475974759847599476004760147602476034760447605476064760747608476094761047611476124761347614476154761647617476184761947620476214762247623476244762547626476274762847629476304763147632476334763447635476364763747638476394764047641476424764347644476454764647647476484764947650476514765247653476544765547656476574765847659476604766147662476634766447665476664766747668476694767047671476724767347674476754767647677476784767947680476814768247683476844768547686476874768847689476904769147692476934769447695476964769747698476994770047701477024770347704477054770647707477084770947710477114771247713477144771547716477174771847719477204772147722477234772447725477264772747728477294773047731477324773347734477354773647737477384773947740477414774247743477444774547746477474774847749477504775147752477534775447755477564775747758477594776047761477624776347764477654776647767477684776947770477714777247773477744777547776477774777847779477804778147782477834778447785477864778747788477894779047791477924779347794477954779647797477984779947800478014780247803478044780547806478074780847809478104781147812478134781447815478164781747818478194782047821478224782347824478254782647827478284782947830478314783247833478344783547836478374783847839478404784147842478434784447845478464784747848478494785047851478524785347854478554785647857478584785947860478614786247863478644786547866478674786847869478704787147872478734787447875478764787747878478794788047881478824788347884478854788647887478884788947890478914789247893478944789547896478974789847899479004790147902479034790447905479064790747908479094791047911479124791347914479154791647917479184791947920479214792247923479244792547926479274792847929479304793147932479334793447935479364793747938479394794047941479424794347944479454794647947479484794947950479514795247953479544795547956479574795847959479604796147962479634796447965479664796747968479694797047971479724797347974479754797647977479784797947980479814798247983479844798547986479874798847989479904799147992479934799447995479964799747998479994800048001480024800348004480054800648007480084800948010480114801248013480144801548016480174801848019480204802148022480234802448025480264802748028480294803048031480324803348034480354803648037480384803948040480414804248043480444804548046480474804848049480504805148052480534805448055480564805748058480594806048061480624806348064480654806648067480684806948070480714807248073480744807548076480774807848079480804808148082480834808448085480864808748088480894809048091480924809348094480954809648097480984809948100481014810248103481044810548106481074810848109481104811148112481134811448115481164811748118481194812048121481224812348124481254812648127481284812948130481314813248133481344813548136481374813848139481404814148142481434814448145481464814748148481494815048151481524815348154481554815648157481584815948160481614816248163481644816548166481674816848169481704817148172481734817448175481764817748178481794818048181481824818348184481854818648187481884818948190481914819248193481944819548196481974819848199482004820148202482034820448205482064820748208482094821048211482124821348214482154821648217482184821948220482214822248223482244822548226482274822848229482304823148232482334823448235482364823748238482394824048241482424824348244482454824648247482484824948250482514825248253482544825548256482574825848259482604826148262482634826448265482664826748268482694827048271482724827348274482754827648277482784827948280482814828248283482844828548286482874828848289482904829148292482934829448295482964829748298482994830048301483024830348304483054830648307483084830948310483114831248313483144831548316483174831848319483204832148322483234832448325483264832748328483294833048331483324833348334483354833648337483384833948340483414834248343483444834548346483474834848349483504835148352483534835448355483564835748358483594836048361483624836348364483654836648367483684836948370483714837248373483744837548376483774837848379483804838148382483834838448385483864838748388483894839048391483924839348394483954839648397483984839948400484014840248403484044840548406484074840848409484104841148412484134841448415484164841748418484194842048421484224842348424484254842648427484284842948430484314843248433 |
- <?xml version="1.0"?>
- <!--
- 18x15 Nose detector computed with 7000 positive samples
-
- //////////////////////////////////////////////////////////////////////////
- | Contributors License Agreement
- | IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- | By downloading, copying, installing or using the software you agree
- | to this license.
- | If you do not agree to this license, do not download, install,
- | copy or use the software.
- |
- | Copyright (c) 2008, Modesto Castrillon-Santana (IUSIANI, University of
- | Las Palmas de Gran Canaria, Spain).
- | All rights reserved.
- |
- | Redistribution and use in source and binary forms, with or without
- | modification, are permitted provided that the following conditions are
- | met:
- |
- | * Redistributions of source code must retain the above copyright
- | notice, this list of conditions and the following disclaimer.
- | * Redistributions in binary form must reproduce the above
- | copyright notice, this list of conditions and the following
- | disclaimer in the documentation and/or other materials provided
- | with the distribution.
- | * The name of Contributor may not used to endorse or promote products
- | derived from this software without specific prior written permission.
- |
- | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- | CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to
- | Top
- //////////////////////////////////////////////////////////////////////////
-
- RESEARCH USE:
- If you are using any of the detectors or involved ideas please cite one of these papers:
-
- @ARTICLE{Castrillon07-jvci,
- author = "Castrill\'on Santana, M. and D\'eniz Su\'arez, O. and Hern\'andez Tejera, M. and Guerra Artal, C.",
- title = "ENCARA2: Real-time Detection of Multiple Faces at Different Resolutions in Video Streams",
- journal = "Journal of Visual Communication and Image Representation",
- year = "2007",
- vol = "18",
- issue = "2",
- month = "April",
- pages = "130-140"
- }
-
- @INPROCEEDINGS{Castrillon07-swb,
- author = "Castrill\'on Santana, M. and D\'eniz Su\'arez, O. and Hern\'andez Sosa, D. and Lorenzo Navarro, J. ",
- title = "Using Incremental Principal Component Analysis to Learn a Gender Classifier Automatically",
- booktitle = "1st Spanish Workshop on Biometrics",
- year = "2007",
- month = "June",
- address = "Girona, Spain",
- file = F
- }
-
- A comparison of this and other face related classifiers can be found in:
-
- @InProceedings{Castrillon08a-visapp,
- 'athor = "Modesto Castrill\'on-Santana and O. D\'eniz-Su\'arez, L. Ant\'on-Canal\'{\i}s and J. Lorenzo-Navarro",
- title = "Face and Facial Feature Detection Evaluation"
- booktitle = "Third International Conference on Computer Vision Theory and Applications, VISAPP08"
- year = "2008",
- month = "January"
- }
-
- More information can be found at http://mozart.dis.ulpgc.es/Gias/modesto_eng.html or in the papers.
-
- COMMERCIAL USE:
- If you have any commercial interest in this work please contact
- mcastrillon@iusiani.ulpgc.es
- -->
- <opencv_storage>
- <classifier_Nariz_20stages type_id="opencv-haar-classifier">
- <size>
- 18 15</size>
- <stages>
- <_>
- <!-- stage 0 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 4 4 -1.</_>
- <_>
- 8 4 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0363217890262604</threshold>
- <left_val>-0.6772649884223938</left_val>
- <right_val>0.6687346100807190</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 7 -1.</_>
- <_>
- 6 0 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0544859282672405</threshold>
- <left_val>-0.4403176903724670</left_val>
- <right_val>0.4891850948333740</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 12 9 -1.</_>
- <_>
- 3 8 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1508972942829132</threshold>
- <left_val>0.6370239257812500</left_val>
- <right_val>-0.2814675867557526</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 8 -1.</_>
- <_>
- 6 0 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0794939175248146</threshold>
- <left_val>0.6347042918205261</left_val>
- <right_val>-0.1611918956041336</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 8 12 4 -1.</_>
- <_>
- 3 10 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0670417398214340</threshold>
- <left_val>0.5956599712371826</left_val>
- <right_val>-0.1645421981811523</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 3 8 -1.</_>
- <_>
- 10 1 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1654247045516968</threshold>
- <left_val>-0.0291650108993053</left_val>
- <right_val>0.2784962058067322</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 8 3 -1.</_>
- <_>
- 8 1 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1449110060930252</threshold>
- <left_val>-0.1593054980039597</left_val>
- <right_val>0.5626019239425659</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 3 -1.</_>
- <_>
- 3 1 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0126969404518604</threshold>
- <left_val>-0.6924440860748291</left_val>
- <right_val>0.1042767018079758</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 3 -1.</_>
- <_>
- 8 1 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2858339622616768e-003</threshold>
- <left_val>0.0736001133918762</left_val>
- <right_val>-0.8135973811149597</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 11 9 -1.</_>
- <_>
- 5 9 11 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1319603025913239</threshold>
- <left_val>-0.0852369293570518</left_val>
- <right_val>0.6464285850524902</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 2 1 -1.</_>
- <_>
- 8 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6259789592586458e-005</threshold>
- <left_val>-0.2522526085376740</left_val>
- <right_val>0.2770084142684937</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 2 1 -1.</_>
- <_>
- 9 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9456392743159086e-005</threshold>
- <left_val>-0.1598252952098846</left_val>
- <right_val>0.1796030998229981</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 9 7 -1.</_>
- <_>
- 7 0 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0181720405817032</threshold>
- <left_val>0.4662343859672546</left_val>
- <right_val>-0.1598974019289017</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 7 12 8 -1.</_>
- <_>
- 3 9 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1194007992744446</threshold>
- <left_val>0.5828961133956909</left_val>
- <right_val>-0.1248269975185394</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 14 14 -1.</_>
- <_>
- 9 0 7 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4961996078491211</threshold>
- <left_val>0.7593098878860474</left_val>
- <right_val>-0.0939436629414558</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 12 9 -1.</_>
- <_>
- 3 7 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1830939948558807</threshold>
- <left_val>0.5817549228668213</left_val>
- <right_val>-0.0883935913443565</right_val></_></_></trees>
- <stage_threshold>-1.8310650587081909</stage_threshold>
- <parent>-1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 1 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 6 1 -1.</_>
- <_>
- 8 3 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0485280007123947</threshold>
- <left_val>1.5333959890995175e-004</left_val>
- <right_val>-2.6736979980468750e+003</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 6 4 -1.</_>
- <_>
- 9 2 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1116186007857323</threshold>
- <left_val>-0.1391783952713013</left_val>
- <right_val>0.4706197082996368</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 5 6 -1.</_>
- <_>
- 9 2 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1409423947334290</threshold>
- <left_val>-0.4590255022048950</left_val>
- <right_val>0.6874074935913086</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 4 9 -1.</_>
- <_>
- 7 3 4 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1528792977333069</threshold>
- <left_val>0.2594836950302124</left_val>
- <right_val>-0.0452645681798458</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 4 -1.</_>
- <_>
- 10 2 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0578792616724968</threshold>
- <left_val>-0.3745568990707398</left_val>
- <right_val>0.4699620902538300</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 1 -1.</_>
- <_>
- 7 0 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9482799842953682e-003</threshold>
- <left_val>-0.3329465985298157</left_val>
- <right_val>0.2753989100456238</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 6 14 9 -1.</_>
- <_>
- 2 9 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1846064031124115</threshold>
- <left_val>0.4868184924125671</left_val>
- <right_val>-0.1640070974826813</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 5 3 -1.</_>
- <_>
- 9 1 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6531449556350708e-003</threshold>
- <left_val>-0.6523829102516174</left_val>
- <right_val>0.1116930022835732</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 10 2 -1.</_>
- <_>
- 4 0 5 1 2.</_>
- <_>
- 9 1 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0141983926296234e-003</threshold>
- <left_val>0.1197912991046906</left_val>
- <right_val>-0.7178090810775757</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 12 14 -1.</_>
- <_>
- 9 0 6 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1370732933282852</threshold>
- <left_val>-0.1418797969818115</left_val>
- <right_val>0.3295237123966217</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 6 3 -1.</_>
- <_>
- 5 1 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0329283848404884e-003</threshold>
- <left_val>0.1041319966316223</left_val>
- <right_val>-0.7335981130599976</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 14 -1.</_>
- <_>
- 14 7 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1803364008665085</threshold>
- <left_val>-0.5487949252128601</left_val>
- <right_val>0.0710614770650864</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 10 2 -1.</_>
- <_>
- 4 1 5 1 2.</_>
- <_>
- 9 2 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8154532238841057e-003</threshold>
- <left_val>-0.6895282268524170</left_val>
- <right_val>0.1063653975725174</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 14 4 -1.</_>
- <_>
- 2 11 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1088579967617989</threshold>
- <left_val>0.7059208154678345</left_val>
- <right_val>-0.1002665981650353</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 14 9 -1.</_>
- <_>
- 2 7 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1726516932249069</threshold>
- <left_val>0.4895541071891785</left_val>
- <right_val>-0.1376973986625671</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 12 -1.</_>
- <_>
- 14 6 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0574669800698757</threshold>
- <left_val>0.0478747487068176</left_val>
- <right_val>-0.3361113071441650</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 4 12 -1.</_>
- <_>
- 0 6 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1294801980257034</threshold>
- <left_val>-0.6789883971214294</left_val>
- <right_val>0.1097540035843849</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 3 3 -1.</_>
- <_>
- 11 2 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8118398301303387e-003</threshold>
- <left_val>-0.5081049203872681</left_val>
- <right_val>0.0530205518007278</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 4 2 -1.</_>
- <_>
- 6 3 2 1 2.</_>
- <_>
- 8 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2181649953126907e-003</threshold>
- <left_val>-0.7440345287322998</left_val>
- <right_val>0.0739578828215599</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 6 4 -1.</_>
- <_>
- 8 1 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0141012202948332</threshold>
- <left_val>-0.5120034217834473</left_val>
- <right_val>0.0294169094413519</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.3739310563541949e-005</threshold>
- <left_val>0.2070824950933456</left_val>
- <right_val>-0.2183579057455063</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 4 3 -1.</_>
- <_>
- 7 2 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6746207885444164e-003</threshold>
- <left_val>0.0782192721962929</left_val>
- <right_val>-0.5858296751976013</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 3 3 -1.</_>
- <_>
- 4 2 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5912399441003799e-003</threshold>
- <left_val>-0.6527547240257263</left_val>
- <right_val>0.0550902597606182</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 8 14 -1.</_>
- <_>
- 10 8 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2605709135532379</threshold>
- <left_val>0.0209255293011665</left_val>
- <right_val>-0.6453688144683838</right_val></_></_></trees>
- <stage_threshold>-1.7070330381393433</stage_threshold>
- <parent>0</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 2 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 8 6 -1.</_>
- <_>
- 5 8 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0890733674168587</threshold>
- <left_val>0.5498613119125366</left_val>
- <right_val>-0.5031049251556397</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 8 12 -1.</_>
- <_>
- 11 0 4 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0470851697027683</threshold>
- <left_val>0.3855659961700440</left_val>
- <right_val>-0.1619472056627274</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 8 10 -1.</_>
- <_>
- 8 0 4 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1344425976276398</threshold>
- <left_val>-0.3161787092685700</left_val>
- <right_val>0.5639414191246033</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 2 8 -1.</_>
- <_>
- 9 2 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.2632790282368660e-003</threshold>
- <left_val>-0.2234936952590942</left_val>
- <right_val>0.0977761000394821</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 8 2 -1.</_>
- <_>
- 9 3 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1214829981327057</threshold>
- <left_val>-0.1339429020881653</left_val>
- <right_val>0.5355374813079834</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 1 4 -1.</_>
- <_>
- 10 1 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3225349616259336e-003</threshold>
- <left_val>-0.6828700900077820</left_val>
- <right_val>0.0832272768020630</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 10 2 -1.</_>
- <_>
- 4 2 5 1 2.</_>
- <_>
- 9 3 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7031590044498444e-003</threshold>
- <left_val>-0.6824396848678589</left_val>
- <right_val>0.1067868992686272</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 4 -1.</_>
- <_>
- 9 0 9 2 2.</_>
- <_>
- 0 2 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0353097803890705</threshold>
- <left_val>-0.6521000862121582</left_val>
- <right_val>0.0987162664532661</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 8 14 -1.</_>
- <_>
- 3 0 4 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0304474700242281</threshold>
- <left_val>0.2479538023471832</left_val>
- <right_val>-0.2581886053085327</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 2 -1.</_>
- <_>
- 7 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8874127678573132e-003</threshold>
- <left_val>0.0805528536438942</left_val>
- <right_val>-0.6340317130088806</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 12 8 -1.</_>
- <_>
- 3 6 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1415794938802719</threshold>
- <left_val>0.6374232172966003</left_val>
- <right_val>-0.0921661630272865</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 10 9 -1.</_>
- <_>
- 4 7 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1456591933965683</threshold>
- <left_val>-0.1032999008893967</left_val>
- <right_val>0.5838242173194885</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 8 3 -1.</_>
- <_>
- 1 1 8 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0116241797804832</threshold>
- <left_val>-0.6888915896415710</left_val>
- <right_val>0.0828648507595062</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 6 4 -1.</_>
- <_>
- 8 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217475499957800</threshold>
- <left_val>-0.6213839054107666</left_val>
- <right_val>0.0476981997489929</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 2 -1.</_>
- <_>
- 6 0 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0184830799698830</threshold>
- <left_val>-0.2010547071695328</left_val>
- <right_val>0.2679708898067474</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 4 -1.</_>
- <_>
- 8 0 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0369827300310135</threshold>
- <left_val>-0.1693059951066971</left_val>
- <right_val>0.2272700071334839</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 3 2 -1.</_>
- <_>
- 7 0 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0168901197612286</threshold>
- <left_val>0.0774174928665161</left_val>
- <right_val>-0.7618877291679382</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 6 14 9 -1.</_>
- <_>
- 2 9 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2389906048774719</threshold>
- <left_val>0.4399172961711884</left_val>
- <right_val>-0.1319973021745682</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 10 7 -1.</_>
- <_>
- 9 0 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1849491000175476</threshold>
- <left_val>0.7312037944793701</left_val>
- <right_val>-0.0721847563982010</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 1 -1.</_>
- <_>
- 16 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.1745406389236450e-003</threshold>
- <left_val>0.0494462810456753</left_val>
- <right_val>-0.5703629255294800</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 1 3 -1.</_>
- <_>
- 2 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.2624902240931988e-003</threshold>
- <left_val>0.0598880685865879</left_val>
- <right_val>-0.7028918266296387</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 4 -1.</_>
- <_>
- 8 0 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0525570586323738</threshold>
- <left_val>-0.0988772809505463</left_val>
- <right_val>0.1742382049560547</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 7 -1.</_>
- <_>
- 7 0 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0300392601639032</threshold>
- <left_val>0.4987078011035919</left_val>
- <right_val>-0.0794838070869446</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 3 2 -1.</_>
- <_>
- 10 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0109278596937656</threshold>
- <left_val>-0.4537245929241180</left_val>
- <right_val>0.0490351393818855</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 1 3 -1.</_>
- <_>
- 8 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.5020083934068680e-003</threshold>
- <left_val>-0.7386950850486755</left_val>
- <right_val>0.0514139384031296</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 16 6 -1.</_>
- <_>
- 1 11 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0552169494330883</threshold>
- <left_val>-0.1239347010850906</left_val>
- <right_val>0.3220806121826172</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 14 4 -1.</_>
- <_>
- 1 11 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0883669406175613</threshold>
- <left_val>0.4828915894031525</left_val>
- <right_val>-0.0840416923165321</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 11 8 4 -1.</_>
- <_>
- 5 13 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0171657595783472</threshold>
- <left_val>-0.1314162015914917</left_val>
- <right_val>0.2680459022521973</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 2 -1.</_>
- <_>
- 8 0 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0905170589685440</threshold>
- <left_val>-0.0930236876010895</left_val>
- <right_val>0.4067414999008179</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 4 -1.</_>
- <_>
- 8 0 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0152978999540210</threshold>
- <left_val>-0.1135606989264488</left_val>
- <right_val>0.0976252779364586</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 16 2 -1.</_>
- <_>
- 4 1 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0306295193731785</threshold>
- <left_val>0.4253452122211456</left_val>
- <right_val>-0.0865394771099091</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 8 -1.</_>
- <_>
- 9 0 9 4 2.</_>
- <_>
- 0 4 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0798880606889725</threshold>
- <left_val>0.0924375280737877</left_val>
- <right_val>-0.3989180028438568</right_val></_></_></trees>
- <stage_threshold>-1.5818140506744385</stage_threshold>
- <parent>1</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 3 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 3 -1.</_>
- <_>
- 10 2 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0614461190998554</threshold>
- <left_val>-0.4504989981651306</left_val>
- <right_val>0.4854202866554260</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 6 7 -1.</_>
- <_>
- 10 0 3 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1895785927772522</threshold>
- <left_val>-0.0670469328761101</left_val>
- <right_val>0.4197702109813690</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 7 6 -1.</_>
- <_>
- 8 0 7 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1736567020416260</threshold>
- <left_val>-0.2891381084918976</left_val>
- <right_val>0.5291916131973267</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 9 6 4 -1.</_>
- <_>
- 12 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0164134204387665</threshold>
- <left_val>0.2862224876880646</left_val>
- <right_val>-0.1747338026762009</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 6 4 -1.</_>
- <_>
- 3 9 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107280304655433</threshold>
- <left_val>0.3140093088150024</left_val>
- <right_val>-0.2830933034420013</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 12 1 -1.</_>
- <_>
- 7 1 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7994461171329021e-003</threshold>
- <left_val>-0.2857860922813416</left_val>
- <right_val>0.2250297963619232</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 8 3 -1.</_>
- <_>
- 4 2 8 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0113080795854330</threshold>
- <left_val>0.1045889034867287</left_val>
- <right_val>-0.7427430152893066</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 12 8 -1.</_>
- <_>
- 3 6 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1032197996973991</threshold>
- <left_val>-0.1167842000722885</left_val>
- <right_val>0.4927442073822022</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 3 -1.</_>
- <_>
- 6 1 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6132972240447998e-003</threshold>
- <left_val>0.0890597030520439</left_val>
- <right_val>-0.5344030857086182</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 4 4 -1.</_>
- <_>
- 12 6 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0606942698359489</threshold>
- <left_val>0.5584030747413635</left_val>
- <right_val>-0.0227699298411608</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 1 3 -1.</_>
- <_>
- 8 2 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.2487940303981304e-003</threshold>
- <left_val>0.0758677795529366</left_val>
- <right_val>-0.5872176289558411</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 4 4 -1.</_>
- <_>
- 12 6 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0400232896208763</threshold>
- <left_val>0.1412438005208969</left_val>
- <right_val>-0.0172170307487249</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 4 4 -1.</_>
- <_>
- 6 6 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0412207692861557</threshold>
- <left_val>0.5134109258651733</left_val>
- <right_val>-0.0854056328535080</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 2 2 -1.</_>
- <_>
- 10 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5766770597547293e-003</threshold>
- <left_val>-0.6052265167236328</left_val>
- <right_val>0.0409328490495682</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 3 -1.</_>
- <_>
- 7 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.9679548293352127e-003</threshold>
- <left_val>-0.6063398122787476</left_val>
- <right_val>0.0673605129122734</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 1 -1.</_>
- <_>
- 6 0 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7802299745380878e-003</threshold>
- <left_val>0.2780480086803436</left_val>
- <right_val>-0.1798703074455261</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 3 -1.</_>
- <_>
- 9 0 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0207993201911449</threshold>
- <left_val>0.4816789031028748</left_val>
- <right_val>-0.1240388005971909</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 10 9 -1.</_>
- <_>
- 5 9 10 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1391586959362030</threshold>
- <left_val>-0.0447275117039680</left_val>
- <right_val>0.5863171219825745</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 6 2 -1.</_>
- <_>
- 6 9 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3711780346930027e-003</threshold>
- <left_val>0.2039086967706680</left_val>
- <right_val>-0.2339323014020920</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 10 3 5 -1.</_>
- <_>
- 16 10 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0164771005511284</threshold>
- <left_val>0.0404451601207256</left_val>
- <right_val>-0.6250053048133850</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 3 5 -1.</_>
- <_>
- 1 10 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0110789798200130</threshold>
- <left_val>0.0576713494956493</left_val>
- <right_val>-0.5416951179504395</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 16 4 -1.</_>
- <_>
- 1 13 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0162228699773550</threshold>
- <left_val>-0.1663480997085571</left_val>
- <right_val>0.2072461992502213</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 3 3 -1.</_>
- <_>
- 0 11 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1675870567560196e-003</threshold>
- <left_val>-0.4788069128990173</left_val>
- <right_val>0.0757727622985840</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 7 12 8 -1.</_>
- <_>
- 3 9 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0589063800871372</threshold>
- <left_val>-0.0867818593978882</left_val>
- <right_val>0.3914811015129089</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 4 14 -1.</_>
- <_>
- 0 8 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0931876674294472</threshold>
- <left_val>0.0619301609694958</left_val>
- <right_val>-0.5739055871963501</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 11 3 1 -1.</_>
- <_>
- 16 12 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.0346969831734896e-003</threshold>
- <left_val>-0.1360708028078079</left_val>
- <right_val>0.0450085289776325</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 8 1 -1.</_>
- <_>
- 7 0 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2366578020155430e-003</threshold>
- <left_val>-0.1827117949724197</left_val>
- <right_val>0.1689772009849548</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 3 2 -1.</_>
- <_>
- 13 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0105886701494455</threshold>
- <left_val>-0.5542160868644714</left_val>
- <right_val>0.0492046102881432</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 4 -1.</_>
- <_>
- 3 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0100352102890611</threshold>
- <left_val>0.0409362092614174</left_val>
- <right_val>-0.6871048212051392</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 12 4 -1.</_>
- <_>
- 7 1 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0344069004058838</threshold>
- <left_val>0.3516596853733063</left_val>
- <right_val>-0.0428969487547874</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 1 3 -1.</_>
- <_>
- 4 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.4508260004222393e-003</threshold>
- <left_val>0.0498083718121052</left_val>
- <right_val>-0.6168934106826782</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 2 12 -1.</_>
- <_>
- 12 0 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0823428034782410</threshold>
- <left_val>0.0836414918303490</left_val>
- <right_val>-0.0810145065188408</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 12 5 -1.</_>
- <_>
- 4 0 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0617706216871738</threshold>
- <left_val>0.3232797980308533</left_val>
- <right_val>-0.0792278200387955</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 7 -1.</_>
- <_>
- 8 0 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0364590808749199</threshold>
- <left_val>-0.1596114933490753</left_val>
- <right_val>0.1232450976967812</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 12 7 -1.</_>
- <_>
- 4 0 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0474974289536476</threshold>
- <left_val>-0.1659339964389801</left_val>
- <right_val>0.2966628074645996</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 1 3 -1.</_>
- <_>
- 8 2 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.6670873463153839e-003</threshold>
- <left_val>-0.5881838202476502</left_val>
- <right_val>0.0336683988571167</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 3 1 -1.</_>
- <_>
- 10 2 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.9817090407013893e-003</threshold>
- <left_val>0.0585361085832119</left_val>
- <right_val>-0.4767274856567383</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 16 8 -1.</_>
- <_>
- 1 8 16 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1032517030835152</threshold>
- <left_val>0.2206470966339111</left_val>
- <right_val>-0.1236488968133926</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 12 8 -1.</_>
- <_>
- 3 7 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0696480572223663</threshold>
- <left_val>-0.1025395020842552</left_val>
- <right_val>0.3714990019798279</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 12 4 -1.</_>
- <_>
- 3 6 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0588895305991173</threshold>
- <left_val>0.3248862922191620</left_val>
- <right_val>-0.0962660014629364</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 8 11 -1.</_>
- <_>
- 3 0 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0299398303031921</threshold>
- <left_val>0.1798900961875916</left_val>
- <right_val>-0.1531133055686951</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 3 1 -1.</_>
- <_>
- 12 2 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.5012055933475494e-003</threshold>
- <left_val>0.0426186993718147</left_val>
- <right_val>-0.5119447112083435</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 1 3 -1.</_>
- <_>
- 6 2 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.8030229993164539e-003</threshold>
- <left_val>-0.4962818026542664</left_val>
- <right_val>0.0598989911377430</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 12 12 2 -1.</_>
- <_>
- 5 12 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0227242801338434</threshold>
- <left_val>-0.0956752821803093</left_val>
- <right_val>0.2338289022445679</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 12 5 -1.</_>
- <_>
- 6 0 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0372309498488903</threshold>
- <left_val>0.3216434121131897</left_val>
- <right_val>-0.0921498537063599</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 17 2 -1.</_>
- <_>
- 1 3 17 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0166754201054573</threshold>
- <left_val>0.0617647506296635</left_val>
- <right_val>-0.4719795882701874</right_val></_></_></trees>
- <stage_threshold>-1.5400149822235107</stage_threshold>
- <parent>2</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 4 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 4 4 -1.</_>
- <_>
- 8 4 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0564467795193195</threshold>
- <left_val>-0.4791874885559082</left_val>
- <right_val>0.4913735091686249</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 2 11 -1.</_>
- <_>
- 10 1 1 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0106428097933531</threshold>
- <left_val>-0.1448355019092560</left_val>
- <right_val>0.3184663951396942</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 12 9 -1.</_>
- <_>
- 3 4 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0598327815532684</threshold>
- <left_val>-0.3674696981906891</left_val>
- <right_val>0.2713288962841034</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 2 -1.</_>
- <_>
- 9 0 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0121322497725487</threshold>
- <left_val>0.1230909004807472</left_val>
- <right_val>-0.0897226184606552</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 4 -1.</_>
- <_>
- 8 0 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.1117030885070562e-003</threshold>
- <left_val>-0.3512226045131683</left_val>
- <right_val>0.2213625013828278</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 8 7 -1.</_>
- <_>
- 10 8 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0397736988961697</threshold>
- <left_val>0.2041599005460739</left_val>
- <right_val>-0.0433022715151310</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 8 5 -1.</_>
- <_>
- 4 9 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0183949507772923</threshold>
- <left_val>0.1936838030815125</left_val>
- <right_val>-0.2287393063306809</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 1 -1.</_>
- <_>
- 7 0 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.2628989368677139e-003</threshold>
- <left_val>-0.2214957028627396</left_val>
- <right_val>0.2067804038524628</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 2 -1.</_>
- <_>
- 5 1 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8584238439798355e-003</threshold>
- <left_val>0.0557319596409798</left_val>
- <right_val>-0.6437491774559021</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 2 -1.</_>
- <_>
- 8 1 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9286862164735794e-003</threshold>
- <left_val>-0.6289044022560120</left_val>
- <right_val>0.0527597591280937</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 6 14 6 -1.</_>
- <_>
- 2 8 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0654434263706207</threshold>
- <left_val>-0.1031555980443955</left_val>
- <right_val>0.4465965032577515</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 12 4 -1.</_>
- <_>
- 3 11 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0322746597230434</threshold>
- <left_val>-0.1719404011964798</left_val>
- <right_val>0.3662515878677368</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 3 14 -1.</_>
- <_>
- 0 8 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0480254292488098</threshold>
- <left_val>0.0847395211458206</left_val>
- <right_val>-0.5135415196418762</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 14 2 -1.</_>
- <_>
- 9 0 7 1 2.</_>
- <_>
- 2 1 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0114615103229880</threshold>
- <left_val>-0.6505548954010010</left_val>
- <right_val>0.0551190003752708</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 4 -1.</_>
- <_>
- 9 0 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4770029596984386e-003</threshold>
- <left_val>-0.1637386977672577</left_val>
- <right_val>0.2640801966190338</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 3 6 -1.</_>
- <_>
- 9 2 1 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0417843498289585</threshold>
- <left_val>-0.7496129274368286</left_val>
- <right_val>0.0373055487871170</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 14 14 -1.</_>
- <_>
- 9 1 7 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3199185132980347</threshold>
- <left_val>0.4014340043067932</left_val>
- <right_val>-0.1033769026398659</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 2 9 -1.</_>
- <_>
- 6 4 2 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1278306990861893</threshold>
- <left_val>0.2711302936077118</left_val>
- <right_val>-9.5342872664332390e-003</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 9 2 -1.</_>
- <_>
- 12 4 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0639397427439690</threshold>
- <left_val>-0.1355940997600555</left_val>
- <right_val>0.3188548088073731</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 16 9 -1.</_>
- <_>
- 1 9 16 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1486892998218536</threshold>
- <left_val>-0.0747430101037025</left_val>
- <right_val>0.5065084099769592</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 1 -1.</_>
- <_>
- 10 2 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0108674801886082</threshold>
- <left_val>0.0678603425621986</left_val>
- <right_val>-0.5648670792579651</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 8 6 -1.</_>
- <_>
- 5 6 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1110275015234947</threshold>
- <left_val>0.3693794012069702</left_val>
- <right_val>-0.1024053022265434</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 14 6 -1.</_>
- <_>
- 2 7 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0554906614124775</threshold>
- <left_val>-0.1338842958211899</left_val>
- <right_val>0.3250921070575714</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 10 -1.</_>
- <_>
- 9 0 9 5 2.</_>
- <_>
- 0 5 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1232120022177696</threshold>
- <left_val>-0.4476852118968964</left_val>
- <right_val>0.0736907273530960</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 18 2 -1.</_>
- <_>
- 0 4 9 1 2.</_>
- <_>
- 9 5 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0203750394284725</threshold>
- <left_val>-0.6625912785530090</left_val>
- <right_val>0.0422433987259865</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 10 -1.</_>
- <_>
- 16 0 1 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0578291043639183e-003</threshold>
- <left_val>0.1829244047403336</left_val>
- <right_val>-0.1217911988496780</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 2 4 -1.</_>
- <_>
- 5 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0161957796663046</threshold>
- <left_val>-0.6317883133888245</left_val>
- <right_val>0.0402268916368485</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 12 3 -1.</_>
- <_>
- 9 0 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0509672202169895</threshold>
- <left_val>-0.0774049535393715</left_val>
- <right_val>0.2435534000396729</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 9 9 -1.</_>
- <_>
- 6 0 3 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0580940917134285</threshold>
- <left_val>-0.1238128989934921</left_val>
- <right_val>0.2535600960254669</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 3 1 -1.</_>
- <_>
- 10 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2313118465244770e-003</threshold>
- <left_val>-0.5383070111274719</left_val>
- <right_val>0.0235711093991995</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 8 -1.</_>
- <_>
- 7 0 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0187011696398258</threshold>
- <left_val>0.3781844079494476</left_val>
- <right_val>-0.0800608471035957</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 12 12 2 -1.</_>
- <_>
- 3 13 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5685389991849661e-003</threshold>
- <left_val>-0.1653445959091187</left_val>
- <right_val>0.1620604991912842</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 5 -1.</_>
- <_>
- 8 0 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9677819218486547e-003</threshold>
- <left_val>-0.1756453961133957</left_val>
- <right_val>0.1530714035034180</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 3 12 -1.</_>
- <_>
- 12 0 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.3548716902732849</threshold>
- <left_val>-0.0136137595400214</left_val>
- <right_val>0.3601670861244202</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 12 3 -1.</_>
- <_>
- 6 0 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2680880129337311</threshold>
- <left_val>-0.0809430927038193</left_val>
- <right_val>0.3691290915012360</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 15 6 -1.</_>
- <_>
- 2 11 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0628807172179222</threshold>
- <left_val>-0.0913113132119179</left_val>
- <right_val>0.3295261859893799</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 4 2 -1.</_>
- <_>
- 6 7 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0241544693708420</threshold>
- <left_val>-0.0686313733458519</left_val>
- <right_val>0.4574730098247528</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 12 2 -1.</_>
- <_>
- 9 1 6 1 2.</_>
- <_>
- 3 2 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1738719493150711e-003</threshold>
- <left_val>0.0545422695577145</left_val>
- <right_val>-0.5137330889701843</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 3 3 -1.</_>
- <_>
- 7 2 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0130733698606491</threshold>
- <left_val>-0.5970230102539063</left_val>
- <right_val>0.0365914106369019</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 3 2 -1.</_>
- <_>
- 11 9 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8077309988439083e-003</threshold>
- <left_val>-0.0354327894747257</left_val>
- <right_val>0.2519941031932831</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 18 4 -1.</_>
- <_>
- 0 7 9 2 2.</_>
- <_>
- 9 9 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0451491102576256</threshold>
- <left_val>0.0638899281620979</left_val>
- <right_val>-0.3836725056171417</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 3 1 -1.</_>
- <_>
- 10 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.9950553849339485e-003</threshold>
- <left_val>0.0132095599547029</left_val>
- <right_val>-0.4537735879421234</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 1 3 -1.</_>
- <_>
- 8 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.9643689095973969e-003</threshold>
- <left_val>0.0337183102965355</left_val>
- <right_val>-0.6533402204513550</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 18 14 -1.</_>
- <_>
- 9 1 9 7 2.</_>
- <_>
- 0 8 9 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3567276895046234</threshold>
- <left_val>0.0322214402258396</left_val>
- <right_val>-0.5800313949584961</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 12 3 -1.</_>
- <_>
- 3 0 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0362690612673759</threshold>
- <left_val>0.2469438016414642</left_val>
- <right_val>-0.1049576029181480</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 3 -1.</_>
- <_>
- 5 0 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0427862294018269</threshold>
- <left_val>-0.0707177072763443</left_val>
- <right_val>0.3693887889385223</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 1 2 -1.</_>
- <_>
- 8 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1904439888894558e-003</threshold>
- <left_val>-0.3828451037406921</left_val>
- <right_val>0.0615513585507870</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 2 1 12 -1.</_>
- <_>
- 17 2 1 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1074014976620674</threshold>
- <left_val>-0.0219720508903265</left_val>
- <right_val>0.1813759058713913</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 8 -1.</_>
- <_>
- 6 0 6 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0774416774511337</threshold>
- <left_val>-0.2010713070631027</left_val>
- <right_val>0.1122270971536636</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 2 1 12 -1.</_>
- <_>
- 17 2 1 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0711435526609421</threshold>
- <left_val>-0.0310098994523287</left_val>
- <right_val>0.0730640217661858</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 14 8 -1.</_>
- <_>
- 2 3 14 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0573387593030930</threshold>
- <left_val>0.4086444079875946</left_val>
- <right_val>-0.0614440515637398</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 14 6 -1.</_>
- <_>
- 2 7 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0721061602234840</threshold>
- <left_val>0.3398239910602570</left_val>
- <right_val>-0.0868131667375565</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 12 1 -1.</_>
- <_>
- 1 2 6 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0585803911089897</threshold>
- <left_val>-0.4961046874523163</left_val>
- <right_val>0.0615561902523041</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 4 2 -1.</_>
- <_>
- 9 5 2 1 2.</_>
- <_>
- 7 6 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4991881586611271e-003</threshold>
- <left_val>0.0394841395318508</left_val>
- <right_val>-0.4602204859256744</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 16 6 -1.</_>
- <_>
- 1 6 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0579723715782166</threshold>
- <left_val>-0.1136581003665924</left_val>
- <right_val>0.1817841976881027</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 13 12 -1.</_>
- <_>
- 5 3 13 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4121701121330261</threshold>
- <left_val>0.0172915197908878</left_val>
- <right_val>-0.8044996857643127</right_val></_></_></trees>
- <stage_threshold>-1.5587489604949951</stage_threshold>
- <parent>3</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 5 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 8 4 -1.</_>
- <_>
- 5 8 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0492322407662869</threshold>
- <left_val>0.4037728011608124</left_val>
- <right_val>-0.4236100018024445</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 10 -1.</_>
- <_>
- 9 0 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0273310504853725</threshold>
- <left_val>-0.1327770054340363</left_val>
- <right_val>0.2073374986648560</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 9 12 -1.</_>
- <_>
- 4 0 3 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0451007597148418</threshold>
- <left_val>0.3161504864692688</left_val>
- <right_val>-0.4204424023628235</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 14 10 -1.</_>
- <_>
- 11 4 7 5 2.</_>
- <_>
- 4 9 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2528321146965027</threshold>
- <left_val>-0.5749738812446594</left_val>
- <right_val>0.0644379332661629</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 12 10 -1.</_>
- <_>
- 0 4 6 5 2.</_>
- <_>
- 6 9 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0427955314517021</threshold>
- <left_val>0.1252602040767670</left_val>
- <right_val>-0.3632065951824188</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 8 -1.</_>
- <_>
- 9 0 9 4 2.</_>
- <_>
- 0 4 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1059911996126175</threshold>
- <left_val>-0.5933778285980225</left_val>
- <right_val>0.1167925000190735</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 15 2 -1.</_>
- <_>
- 1 12 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1173040196299553e-003</threshold>
- <left_val>-0.2029637992382050</left_val>
- <right_val>0.2159796953201294</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 14 2 -1.</_>
- <_>
- 3 1 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0115433102473617</threshold>
- <left_val>-0.5695471167564392</left_val>
- <right_val>0.0695127025246620</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 7 4 -1.</_>
- <_>
- 3 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0259417798370123</threshold>
- <left_val>0.0406758897006512</left_val>
- <right_val>-0.5966268777847290</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 12 8 -1.</_>
- <_>
- 3 6 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1111780032515526</threshold>
- <left_val>0.3923074901103973</left_val>
- <right_val>-0.0852632820606232</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 13 12 -1.</_>
- <_>
- 2 5 13 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1398020982742310</threshold>
- <left_val>-0.2032230049371719</left_val>
- <right_val>0.2588416934013367</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 4 -1.</_>
- <_>
- 6 0 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0223447605967522</threshold>
- <left_val>-0.2217562943696976</left_val>
- <right_val>0.1535113006830216</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 7 -1.</_>
- <_>
- 9 0 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0356404818594456</threshold>
- <left_val>-0.1139336973428726</left_val>
- <right_val>0.2922905087471008</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 4 -1.</_>
- <_>
- 7 1 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0998390913009644e-003</threshold>
- <left_val>0.0395722091197968</left_val>
- <right_val>-0.6671259999275208</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 14 6 -1.</_>
- <_>
- 2 9 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0534741394221783</threshold>
- <left_val>-0.0767945721745491</left_val>
- <right_val>0.4321976900100708</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 7 10 -1.</_>
- <_>
- 11 6 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0138621004298329</threshold>
- <left_val>0.0846036896109581</left_val>
- <right_val>-0.1605919003486633</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 10 3 -1.</_>
- <_>
- 9 0 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0770997405052185</threshold>
- <left_val>0.5477244257926941</left_val>
- <right_val>-0.0663700029253960</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 18 2 -1.</_>
- <_>
- 9 1 9 1 2.</_>
- <_>
- 0 2 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0128013696521521</threshold>
- <left_val>-0.5547736287117004</left_val>
- <right_val>0.0567846409976482</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 2 2 -1.</_>
- <_>
- 1 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0235139779979363e-004</threshold>
- <left_val>0.1450944989919663</left_val>
- <right_val>-0.1950954049825668</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 1 -1.</_>
- <_>
- 16 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.0487200282514095e-003</threshold>
- <left_val>0.0400543101131916</left_val>
- <right_val>-0.4442957043647766</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 1 3 -1.</_>
- <_>
- 2 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.5558041892945766e-003</threshold>
- <left_val>-0.4354816973209381</left_val>
- <right_val>0.0606299117207527</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 4 2 7 -1.</_>
- <_>
- 14 4 1 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0193000100553036</threshold>
- <left_val>-0.0711913108825684</left_val>
- <right_val>0.0810695365071297</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 16 2 -1.</_>
- <_>
- 1 11 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4058600217103958e-003</threshold>
- <left_val>-0.1416722983121872</left_val>
- <right_val>0.1968034058809280</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 6 2 6 -1.</_>
- <_>
- 13 6 1 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.6945146322250366e-003</threshold>
- <left_val>-0.1313387006521225</left_val>
- <right_val>0.0205014292150736</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 8 4 -1.</_>
- <_>
- 8 9 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.7174253314733505e-003</threshold>
- <left_val>-0.1872030943632126</left_val>
- <right_val>0.1876177042722702</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 14 4 -1.</_>
- <_>
- 2 10 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1115583032369614</threshold>
- <left_val>0.4086495935916901</left_val>
- <right_val>-0.0699931830167770</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 9 -1.</_>
- <_>
- 3 3 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0976407974958420</threshold>
- <left_val>-0.1244983971118927</left_val>
- <right_val>0.2161774039268494</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 4 12 -1.</_>
- <_>
- 14 7 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1506139039993286</threshold>
- <left_val>-0.3867461979389191</left_val>
- <right_val>0.0543168187141418</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 2 -1.</_>
- <_>
- 6 0 3 1 2.</_>
- <_>
- 9 1 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9472171813249588e-003</threshold>
- <left_val>0.0436532311141491</left_val>
- <right_val>-0.5155900120735169</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 2 2 -1.</_>
- <_>
- 10 2 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0204955395311117</threshold>
- <left_val>-0.5441694855690002</left_val>
- <right_val>7.6605947688221931e-003</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 6 -1.</_>
- <_>
- 7 0 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0272786691784859</threshold>
- <left_val>0.4267495870590210</left_val>
- <right_val>-0.0565182790160179</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 4 6 -1.</_>
- <_>
- 11 10 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0135246496647596</threshold>
- <left_val>-0.0507161505520344</left_val>
- <right_val>0.1838100999593735</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 8 -1.</_>
- <_>
- 0 0 9 4 2.</_>
- <_>
- 9 4 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0949866473674774</threshold>
- <left_val>-0.4232459962368012</left_val>
- <right_val>0.0522982999682426</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 4 10 -1.</_>
- <_>
- 14 6 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1105156019330025</threshold>
- <left_val>3.5527960862964392e-003</left_val>
- <right_val>-0.4166136085987091</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 4 10 -1.</_>
- <_>
- 0 6 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1319251954555512</threshold>
- <left_val>-0.6282796859741211</left_val>
- <right_val>0.0391492694616318</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 2 2 -1.</_>
- <_>
- 10 2 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0194247197359800</threshold>
- <left_val>6.5935368184000254e-004</left_val>
- <right_val>-0.5752815008163452</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 2 2 -1.</_>
- <_>
- 8 2 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0147077599540353</threshold>
- <left_val>0.0390244014561176</left_val>
- <right_val>-0.5651786923408508</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 2 1 -1.</_>
- <_>
- 10 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9291698592714965e-004</threshold>
- <left_val>-0.1292673051357269</left_val>
- <right_val>0.1258907020092011</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 3 -1.</_>
- <_>
- 8 0 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1614220459014177e-003</threshold>
- <left_val>-0.1379971951246262</left_val>
- <right_val>0.1651082038879395</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 12 -1.</_>
- <_>
- 3 6 12 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4875395894050598</threshold>
- <left_val>0.4380280971527100</left_val>
- <right_val>-0.0606237016618252</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 12 4 -1.</_>
- <_>
- 3 7 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0505968406796455</threshold>
- <left_val>-0.0435010008513927</left_val>
- <right_val>0.5122361779212952</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 6 14 -1.</_>
- <_>
- 12 8 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1982239037752152</threshold>
- <left_val>0.0168439298868179</left_val>
- <right_val>-0.4508939981460571</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 13 14 2 -1.</_>
- <_>
- 2 14 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0525614693760872</threshold>
- <left_val>0.6191160082817078</left_val>
- <right_val>-0.0332456789910793</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 18 6 -1.</_>
- <_>
- 0 6 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0394346490502357</threshold>
- <left_val>-0.1332457065582275</left_val>
- <right_val>0.1555656045675278</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 2 4 -1.</_>
- <_>
- 0 9 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2802558317780495e-003</threshold>
- <left_val>-0.4649186134338379</left_val>
- <right_val>0.0463778004050255</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 12 10 -1.</_>
- <_>
- 10 0 4 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1878169029951096</threshold>
- <left_val>-0.0738439187407494</left_val>
- <right_val>0.2035520970821381</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 12 10 -1.</_>
- <_>
- 4 0 4 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0592883005738258</threshold>
- <left_val>-0.1004031971096993</left_val>
- <right_val>0.2930684983730316</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 13 12 2 -1.</_>
- <_>
- 3 14 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8330631107091904e-003</threshold>
- <left_val>-0.1236037984490395</left_val>
- <right_val>0.1822776049375534</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 8 4 6 -1.</_>
- <_>
- 3 10 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0134623004123569</threshold>
- <left_val>-0.0865014195442200</left_val>
- <right_val>0.2545304000377655</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 11 4 4 -1.</_>
- <_>
- 14 11 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0112787801772356</threshold>
- <left_val>0.0359535515308380</left_val>
- <right_val>-0.3637040853500366</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 5 14 -1.</_>
- <_>
- 0 8 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1112084984779358</threshold>
- <left_val>0.0411560982465744</left_val>
- <right_val>-0.4935589134693146</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 2 1 -1.</_>
- <_>
- 10 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8954879641532898e-003</threshold>
- <left_val>8.6054708808660507e-003</left_val>
- <right_val>-0.5774816274642944</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 2 1 -1.</_>
- <_>
- 7 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0609137765131891e-005</threshold>
- <left_val>-0.1943852007389069</left_val>
- <right_val>0.1089660003781319</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 17 4 -1.</_>
- <_>
- 1 12 17 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0111626898869872</threshold>
- <left_val>-0.1052400022745132</left_val>
- <right_val>0.1769991964101791</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 3 3 -1.</_>
- <_>
- 8 1 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0147585002705455</threshold>
- <left_val>0.0338271111249924</left_val>
- <right_val>-0.5783804059028626</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 2 2 -1.</_>
- <_>
- 9 2 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5100449137389660e-003</threshold>
- <left_val>0.0122224902734160</left_val>
- <right_val>-0.6832317113876343</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 4 4 -1.</_>
- <_>
- 2 11 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0132402600720525</threshold>
- <left_val>0.0317283198237419</left_val>
- <right_val>-0.4962331950664520</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 10 8 -1.</_>
- <_>
- 8 3 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2101143002510071</threshold>
- <left_val>-0.4922251105308533</left_val>
- <right_val>5.4596872068941593e-003</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 10 8 -1.</_>
- <_>
- 5 3 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2414025068283081</threshold>
- <left_val>0.0314619205892086</left_val>
- <right_val>-0.5690953135490418</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 2 4 -1.</_>
- <_>
- 12 7 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.8006789982318878e-003</threshold>
- <left_val>-0.0650670900940895</left_val>
- <right_val>0.0376422517001629</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 6 -1.</_>
- <_>
- 0 9 9 3 2.</_>
- <_>
- 9 12 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1262440979480743</threshold>
- <left_val>0.0393773987889290</left_val>
- <right_val>-0.4590097963809967</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 7 6 4 -1.</_>
- <_>
- 13 7 3 2 2.</_>
- <_>
- 10 9 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0130107998847961</threshold>
- <left_val>-0.0579108111560345</left_val>
- <right_val>0.2962261140346527</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 1 3 -1.</_>
- <_>
- 2 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.1800998412072659e-003</threshold>
- <left_val>0.0342495106160641</left_val>
- <right_val>-0.5636181831359863</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 12 2 -1.</_>
- <_>
- 8 0 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0242467503994703</threshold>
- <left_val>-0.1086483970284462</left_val>
- <right_val>0.1013154983520508</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 16 10 -1.</_>
- <_>
- 1 5 8 5 2.</_>
- <_>
- 9 10 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1696685999631882</threshold>
- <left_val>-0.3411920964717865</left_val>
- <right_val>0.0499880090355873</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 2 4 -1.</_>
- <_>
- 12 6 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0204610601067543</threshold>
- <left_val>-0.2079558074474335</left_val>
- <right_val>3.4589329734444618e-003</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 4 2 -1.</_>
- <_>
- 6 6 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0213081296533346</threshold>
- <left_val>0.5027093887329102</left_val>
- <right_val>-0.0400764681398869</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 6 4 -1.</_>
- <_>
- 13 8 3 2 2.</_>
- <_>
- 10 10 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109308399260044</threshold>
- <left_val>0.1563555002212524</left_val>
- <right_val>-0.0751591026782990</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 1 -1.</_>
- <_>
- 10 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.9652167409658432e-003</threshold>
- <left_val>0.0362863987684250</left_val>
- <right_val>-0.5052989125251770</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 10 1 3 -1.</_>
- <_>
- 17 11 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3498809207230806e-003</threshold>
- <left_val>-0.2724232971668243</left_val>
- <right_val>0.0273806899785995</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 11 2 -1.</_>
- <_>
- 3 0 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0597393512725830</threshold>
- <left_val>0.0268720109015703</left_val>
- <right_val>-0.6388636827468872</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 10 8 -1.</_>
- <_>
- 13 6 5 4 2.</_>
- <_>
- 8 10 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1278129965066910</threshold>
- <left_val>1.4498339733108878e-003</left_val>
- <right_val>-0.3833698928356171</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 14 2 -1.</_>
- <_>
- 2 13 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9313340783119202e-003</threshold>
- <left_val>-0.1309947967529297</left_val>
- <right_val>0.1298779994249344</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 10 1 3 -1.</_>
- <_>
- 17 11 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1392742209136486e-003</threshold>
- <left_val>0.0108347898349166</left_val>
- <right_val>-0.3170185089111328</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 8 3 -1.</_>
- <_>
- 9 6 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0811345130205154</threshold>
- <left_val>-0.3570674955844879</left_val>
- <right_val>0.0494775287806988</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 9 3 6 -1.</_>
- <_>
- 13 11 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0604430399835110</threshold>
- <left_val>0.4088949859142304</left_val>
- <right_val>-0.0221638102084398</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 3 6 -1.</_>
- <_>
- 2 11 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9390361420810223e-003</threshold>
- <left_val>-0.1046036034822464</left_val>
- <right_val>0.1944513022899628</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 10 1 3 -1.</_>
- <_>
- 17 11 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8998396929819137e-005</threshold>
- <left_val>-0.0479567199945450</left_val>
- <right_val>0.0571181289851666</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 1 3 -1.</_>
- <_>
- 0 11 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8057189881801605e-003</threshold>
- <left_val>-0.2924138009548187</left_val>
- <right_val>0.0581192187964916</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 6 6 -1.</_>
- <_>
- 11 1 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7375837825238705e-003</threshold>
- <left_val>-0.0886564627289772</left_val>
- <right_val>0.0441452711820602</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 2 1 -1.</_>
- <_>
- 4 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5221098591573536e-005</threshold>
- <left_val>-0.1249044984579086</left_val>
- <right_val>0.1266127973794937</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 3 -1.</_>
- <_>
- 14 1 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0241630896925926</threshold>
- <left_val>-0.0133935501798987</left_val>
- <right_val>0.3467755913734436</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 8 4 -1.</_>
- <_>
- 1 7 4 2 2.</_>
- <_>
- 5 9 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0127861900255084</threshold>
- <left_val>-0.0568488091230392</left_val>
- <right_val>0.2727532982826233</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 4 2 -1.</_>
- <_>
- 8 9 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3572210446000099e-003</threshold>
- <left_val>0.0654089972376823</left_val>
- <right_val>-0.1414448022842407</right_val></_></_></trees>
- <stage_threshold>-1.5197360515594482</stage_threshold>
- <parent>4</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 6 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 4 6 -1.</_>
- <_>
- 9 2 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1201385036110878</threshold>
- <left_val>-0.3657313883304596</left_val>
- <right_val>0.3629319071769714</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 6 14 8 -1.</_>
- <_>
- 2 8 14 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1462011039257050</threshold>
- <left_val>0.3965567946434021</left_val>
- <right_val>-0.1946136951446533</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 3 -1.</_>
- <_>
- 7 0 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0123430602252483</threshold>
- <left_val>-0.2474983036518097</left_val>
- <right_val>0.2256231009960175</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.2748850062489510e-003</threshold>
- <left_val>0.0721044987440109</left_val>
- <right_val>-0.3896430134773254</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 3 6 -1.</_>
- <_>
- 8 3 3 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2431180030107498</threshold>
- <left_val>9.4664301723241806e-003</left_val>
- <right_val>1.0626879882812500e+003</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 12 4 -1.</_>
- <_>
- 9 0 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0399235188961029</threshold>
- <left_val>-0.1290356069803238</left_val>
- <right_val>0.1935819983482361</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 6 7 -1.</_>
- <_>
- 3 8 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0425998419523239e-003</threshold>
- <left_val>0.1544698029756546</left_val>
- <right_val>-0.2654632031917572</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 10 2 -1.</_>
- <_>
- 9 1 5 1 2.</_>
- <_>
- 4 2 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5724221058189869e-003</threshold>
- <left_val>0.0737086832523346</left_val>
- <right_val>-0.5816736221313477</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 6 6 -1.</_>
- <_>
- 3 3 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0233357399702072</threshold>
- <left_val>-0.4272454082965851</left_val>
- <right_val>0.0886551067233086</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 12 2 -1.</_>
- <_>
- 3 10 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0262159798294306</threshold>
- <left_val>0.3560248017311096</left_val>
- <right_val>-0.1014178022742271</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 16 2 -1.</_>
- <_>
- 1 10 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0114004900678992</threshold>
- <left_val>-0.1101441010832787</left_val>
- <right_val>0.3644121885299683</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 3 3 -1.</_>
- <_>
- 10 4 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145206097513437</threshold>
- <left_val>0.0214245207607746</left_val>
- <right_val>-0.4902862012386322</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 8 2 -1.</_>
- <_>
- 5 3 4 1 2.</_>
- <_>
- 9 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5834655910730362e-003</threshold>
- <left_val>-0.6525719761848450</left_val>
- <right_val>0.0546631813049316</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 14 12 -1.</_>
- <_>
- 9 0 7 6 2.</_>
- <_>
- 2 6 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1374545991420746</threshold>
- <left_val>-0.5049275159835815</left_val>
- <right_val>0.0527309887111187</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 3 -1.</_>
- <_>
- 6 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0126157002523541</threshold>
- <left_val>-0.6245530843734741</left_val>
- <right_val>0.0316158086061478</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 2 1 -1.</_>
- <_>
- 15 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3604110538144596e-005</threshold>
- <left_val>0.0987414866685867</left_val>
- <right_val>-0.0946909487247467</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 2 1 -1.</_>
- <_>
- 2 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8249959693057463e-005</threshold>
- <left_val>0.1445119976997376</left_val>
- <right_val>-0.1613789051771164</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 4 4 -1.</_>
- <_>
- 14 1 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0199512392282486</threshold>
- <left_val>-0.3773136138916016</left_val>
- <right_val>0.0244714803993702</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 4 5 -1.</_>
- <_>
- 8 5 2 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0549685694277287</threshold>
- <left_val>-0.4405806958675385</left_val>
- <right_val>0.0534904003143311</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 4 -1.</_>
- <_>
- 5 1 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0169392302632332</threshold>
- <left_val>-0.6665034890174866</left_val>
- <right_val>0.0315596312284470</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 2 3 -1.</_>
- <_>
- 2 2 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0110901398584247</threshold>
- <left_val>0.0311973206698895</left_val>
- <right_val>-0.5475487709045410</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 4 -1.</_>
- <_>
- 8 0 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0289862100034952</threshold>
- <left_val>-0.1251084953546524</left_val>
- <right_val>0.0918823182582855</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 7 -1.</_>
- <_>
- 9 0 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1045346036553383</threshold>
- <left_val>0.4357545971870422</left_val>
- <right_val>-0.0606762506067753</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 1 8 -1.</_>
- <_>
- 9 5 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.6273069456219673e-003</threshold>
- <left_val>0.0973885133862495</left_val>
- <right_val>-0.0912084132432938</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 12 9 -1.</_>
- <_>
- 7 6 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5169839859008789</threshold>
- <left_val>-0.0609911382198334</left_val>
- <right_val>0.4879719913005829</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 16 6 -1.</_>
- <_>
- 1 6 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0667436569929123</threshold>
- <left_val>0.3727416992187500</left_val>
- <right_val>-0.0635046362876892</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 3 2 -1.</_>
- <_>
- 6 1 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0154703501611948</threshold>
- <left_val>0.0610504113137722</left_val>
- <right_val>-0.4871797859668732</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 4 2 -1.</_>
- <_>
- 7 10 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5926289856433868e-003</threshold>
- <left_val>0.1421190947294235</left_val>
- <right_val>-0.1508843004703522</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 14 10 -1.</_>
- <_>
- 1 5 7 5 2.</_>
- <_>
- 8 10 7 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2056556940078735</threshold>
- <left_val>-0.4781495928764343</left_val>
- <right_val>0.0436189286410809</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 9 3 6 -1.</_>
- <_>
- 10 11 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0296549908816814</threshold>
- <left_val>-0.0354740694165230</left_val>
- <right_val>0.1896422952413559</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 18 10 -1.</_>
- <_>
- 0 5 9 5 2.</_>
- <_>
- 9 10 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1328420042991638</threshold>
- <left_val>0.0555178187787533</left_val>
- <right_val>-0.3971447050571442</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 3 2 -1.</_>
- <_>
- 8 1 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3759230282157660e-003</threshold>
- <left_val>0.0415674299001694</left_val>
- <right_val>-0.3620547950267792</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 2 5 -1.</_>
- <_>
- 6 1 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4163701133802533e-004</threshold>
- <left_val>-0.1866434067487717</left_val>
- <right_val>0.1040982976555824</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 12 7 -1.</_>
- <_>
- 8 0 4 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0527310110628605</threshold>
- <left_val>0.2760218083858490</left_val>
- <right_val>-0.0270596593618393</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 12 4 -1.</_>
- <_>
- 4 0 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0621075518429279</threshold>
- <left_val>0.3134047091007233</left_val>
- <right_val>-0.0696556121110916</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 6 14 -1.</_>
- <_>
- 12 7 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0139620797708631</threshold>
- <left_val>0.0415851585566998</left_val>
- <right_val>-0.1057448983192444</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 12 5 -1.</_>
- <_>
- 5 0 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0591135807335377</threshold>
- <left_val>-0.1132714971899986</left_val>
- <right_val>0.2140036970376968</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 6 14 -1.</_>
- <_>
- 12 7 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3247278034687042</threshold>
- <left_val>-0.2102808952331543</left_val>
- <right_val>0.0147817200049758</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 14 -1.</_>
- <_>
- 0 7 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5277121290564537e-003</threshold>
- <left_val>0.1057813987135887</left_val>
- <right_val>-0.2166267037391663</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 9 3 6 -1.</_>
- <_>
- 10 11 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0557695515453815</threshold>
- <left_val>0.2719202041625977</left_val>
- <right_val>-0.0213698092848063</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 3 6 -1.</_>
- <_>
- 5 11 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0139181502163410</threshold>
- <left_val>-0.0888932272791862</left_val>
- <right_val>0.2555867135524750</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 13 6 2 -1.</_>
- <_>
- 7 14 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3373179137706757e-003</threshold>
- <left_val>-0.1157324984669685</left_val>
- <right_val>0.1542420983314514</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 1 3 -1.</_>
- <_>
- 7 3 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.1918689645826817e-003</threshold>
- <left_val>0.0410376191139221</left_val>
- <right_val>-0.5052363872528076</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 3 1 -1.</_>
- <_>
- 16 4 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.5471794009208679e-003</threshold>
- <left_val>0.0143813500180840</left_val>
- <right_val>-0.2316330969333649</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 11 1 3 -1.</_>
- <_>
- 2 12 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.2956521026790142e-003</threshold>
- <left_val>-0.2828037142753601</left_val>
- <right_val>0.0618998408317566</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 3 4 -1.</_>
- <_>
- 11 8 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0220706891268492</threshold>
- <left_val>0.1489437073469162</left_val>
- <right_val>-0.0949123501777649</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 14 9 -1.</_>
- <_>
- 2 8 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1664644032716751</threshold>
- <left_val>-0.0590463504195213</left_val>
- <right_val>0.4529106020927429</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 8 4 -1.</_>
- <_>
- 14 10 4 2 2.</_>
- <_>
- 10 12 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9817809164524078e-003</threshold>
- <left_val>-0.0702360421419144</left_val>
- <right_val>0.1200437024235725</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 4 3 -1.</_>
- <_>
- 1 12 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7218217775225639e-003</threshold>
- <left_val>0.0476134307682514</left_val>
- <right_val>-0.4164519906044006</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 2 -1.</_>
- <_>
- 8 1 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8179560104035772e-005</threshold>
- <left_val>-0.1135511025786400</left_val>
- <right_val>0.0995815470814705</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 2 -1.</_>
- <_>
- 0 0 9 1 2.</_>
- <_>
- 9 1 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0115354498848319</threshold>
- <left_val>0.0479713715612888</left_val>
- <right_val>-0.4701226949691773</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 4 12 -1.</_>
- <_>
- 7 1 2 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0417897514998913</threshold>
- <left_val>0.1801664978265762</left_val>
- <right_val>-0.0923613235354424</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 18 4 -1.</_>
- <_>
- 0 12 18 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5845858082175255e-003</threshold>
- <left_val>-0.1170279979705811</left_val>
- <right_val>0.1517726927995682</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 2 4 -1.</_>
- <_>
- 12 7 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0117145096883178</threshold>
- <left_val>-0.0399577096104622</left_val>
- <right_val>0.0563791207969189</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 18 6 -1.</_>
- <_>
- 0 10 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0809042006731033</threshold>
- <left_val>-0.0586656406521797</left_val>
- <right_val>0.3254713118076325</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 6 6 -1.</_>
- <_>
- 11 0 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0111858202144504</threshold>
- <left_val>-0.1569270044565201</left_val>
- <right_val>0.1074031963944435</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 4 2 -1.</_>
- <_>
- 6 7 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0207462906837463</threshold>
- <left_val>-0.0727149471640587</left_val>
- <right_val>0.2988258004188538</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 6 2 -1.</_>
- <_>
- 9 6 3 1 2.</_>
- <_>
- 6 7 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1547999978065491e-003</threshold>
- <left_val>0.0502206012606621</left_val>
- <right_val>-0.3892965018749237</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 5 2 -1.</_>
- <_>
- 6 8 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7662649303674698e-003</threshold>
- <left_val>0.1062309965491295</left_val>
- <right_val>-0.1640899926424027</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 3 4 -1.</_>
- <_>
- 11 8 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0132446801289916</threshold>
- <left_val>-0.0340634994208813</left_val>
- <right_val>0.3189088106155396</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 1 2 -1.</_>
- <_>
- 7 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0384900271892548e-003</threshold>
- <left_val>0.0399366803467274</left_val>
- <right_val>-0.4656496047973633</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 13 6 2 -1.</_>
- <_>
- 11 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0223837792873383</threshold>
- <left_val>0.0195741802453995</left_val>
- <right_val>-0.3179920017719269</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 2 6 -1.</_>
- <_>
- 8 2 1 3 2.</_>
- <_>
- 9 5 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0196588747203350e-003</threshold>
- <left_val>-0.4005850851535797</left_val>
- <right_val>0.0411118082702160</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 8 2 3 -1.</_>
- <_>
- 16 9 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0133403996005654</threshold>
- <left_val>7.2229830548167229e-003</left_val>
- <right_val>-0.3585583865642548</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 10 4 -1.</_>
- <_>
- 6 1 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1654804944992065</threshold>
- <left_val>0.0360200293362141</left_val>
- <right_val>-0.4420441091060638</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 8 4 -1.</_>
- <_>
- 14 10 4 2 2.</_>
- <_>
- 10 12 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0172677896916866</threshold>
- <left_val>0.0957728773355484</left_val>
- <right_val>-0.0303796809166670</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 8 4 -1.</_>
- <_>
- 0 10 4 2 2.</_>
- <_>
- 4 12 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7873580586165190e-003</threshold>
- <left_val>-0.1340985000133514</left_val>
- <right_val>0.1292660981416702</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 6 3 4 -1.</_>
- <_>
- 14 7 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.5727548897266388e-003</threshold>
- <left_val>-0.0669078826904297</left_val>
- <right_val>0.1738217025995255</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 2 3 -1.</_>
- <_>
- 0 9 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5729602724313736e-003</threshold>
- <left_val>0.0307218804955482</left_val>
- <right_val>-0.5853425860404968</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 6 3 4 -1.</_>
- <_>
- 14 7 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0263858195394278</threshold>
- <left_val>0.1778002977371216</left_val>
- <right_val>-0.0393683984875679</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 4 3 -1.</_>
- <_>
- 4 7 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0118999304249883</threshold>
- <left_val>-0.0571489408612251</left_val>
- <right_val>0.3010109961032867</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 8 3 -1.</_>
- <_>
- 10 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0683530792593956</threshold>
- <left_val>0.0291851498186588</left_val>
- <right_val>-0.1551367044448853</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 8 3 -1.</_>
- <_>
- 4 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0108240302652121</threshold>
- <left_val>-0.1347029060125351</left_val>
- <right_val>0.1385277062654495</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 14 2 -1.</_>
- <_>
- 4 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0880321934819222</threshold>
- <left_val>-0.0365363508462906</left_val>
- <right_val>0.2360302060842514</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 12 4 -1.</_>
- <_>
- 3 1 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0257761701941490</threshold>
- <left_val>0.1835854053497315</left_val>
- <right_val>-0.1334383934736252</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 4 10 -1.</_>
- <_>
- 13 6 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0820100232958794</threshold>
- <left_val>0.0118177495896816</left_val>
- <right_val>-0.3187808990478516</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 14 2 -1.</_>
- <_>
- 7 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0203707292675972</threshold>
- <left_val>0.2503522932529450</left_val>
- <right_val>-0.0702304020524025</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 12 12 3 -1.</_>
- <_>
- 8 12 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0784170925617218</threshold>
- <left_val>0.0254040490835905</left_val>
- <right_val>-0.2163347005844116</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 2 3 -1.</_>
- <_>
- 0 10 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4000681266188622e-003</threshold>
- <left_val>0.0398776307702065</left_val>
- <right_val>-0.3819760978221893</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 6 2 2 -1.</_>
- <_>
- 10 6 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0116557897999883</threshold>
- <left_val>8.5724918171763420e-003</left_val>
- <right_val>-0.4681785106658936</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 2 2 -1.</_>
- <_>
- 7 6 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1775790527462959e-005</threshold>
- <left_val>-0.1735416948795319</left_val>
- <right_val>0.0904209986329079</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 3 1 -1.</_>
- <_>
- 16 3 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0180264692753553</threshold>
- <left_val>-0.7927592992782593</left_val>
- <right_val>9.2333797365427017e-003</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 3 3 -1.</_>
- <_>
- 4 8 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1709210705012083e-003</threshold>
- <left_val>-0.0846288874745369</left_val>
- <right_val>0.1654430031776428</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 12 4 -1.</_>
- <_>
- 3 7 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0822796970605850</threshold>
- <left_val>0.2155113965272903</left_val>
- <right_val>-0.0919006466865540</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 1 3 -1.</_>
- <_>
- 2 3 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0102933598682284</threshold>
- <left_val>0.0234903004020453</left_val>
- <right_val>-0.6768108010292053</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 6 -1.</_>
- <_>
- 0 11 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2188197970390320</threshold>
- <left_val>0.5047866702079773</left_val>
- <right_val>-0.0318927802145481</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 18 2 -1.</_>
- <_>
- 0 4 9 1 2.</_>
- <_>
- 9 5 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0221189390867949</threshold>
- <left_val>-0.6315932273864746</left_val>
- <right_val>0.0259883198887110</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 3 3 -1.</_>
- <_>
- 14 4 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0229423604905605</threshold>
- <left_val>-0.0406722798943520</left_val>
- <right_val>0.3567295074462891</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 14 6 -1.</_>
- <_>
- 2 4 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0567631609737873</threshold>
- <left_val>0.3552303910255432</left_val>
- <right_val>-0.0383039787411690</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 1 3 -1.</_>
- <_>
- 8 3 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.5660292059183121e-003</threshold>
- <left_val>-0.3711034953594208</left_val>
- <right_val>0.0192387793213129</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 6 10 -1.</_>
- <_>
- 0 6 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1234833970665932</threshold>
- <left_val>0.0215323101729155</left_val>
- <right_val>-0.6329115033149719</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 6 2 -1.</_>
- <_>
- 9 4 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7259990019956604e-005</threshold>
- <left_val>-0.1203657016158104</left_val>
- <right_val>0.1052009984850884</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 6 -1.</_>
- <_>
- 0 0 9 3 2.</_>
- <_>
- 9 3 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0855550765991211</threshold>
- <left_val>0.0342116691172123</left_val>
- <right_val>-0.4872741997241974</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 10 6 -1.</_>
- <_>
- 4 5 10 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1498104035854340</threshold>
- <left_val>0.4256885051727295</left_val>
- <right_val>-0.0406881310045719</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 9 3 -1.</_>
- <_>
- 3 5 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0249004401266575</threshold>
- <left_val>-0.0469012595713139</left_val>
- <right_val>0.2806226015090942</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 2 1 -1.</_>
- <_>
- 9 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8607350587844849e-003</threshold>
- <left_val>5.2375709637999535e-003</left_val>
- <right_val>-0.9763677716255188</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 2 1 -1.</_>
- <_>
- 8 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3002476710826159e-005</threshold>
- <left_val>-0.1668099015951157</left_val>
- <right_val>0.1061896979808807</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 6 4 -1.</_>
- <_>
- 9 2 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1778886020183563</threshold>
- <left_val>-0.0167296305298805</left_val>
- <right_val>0.1779063045978546</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 3 3 -1.</_>
- <_>
- 8 3 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0129577601328492</threshold>
- <left_val>0.0327777788043022</left_val>
- <right_val>-0.4429670870304108</right_val></_></_></trees>
- <stage_threshold>-1.5084979534149170</stage_threshold>
- <parent>5</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 7 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 4 6 -1.</_>
- <_>
- 5 6 4 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0671501830220222</threshold>
- <left_val>0.3957724869251251</left_val>
- <right_val>-0.3151094019412994</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 14 8 -1.</_>
- <_>
- 4 4 14 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0489628501236439</threshold>
- <left_val>-0.2696126103401184</left_val>
- <right_val>0.1686976999044418</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 1 4 -1.</_>
- <_>
- 9 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.7194418944418430e-003</threshold>
- <left_val>-0.3519599139690399</left_val>
- <right_val>0.2283660024404526</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 6 7 -1.</_>
- <_>
- 12 7 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1611121743917465e-003</threshold>
- <left_val>0.2407678067684174</left_val>
- <right_val>-0.2207496017217636</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 8 4 -1.</_>
- <_>
- 2 11 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2363017052412033</threshold>
- <left_val>-0.0165349505841732</left_val>
- <right_val>-791.9063110351562500</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 6 1 6 -1.</_>
- <_>
- 13 8 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0192054994404316</threshold>
- <left_val>0.3679260015487671</left_val>
- <right_val>-0.0511916503310204</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 1 6 -1.</_>
- <_>
- 4 8 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8221171125769615e-003</threshold>
- <left_val>-0.1451342999935150</left_val>
- <right_val>0.3284528851509094</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 6 4 -1.</_>
- <_>
- 8 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0114400796592236</threshold>
- <left_val>-0.3580412864685059</left_val>
- <right_val>0.1191418990492821</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 6 1 -1.</_>
- <_>
- 9 0 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.8761039078235626e-003</threshold>
- <left_val>-0.2145037949085236</left_val>
- <right_val>0.1795787960290909</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 12 1 -1.</_>
- <_>
- 9 0 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4572024643421173e-003</threshold>
- <left_val>-0.0697467327117920</left_val>
- <right_val>0.1636779010295868</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 14 8 -1.</_>
- <_>
- 2 9 14 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1268958002328873</threshold>
- <left_val>0.2483236044645309</left_val>
- <right_val>-0.1216669976711273</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 3 2 -1.</_>
- <_>
- 11 9 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6295030042529106e-003</threshold>
- <left_val>-0.0560571514070034</left_val>
- <right_val>0.3574368059635162</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 3 -1.</_>
- <_>
- 1 0 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5959236710332334e-005</threshold>
- <left_val>0.1490119993686676</left_val>
- <right_val>-0.1852703988552094</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 6 8 -1.</_>
- <_>
- 10 4 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1317930966615677</threshold>
- <left_val>0.0314710587263107</left_val>
- <right_val>-0.6502394080162048</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 3 2 -1.</_>
- <_>
- 6 0 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0135068297386169</threshold>
- <left_val>0.0498555004596710</left_val>
- <right_val>-0.5204489827156067</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 5 4 10 -1.</_>
- <_>
- 14 10 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1392281949520111</threshold>
- <left_val>-0.4274164140224457</left_val>
- <right_val>0.0221896991133690</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 4 10 -1.</_>
- <_>
- 0 10 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0602215304970741</threshold>
- <left_val>0.0557326711714268</left_val>
- <right_val>-0.4318253099918366</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 6 6 -1.</_>
- <_>
- 12 8 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1349826008081436</threshold>
- <left_val>-0.7194260954856873</left_val>
- <right_val>6.5442471532151103e-004</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 6 6 -1.</_>
- <_>
- 3 8 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9722030051052570e-003</threshold>
- <left_val>0.1110355034470558</left_val>
- <right_val>-0.2065491974353790</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 6 6 -1.</_>
- <_>
- 10 3 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0218843296170235</threshold>
- <left_val>-0.2502841055393219</left_val>
- <right_val>0.0452274195849895</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 6 6 -1.</_>
- <_>
- 2 3 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0562942214310169</threshold>
- <left_val>0.0373776294291019</left_val>
- <right_val>-0.6217880249023438</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 4 -1.</_>
- <_>
- 9 0 9 2 2.</_>
- <_>
- 0 2 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0416125096380711</threshold>
- <left_val>-0.5870987176895142</left_val>
- <right_val>0.0327165089547634</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 10 14 2 -1.</_>
- <_>
- 2 11 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3085748590528965e-003</threshold>
- <left_val>-0.1344400942325592</left_val>
- <right_val>0.1841892004013062</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 3 6 -1.</_>
- <_>
- 9 7 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0391575917601585</threshold>
- <left_val>-0.0723762214183807</left_val>
- <right_val>0.0374199710786343</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 16 1 -1.</_>
- <_>
- 5 4 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2146301865577698e-003</threshold>
- <left_val>-0.2051306068897247</left_val>
- <right_val>0.1153298020362854</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 4 4 -1.</_>
- <_>
- 10 9 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4585020039230585e-003</threshold>
- <left_val>0.0500501617789268</left_val>
- <right_val>-0.0578955002129078</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 4 4 -1.</_>
- <_>
- 4 9 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0681189857423306e-003</threshold>
- <left_val>-0.0944659411907196</left_val>
- <right_val>0.2920725941658020</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 12 8 -1.</_>
- <_>
- 9 6 6 4 2.</_>
- <_>
- 3 10 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0549114495515823</threshold>
- <left_val>-0.3530954122543335</left_val>
- <right_val>0.0700343772768974</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 12 9 3 -1.</_>
- <_>
- 6 12 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0693727433681488</threshold>
- <left_val>0.0222254004329443</left_val>
- <right_val>-0.7192028760910034</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 4 6 4 -1.</_>
- <_>
- 13 6 2 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0795855373144150</threshold>
- <left_val>-0.0380740091204643</left_val>
- <right_val>0.3033491075038910</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 3 12 -1.</_>
- <_>
- 0 6 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0544063299894333</threshold>
- <left_val>0.0448827184736729</left_val>
- <right_val>-0.4495294094085693</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 10 9 -1.</_>
- <_>
- 4 0 5 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2690613865852356</threshold>
- <left_val>-0.0360089801251888</left_val>
- <right_val>0.5307660102844238</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 1 -1.</_>
- <_>
- 9 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1156299412250519e-003</threshold>
- <left_val>-0.1003653034567833</left_val>
- <right_val>0.1804340034723282</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 8 5 -1.</_>
- <_>
- 6 9 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1438598036766052</threshold>
- <left_val>-0.6201289892196655</left_val>
- <right_val>0.0115139102563262</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 3 5 -1.</_>
- <_>
- 6 4 1 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0144033199176192</threshold>
- <left_val>-0.0768772587180138</left_val>
- <right_val>0.2608672082424164</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 4 -1.</_>
- <_>
- 8 1 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9774607867002487e-003</threshold>
- <left_val>0.0425334200263023</left_val>
- <right_val>-0.4616906940937042</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 18 2 -1.</_>
- <_>
- 0 14 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0468562692403793</threshold>
- <left_val>0.4875024855136871</left_val>
- <right_val>-0.0433990210294724</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 6 2 -1.</_>
- <_>
- 6 9 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2139908075332642e-003</threshold>
- <left_val>0.1103964000940323</left_val>
- <right_val>-0.1807391047477722</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 6 2 -1.</_>
- <_>
- 4 1 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.7679318599402905e-003</threshold>
- <left_val>-0.5230370759963989</left_val>
- <right_val>0.0307772196829319</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 4 3 3 -1.</_>
- <_>
- 14 5 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.1862619370222092e-003</threshold>
- <left_val>0.1832828968763351</left_val>
- <right_val>-0.0569993406534195</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 2 2 -1.</_>
- <_>
- 1 8 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6733449026942253e-004</threshold>
- <left_val>0.1535539031028748</left_val>
- <right_val>-0.1083194985985756</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 4 6 4 -1.</_>
- <_>
- 13 6 2 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0292031392455101</threshold>
- <left_val>-0.0377766303718090</left_val>
- <right_val>0.1093320026993752</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 12 1 -1.</_>
- <_>
- 5 0 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8407091572880745e-003</threshold>
- <left_val>-0.1092616990208626</left_val>
- <right_val>0.1679567992687225</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 16 11 -1.</_>
- <_>
- 5 1 8 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4450520873069763</threshold>
- <left_val>0.0268258899450302</left_val>
- <right_val>-0.7806378006935120</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 3 -1.</_>
- <_>
- 3 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.1639058403670788e-003</threshold>
- <left_val>-0.4938404858112335</left_val>
- <right_val>0.0311304796487093</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 10 8 -1.</_>
- <_>
- 9 3 5 4 2.</_>
- <_>
- 4 7 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0491834394633770</threshold>
- <left_val>-0.3231860101222992</left_val>
- <right_val>0.0469044297933578</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 2 2 -1.</_>
- <_>
- 5 8 1 1 2.</_>
- <_>
- 6 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6128649551537819e-005</threshold>
- <left_val>-0.1063510999083519</left_val>
- <right_val>0.1544602960348129</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 3 3 -1.</_>
- <_>
- 13 9 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0368313007056713</threshold>
- <left_val>0.2820610105991364</left_val>
- <right_val>-0.0126016000285745</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 16 6 -1.</_>
- <_>
- 1 7 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0718847513198853</threshold>
- <left_val>0.2314046025276184</left_val>
- <right_val>-0.0733308866620064</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 18 6 -1.</_>
- <_>
- 0 7 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0574985891580582</threshold>
- <left_val>-0.0964356362819672</left_val>
- <right_val>0.2050749957561493</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 1 3 -1.</_>
- <_>
- 0 8 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9720349013805389e-003</threshold>
- <left_val>0.0360010303556919</left_val>
- <right_val>-0.5457249283790588</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 3 3 -1.</_>
- <_>
- 13 9 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.6467780116945505e-003</threshold>
- <left_val>-0.0441318899393082</left_val>
- <right_val>0.0756502225995064</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 3 1 -1.</_>
- <_>
- 9 7 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.8836792856454849e-003</threshold>
- <left_val>-0.4610821902751923</left_val>
- <right_val>0.0327687896788120</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 3 3 -1.</_>
- <_>
- 13 9 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0128562701866031</threshold>
- <left_val>0.0721951574087143</left_val>
- <right_val>-0.0297321807593107</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 3 3 -1.</_>
- <_>
- 5 9 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0120727699249983</threshold>
- <left_val>-0.0505888797342777</left_val>
- <right_val>0.2905586063861847</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 1 2 -1.</_>
- <_>
- 11 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8108480435330421e-004</threshold>
- <left_val>-0.0714614391326904</left_val>
- <right_val>0.0798238515853882</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 16 2 -1.</_>
- <_>
- 1 13 8 1 2.</_>
- <_>
- 9 14 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0160763803869486</threshold>
- <left_val>0.0476631112396717</left_val>
- <right_val>-0.3275910019874573</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 2 1 -1.</_>
- <_>
- 16 12 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.5250606536865234e-003</threshold>
- <left_val>-0.1898842006921768</left_val>
- <right_val>7.0858187973499298e-003</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 1 2 -1.</_>
- <_>
- 2 12 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.2362798489630222e-003</threshold>
- <left_val>-0.4283688962459564</left_val>
- <right_val>0.0339706018567085</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 9 2 2 -1.</_>
- <_>
- 13 9 1 1 2.</_>
- <_>
- 12 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4684870368218981e-005</threshold>
- <left_val>-0.0803086981177330</left_val>
- <right_val>0.1108464002609253</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 2 2 -1.</_>
- <_>
- 4 9 1 1 2.</_>
- <_>
- 5 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1949270265176892e-003</threshold>
- <left_val>0.2256557047367096</left_val>
- <right_val>-0.0626343935728073</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 2 1 -1.</_>
- <_>
- 11 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5406976975500584e-005</threshold>
- <left_val>-0.1237920969724655</left_val>
- <right_val>0.0894999876618385</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 9 -1.</_>
- <_>
- 7 0 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0155067397281528</threshold>
- <left_val>0.3100227117538452</left_val>
- <right_val>-0.0654744282364845</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 2 1 -1.</_>
- <_>
- 11 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1327929832041264e-003</threshold>
- <left_val>0.0204462595283985</left_val>
- <right_val>-0.4915933012962341</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 2 1 -1.</_>
- <_>
- 6 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8783698730403557e-005</threshold>
- <left_val>-0.1722901016473770</left_val>
- <right_val>0.1088512986898422</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 1 3 -1.</_>
- <_>
- 8 2 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.1788759194314480e-003</threshold>
- <left_val>0.0195190999656916</left_val>
- <right_val>-0.3139770925045013</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 8 6 -1.</_>
- <_>
- 8 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1713061034679413</threshold>
- <left_val>0.0172466896474361</left_val>
- <right_val>-0.7726063132286072</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 4 10 -1.</_>
- <_>
- 8 1 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0429867096245289</threshold>
- <left_val>0.1577536016702652</left_val>
- <right_val>-0.0482686497271061</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 3 1 -1.</_>
- <_>
- 10 2 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.2703949622809887e-003</threshold>
- <left_val>-0.4624505937099457</left_val>
- <right_val>0.0392020307481289</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 18 10 -1.</_>
- <_>
- 9 5 9 5 2.</_>
- <_>
- 0 10 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2032378017902374</threshold>
- <left_val>0.0357716716825962</left_val>
- <right_val>-0.3940019011497498</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 3 -1.</_>
- <_>
- 4 3 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0182179491966963</threshold>
- <left_val>-0.0407346189022064</left_val>
- <right_val>0.3741911053657532</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 4 1 2 -1.</_>
- <_>
- 17 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0606779687805101e-004</threshold>
- <left_val>0.1012326031923294</left_val>
- <right_val>-0.0911243632435799</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 10 1 -1.</_>
- <_>
- 5 6 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8906659465283155e-003</threshold>
- <left_val>-0.1520171016454697</left_val>
- <right_val>0.0934790223836899</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 4 -1.</_>
- <_>
- 7 0 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0125372298061848</threshold>
- <left_val>-0.0601580515503883</left_val>
- <right_val>0.2558326125144959</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 6 5 -1.</_>
- <_>
- 5 5 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.9574513733386993e-003</threshold>
- <left_val>0.1379802972078323</left_val>
- <right_val>-0.1249634027481079</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.6789269652217627e-003</threshold>
- <left_val>0.0427718199789524</left_val>
- <right_val>-0.3063034117221832</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.7803261075168848e-003</threshold>
- <left_val>0.0323704518377781</left_val>
- <right_val>-0.4138380885124207</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 2 2 -1.</_>
- <_>
- 17 2 1 1 2.</_>
- <_>
- 16 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8372930400073528e-005</threshold>
- <left_val>-0.0645466670393944</left_val>
- <right_val>0.0794665068387985</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 2 2 -1.</_>
- <_>
- 0 2 1 1 2.</_>
- <_>
- 1 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3996631070040166e-005</threshold>
- <left_val>0.1355656981468201</left_val>
- <right_val>-0.1101491004228592</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 2 2 -1.</_>
- <_>
- 17 2 1 1 2.</_>
- <_>
- 16 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3484519564080983e-005</threshold>
- <left_val>0.1285773962736130</left_val>
- <right_val>-0.0937314331531525</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 4 4 -1.</_>
- <_>
- 7 3 2 2 2.</_>
- <_>
- 9 5 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100723998621106</threshold>
- <left_val>-0.3828028142452240</left_val>
- <right_val>0.0345466099679470</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 8 2 -1.</_>
- <_>
- 5 7 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103168003261089</threshold>
- <left_val>0.1297149956226349</left_val>
- <right_val>-0.1024452969431877</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 5 4 -1.</_>
- <_>
- 6 5 5 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0107137700542808</threshold>
- <left_val>-0.0704529136419296</left_val>
- <right_val>0.2358826994895935</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 4 -1.</_>
- <_>
- 8 0 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0262797605246305</threshold>
- <left_val>-0.1242780014872551</left_val>
- <right_val>0.0811929032206535</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 2 -1.</_>
- <_>
- 5 1 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5222269147634506e-003</threshold>
- <left_val>0.0614674314856529</left_val>
- <right_val>-0.2642698884010315</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 18 3 -1.</_>
- <_>
- 0 13 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4345488101243973e-003</threshold>
- <left_val>-0.0884712487459183</left_val>
- <right_val>0.1474142968654633</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 2 6 -1.</_>
- <_>
- 8 4 1 3 2.</_>
- <_>
- 9 7 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8172550052404404e-003</threshold>
- <left_val>-0.3130440115928650</left_val>
- <right_val>0.0437002405524254</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 9 4 -1.</_>
- <_>
- 8 0 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0365137197077274</threshold>
- <left_val>0.3251106142997742</left_val>
- <right_val>-0.0333890803158283</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 15 3 -1.</_>
- <_>
- 1 13 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0463338792324066</threshold>
- <left_val>0.5042893290519714</left_val>
- <right_val>-0.0255471803247929</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 9 1 3 -1.</_>
- <_>
- 17 10 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5593919670209289e-004</threshold>
- <left_val>-0.0568273402750492</left_val>
- <right_val>0.0776609331369400</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 3 1 -1.</_>
- <_>
- 2 12 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.2058515399694443e-003</threshold>
- <left_val>0.0321849994361401</left_val>
- <right_val>-0.4203890860080719</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 6 1 -1.</_>
- <_>
- 12 7 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0442854613065720</threshold>
- <left_val>-0.3896655142307282</left_val>
- <right_val>0.0119123402982950</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 1 6 -1.</_>
- <_>
- 6 7 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0258340202271938</threshold>
- <left_val>0.0417318902909756</left_val>
- <right_val>-0.3318280875682831</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 4 6 -1.</_>
- <_>
- 8 7 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0309912301599979</threshold>
- <left_val>0.0173530708998442</left_val>
- <right_val>-0.6654608249664307</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 16 3 -1.</_>
- <_>
- 1 9 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0112233497202396</threshold>
- <left_val>-0.0643179565668106</left_val>
- <right_val>0.2175581008195877</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 2 2 -1.</_>
- <_>
- 9 8 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0795110138133168e-003</threshold>
- <left_val>0.0604902096092701</left_val>
- <right_val>-0.1258077025413513</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 10 4 -1.</_>
- <_>
- 5 0 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1591577976942062</threshold>
- <left_val>0.0323631800711155</left_val>
- <right_val>-0.4079827964305878</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 2 2 -1.</_>
- <_>
- 17 2 1 1 2.</_>
- <_>
- 16 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5649809686001390e-005</threshold>
- <left_val>-0.0744273290038109</left_val>
- <right_val>0.0895882174372673</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 2 2 -1.</_>
- <_>
- 0 2 1 1 2.</_>
- <_>
- 1 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3739310563541949e-005</threshold>
- <left_val>-0.0930083170533180</left_val>
- <right_val>0.1334387063980103</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 4 4 -1.</_>
- <_>
- 9 1 2 2 2.</_>
- <_>
- 7 3 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0146180903539062</threshold>
- <left_val>0.0191540997475386</left_val>
- <right_val>-0.6415231823921204</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 4 6 -1.</_>
- <_>
- 4 11 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0235322006046772</threshold>
- <left_val>-0.0603582113981247</left_val>
- <right_val>0.2178262025117874</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 12 9 2 -1.</_>
- <_>
- 5 13 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5804159920662642e-003</threshold>
- <left_val>-0.1072172001004219</left_val>
- <right_val>0.0938933715224266</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 10 2 -1.</_>
- <_>
- 2 1 5 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1098610013723373</threshold>
- <left_val>0.0602713786065578</left_val>
- <right_val>-0.2347172051668167</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 1 -1.</_>
- <_>
- 16 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.9525712430477142e-003</threshold>
- <left_val>-0.5963038802146912</left_val>
- <right_val>0.0226748306304216</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 1 3 -1.</_>
- <_>
- 0 10 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7224500663578510e-003</threshold>
- <left_val>-0.3436203002929688</left_val>
- <right_val>0.0317178517580032</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 18 2 -1.</_>
- <_>
- 0 9 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0325947701931000</threshold>
- <left_val>0.2031549960374832</left_val>
- <right_val>-0.0711073279380798</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 1 4 -1.</_>
- <_>
- 0 6 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1989789567887783e-003</threshold>
- <left_val>0.0400660485029221</left_val>
- <right_val>-0.3138445019721985</right_val></_></_></trees>
- <stage_threshold>-1.4449690580368042</stage_threshold>
- <parent>6</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 8 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 3 -1.</_>
- <_>
- 10 2 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0778383314609528</threshold>
- <left_val>-0.2895457148551941</left_val>
- <right_val>0.3359082937240601</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 9 7 -1.</_>
- <_>
- 11 7 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0189563706517220</threshold>
- <left_val>0.1371102929115295</left_val>
- <right_val>-0.1191558018326759</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 12 4 -1.</_>
- <_>
- 3 8 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0290122292935848</threshold>
- <left_val>0.2680377066135407</left_val>
- <right_val>-0.2818816900253296</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 2 1 -1.</_>
- <_>
- 10 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.8552741110324860e-004</threshold>
- <left_val>-0.0815313234925270</left_val>
- <right_val>0.1528104990720749</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 1 2 -1.</_>
- <_>
- 8 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.0328469943488017e-004</threshold>
- <left_val>-0.2466157972812653</left_val>
- <right_val>0.1760915964841843</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 7 2 -1.</_>
- <_>
- 6 1 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5671691186726093e-003</threshold>
- <left_val>-0.4800229966640472</left_val>
- <right_val>0.0658785030245781</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 15 4 -1.</_>
- <_>
- 1 12 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0235463008284569</threshold>
- <left_val>-0.1611980050802231</left_val>
- <right_val>0.1770496964454651</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 8 -1.</_>
- <_>
- 9 0 9 4 2.</_>
- <_>
- 0 4 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1016383990645409</threshold>
- <left_val>0.0247533395886421</left_val>
- <right_val>-0.5653517246246338</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 2 12 -1.</_>
- <_>
- 8 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0117649501189590</threshold>
- <left_val>0.0577937401831150</left_val>
- <right_val>-0.3604769110679627</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 2 2 -1.</_>
- <_>
- 12 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9407900292426348e-003</threshold>
- <left_val>-0.0568644516170025</left_val>
- <right_val>0.3267062902450562</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 3 3 -1.</_>
- <_>
- 8 1 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0120360003784299</threshold>
- <left_val>0.0500290505588055</left_val>
- <right_val>-0.4304682016372681</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 2 1 -1.</_>
- <_>
- 15 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2945342506282032e-005</threshold>
- <left_val>0.1441446989774704</left_val>
- <right_val>-0.1231764033436775</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 4 10 -1.</_>
- <_>
- 0 6 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1006926968693733</threshold>
- <left_val>-0.4235703051090241</left_val>
- <right_val>0.0498026795685291</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 10 2 -1.</_>
- <_>
- 4 1 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145817296579480</threshold>
- <left_val>0.0301772207021713</left_val>
- <right_val>-0.6640638709068298</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 1 2 -1.</_>
- <_>
- 3 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.5432410337962210e-005</threshold>
- <left_val>0.1250696033239365</left_val>
- <right_val>-0.1638363003730774</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 2 -1.</_>
- <_>
- 16 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.9888555705547333e-003</threshold>
- <left_val>-0.3976281881332398</left_val>
- <right_val>0.0317412391304970</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 3 4 -1.</_>
- <_>
- 5 3 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0145155703648925</threshold>
- <left_val>-0.0675602331757545</left_val>
- <right_val>0.3204439878463745</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 6 1 -1.</_>
- <_>
- 10 0 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.4144429266452789e-003</threshold>
- <left_val>-0.1101045012474060</left_val>
- <right_val>0.1062017008662224</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 3 3 -1.</_>
- <_>
- 4 4 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0190477203577757</threshold>
- <left_val>0.4359183013439179</left_val>
- <right_val>-0.0567054599523544</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 2 -1.</_>
- <_>
- 16 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0119225401431322</threshold>
- <left_val>0.0226012095808983</left_val>
- <right_val>-0.3463886082172394</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 9 2 -1.</_>
- <_>
- 9 0 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0316638201475143</threshold>
- <left_val>-0.0697475075721741</left_val>
- <right_val>0.3346034884452820</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 4 2 -1.</_>
- <_>
- 8 2 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0487637743353844e-003</threshold>
- <left_val>-0.3777567148208618</left_val>
- <right_val>0.0412449985742569</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 2 3 -1.</_>
- <_>
- 2 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.5836304351687431e-003</threshold>
- <left_val>0.0405867286026478</left_val>
- <right_val>-0.4659684896469116</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 18 10 -1.</_>
- <_>
- 9 5 9 5 2.</_>
- <_>
- 0 10 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2546002864837647</threshold>
- <left_val>0.0292705502361059</left_val>
- <right_val>-0.6189153790473938</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 6 -1.</_>
- <_>
- 0 3 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7734090108424425e-003</threshold>
- <left_val>0.1460099071264267</left_val>
- <right_val>-0.1248235031962395</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 2 3 -1.</_>
- <_>
- 15 3 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.1764237731695175e-003</threshold>
- <left_val>0.2481728941202164</left_val>
- <right_val>-0.0557485483586788</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 1 -1.</_>
- <_>
- 9 0 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4874111451208591e-003</threshold>
- <left_val>-0.1071233004331589</left_val>
- <right_val>0.1664687991142273</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 8 -1.</_>
- <_>
- 8 2 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0503873117268085</threshold>
- <left_val>-0.0504896901547909</left_val>
- <right_val>0.1267845034599304</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 3 -1.</_>
- <_>
- 10 2 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0775756686925888</threshold>
- <left_val>0.1210061982274056</left_val>
- <right_val>-0.1771831065416336</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 2 3 -1.</_>
- <_>
- 15 3 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0104536600410938</threshold>
- <left_val>-0.0304590705782175</left_val>
- <right_val>0.2466717064380646</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 8 2 -1.</_>
- <_>
- 5 9 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119400899857283</threshold>
- <left_val>0.1431301981210709</left_val>
- <right_val>-0.1400607973337174</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 3 2 -1.</_>
- <_>
- 11 9 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1164349745959044e-003</threshold>
- <left_val>0.0545042082667351</left_val>
- <right_val>-0.0924128219485283</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 3 2 -1.</_>
- <_>
- 4 9 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8259901814162731e-003</threshold>
- <left_val>-0.0795849785208702</left_val>
- <right_val>0.4222005903720856</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 3 2 -1.</_>
- <_>
- 10 3 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0155059695243835e-003</threshold>
- <left_val>0.0197146795690060</left_val>
- <right_val>-0.4795632958412170</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 8 2 -1.</_>
- <_>
- 2 1 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2104120627045631e-003</threshold>
- <left_val>-0.4671449959278107</left_val>
- <right_val>0.0325505807995796</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 2 3 -1.</_>
- <_>
- 15 3 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0316700302064419</threshold>
- <left_val>0.3755325078964233</left_val>
- <right_val>-0.0109495399519801</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 3 2 -1.</_>
- <_>
- 3 3 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.3463337719440460e-003</threshold>
- <left_val>-0.0652034804224968</left_val>
- <right_val>0.2462629973888397</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 8 1 4 -1.</_>
- <_>
- 17 9 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6191360559314489e-003</threshold>
- <left_val>-0.1709388941526413</left_val>
- <right_val>0.0311141796410084</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 1 4 -1.</_>
- <_>
- 0 9 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3581780046224594e-003</threshold>
- <left_val>0.0366473011672497</left_val>
- <right_val>-0.4237492978572846</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 2 -1.</_>
- <_>
- 9 0 6 1 2.</_>
- <_>
- 3 1 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1306470781564713e-003</threshold>
- <left_val>0.0361863411962986</left_val>
- <right_val>-0.3581345081329346</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 8 3 -1.</_>
- <_>
- 9 1 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2027395069599152</threshold>
- <left_val>-0.0464575290679932</left_val>
- <right_val>0.3237068057060242</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 6 -1.</_>
- <_>
- 8 0 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8010999821126461e-003</threshold>
- <left_val>0.1703307926654816</left_val>
- <right_val>-0.0903682932257652</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 3 2 -1.</_>
- <_>
- 8 0 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0198947098106146</threshold>
- <left_val>0.0316714681684971</left_val>
- <right_val>-0.6259496808052063</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 6 2 -1.</_>
- <_>
- 11 8 3 1 2.</_>
- <_>
- 8 9 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2822818765416741e-004</threshold>
- <left_val>-0.0703171566128731</left_val>
- <right_val>0.0968886613845825</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 18 12 -1.</_>
- <_>
- 0 9 18 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3695923984050751</threshold>
- <left_val>0.0186286699026823</left_val>
- <right_val>-0.7744178175926209</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 3 6 -1.</_>
- <_>
- 14 10 1 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0101259099319577</threshold>
- <left_val>-0.0668892487883568</left_val>
- <right_val>0.1524703949689865</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 14 4 -1.</_>
- <_>
- 2 10 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1245594993233681</threshold>
- <left_val>0.2896308004856110</left_val>
- <right_val>-0.0485628917813301</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 9 3 1 -1.</_>
- <_>
- 14 10 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.5091960560530424e-003</threshold>
- <left_val>-0.0350436493754387</left_val>
- <right_val>0.1112501993775368</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 10 15 -1.</_>
- <_>
- 9 0 5 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2847513854503632</threshold>
- <left_val>0.3567419946193695</left_val>
- <right_val>-0.0428154803812504</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 1 -1.</_>
- <_>
- 9 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6454169526696205e-003</threshold>
- <left_val>0.1969088017940521</left_val>
- <right_val>-0.0439714081585407</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 4 1 -1.</_>
- <_>
- 7 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5759950038045645e-003</threshold>
- <left_val>-0.1558419018983841</left_val>
- <right_val>0.1092967018485069</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 3 2 -1.</_>
- <_>
- 10 3 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7018110712524503e-005</threshold>
- <left_val>-0.0937224030494690</left_val>
- <right_val>0.0794489830732346</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 3 2 -1.</_>
- <_>
- 5 3 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5426278375089169e-003</threshold>
- <left_val>0.0382768400013447</left_val>
- <right_val>-0.4256854951381683</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 7 1 2 -1.</_>
- <_>
- 10 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8855221141129732e-004</threshold>
- <left_val>0.0603053607046604</left_val>
- <right_val>-0.1461576074361801</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 6 4 -1.</_>
- <_>
- 6 6 3 2 2.</_>
- <_>
- 9 8 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0134366303682327</threshold>
- <left_val>-0.2394652962684631</left_val>
- <right_val>0.0633801072835922</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 7 4 3 -1.</_>
- <_>
- 11 8 2 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.6623498201370239e-003</threshold>
- <left_val>-0.0411083400249481</left_val>
- <right_val>0.0386099815368652</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 3 4 -1.</_>
- <_>
- 7 8 3 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0196607392281294</threshold>
- <left_val>-0.0376873910427094</left_val>
- <right_val>0.3959226906299591</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 9 4 1 -1.</_>
- <_>
- 11 9 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.2754753530025482e-003</threshold>
- <left_val>0.1025618016719818</left_val>
- <right_val>-0.0427510403096676</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 3 3 -1.</_>
- <_>
- 6 8 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0317808799445629</threshold>
- <left_val>0.3626415133476257</left_val>
- <right_val>-0.0406033694744110</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 6 2 -1.</_>
- <_>
- 13 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0216846503317356</threshold>
- <left_val>0.0229385606944561</left_val>
- <right_val>-0.3512454926967621</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 3 3 -1.</_>
- <_>
- 4 2 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0154039999470115</threshold>
- <left_val>0.2934393882751465</left_val>
- <right_val>-0.0483902990818024</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 14 2 -1.</_>
- <_>
- 9 1 7 1 2.</_>
- <_>
- 2 2 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1902230158448219e-003</threshold>
- <left_val>-0.3277094960212708</left_val>
- <right_val>0.0413685590028763</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 3 1 -1.</_>
- <_>
- 10 3 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.9587763175368309e-003</threshold>
- <left_val>-0.5849394202232361</left_val>
- <right_val>0.0197221394628286</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 2 8 -1.</_>
- <_>
- 7 5 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0223498903214931</threshold>
- <left_val>6.3248360529541969e-003</left_val>
- <right_val>-0.0670235827565193</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 1 4 -1.</_>
- <_>
- 5 8 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8036609981209040e-003</threshold>
- <left_val>-0.0722102373838425</left_val>
- <right_val>0.2062937021255493</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 6 2 -1.</_>
- <_>
- 13 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0204626396298409</threshold>
- <left_val>-0.3445949852466583</left_val>
- <right_val>0.0262401904910803</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 1 3 -1.</_>
- <_>
- 4 10 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.1937501565553248e-005</threshold>
- <left_val>-0.1117258965969086</left_val>
- <right_val>0.1140339002013207</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 6 2 -1.</_>
- <_>
- 13 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0170810166746378e-003</threshold>
- <left_val>0.0586952790617943</left_val>
- <right_val>-0.0434083491563797</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 11 1 2 -1.</_>
- <_>
- 4 11 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.6941629583016038e-003</threshold>
- <left_val>0.0660928636789322</left_val>
- <right_val>-0.2047823965549469</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 2 8 -1.</_>
- <_>
- 7 5 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1120911017060280</threshold>
- <left_val>-3.9467259193770587e-004</left_val>
- <right_val>-0.5106043815612793</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 8 2 -1.</_>
- <_>
- 11 5 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0729039311408997</threshold>
- <left_val>-0.0399064607918262</left_val>
- <right_val>0.3378052115440369</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 4 2 -1.</_>
- <_>
- 7 7 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0249240808188915e-003</threshold>
- <left_val>0.1124901026487351</left_val>
- <right_val>-0.1489392966032028</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 6 3 -1.</_>
- <_>
- 8 8 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0179907791316509</threshold>
- <left_val>-0.2489504963159561</left_val>
- <right_val>0.0522084012627602</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 8 -1.</_>
- <_>
- 7 0 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0281639993190765</threshold>
- <left_val>0.3462426960468292</left_val>
- <right_val>-0.0468134209513664</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 8 -1.</_>
- <_>
- 6 0 6 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1455519050359726</threshold>
- <left_val>-0.1372732967138290</left_val>
- <right_val>0.0992739796638489</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 9 -1.</_>
- <_>
- 14 0 2 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1902603954076767</threshold>
- <left_val>0.0178888794034719</left_val>
- <right_val>-0.7103316783905029</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 9 4 -1.</_>
- <_>
- 4 0 9 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1708780974149704</threshold>
- <left_val>0.0214544609189034</left_val>
- <right_val>-0.5676689147949219</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 13 13 2 -1.</_>
- <_>
- 3 14 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0493922904133797</threshold>
- <left_val>0.4660165011882782</left_val>
- <right_val>-0.0284054595977068</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 16 2 -1.</_>
- <_>
- 1 14 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9778267964720726e-003</threshold>
- <left_val>-0.1049709022045136</left_val>
- <right_val>0.1207138001918793</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 9 6 6 -1.</_>
- <_>
- 13 11 2 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1800612956285477</threshold>
- <left_val>0.3830963969230652</left_val>
- <right_val>-0.0141020696610212</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 6 6 -1.</_>
- <_>
- 3 11 2 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3417791128158569e-003</threshold>
- <left_val>-0.1053301990032196</left_val>
- <right_val>0.1295598000288010</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 6 2 -1.</_>
- <_>
- 13 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0289579704403877</threshold>
- <left_val>-0.3280887007713318</left_val>
- <right_val>8.5954880341887474e-003</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 6 2 -1.</_>
- <_>
- 3 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0129891699180007</threshold>
- <left_val>0.0406576991081238</left_val>
- <right_val>-0.3439970016479492</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 5 2 -1.</_>
- <_>
- 11 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.3189179897308350e-003</threshold>
- <left_val>0.0200005602091551</left_val>
- <right_val>-0.3093312978744507</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 2 -1.</_>
- <_>
- 7 0 1 1 2.</_>
- <_>
- 8 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2429470088100061e-005</threshold>
- <left_val>0.1268631070852280</left_val>
- <right_val>-0.0951527133584023</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 2 -1.</_>
- <_>
- 10 0 1 1 2.</_>
- <_>
- 9 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6926601246232167e-005</threshold>
- <left_val>-0.0697774663567543</left_val>
- <right_val>0.1006100997328758</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 1 3 -1.</_>
- <_>
- 6 3 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.6324290819466114e-003</threshold>
- <left_val>-0.3738464117050171</left_val>
- <right_val>0.0329254008829594</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 3 8 -1.</_>
- <_>
- 14 0 1 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8024910241365433e-003</threshold>
- <left_val>0.0833972916007042</left_val>
- <right_val>-0.0764525309205055</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 16 4 -1.</_>
- <_>
- 1 11 8 2 2.</_>
- <_>
- 9 13 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0651966035366058</threshold>
- <left_val>0.0317757390439510</left_val>
- <right_val>-0.3680531978607178</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 3 8 -1.</_>
- <_>
- 14 0 1 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0174991004168987</threshold>
- <left_val>-0.2574467062950134</left_val>
- <right_val>0.0206988304853439</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 3 3 -1.</_>
- <_>
- 4 1 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.7240803986787796e-003</threshold>
- <left_val>-0.0517450198531151</left_val>
- <right_val>0.2264827042818070</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 2 3 13 -1.</_>
- <_>
- 13 2 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4927619379013777e-003</threshold>
- <left_val>0.0974271073937416</left_val>
- <right_val>-0.0842309221625328</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 3 15 -1.</_>
- <_>
- 4 0 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0446004606783390</threshold>
- <left_val>-0.7686716914176941</left_val>
- <right_val>0.0147034004330635</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 1 1 14 -1.</_>
- <_>
- 17 8 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0325057990849018</threshold>
- <left_val>0.0300058592110872</left_val>
- <right_val>-0.4916220009326935</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 2 -1.</_>
- <_>
- 0 0 1 1 2.</_>
- <_>
- 1 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5649809686001390e-005</threshold>
- <left_val>0.1131459027528763</left_val>
- <right_val>-0.0940568000078201</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 2 -1.</_>
- <_>
- 17 0 1 1 2.</_>
- <_>
- 16 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3604110538144596e-005</threshold>
- <left_val>0.0883647277951241</left_val>
- <right_val>-0.0680588483810425</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 2 -1.</_>
- <_>
- 0 0 1 1 2.</_>
- <_>
- 1 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6216499463771470e-005</threshold>
- <left_val>-0.0913942903280258</left_val>
- <right_val>0.1227736994624138</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 5 2 -1.</_>
- <_>
- 10 2 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9017529450356960e-003</threshold>
- <left_val>-0.1515343040227890</left_val>
- <right_val>0.0306931808590889</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 5 2 -1.</_>
- <_>
- 3 2 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8409377709031105e-003</threshold>
- <left_val>0.0285490602254868</left_val>
- <right_val>-0.3703070878982544</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 18 10 -1.</_>
- <_>
- 9 5 9 5 2.</_>
- <_>
- 0 10 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1291435062885284</threshold>
- <left_val>0.0526567809283733</left_val>
- <right_val>-0.2027616053819656</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 5 6 -1.</_>
- <_>
- 6 5 5 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1138025000691414</threshold>
- <left_val>0.2225105017423630</left_val>
- <right_val>-0.0516252294182777</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 4 3 6 -1.</_>
- <_>
- 12 6 1 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2800639793276787e-003</threshold>
- <left_val>-0.0659309998154640</left_val>
- <right_val>0.0602529682219028</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 1 8 -1.</_>
- <_>
- 8 6 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0530367009341717</threshold>
- <left_val>-0.4665248095989227</left_val>
- <right_val>0.0276027899235487</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 16 6 -1.</_>
- <_>
- 1 9 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1186264008283615</threshold>
- <left_val>-0.0335345789790154</left_val>
- <right_val>0.3798682987689972</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 3 6 -1.</_>
- <_>
- 5 6 1 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0761719681322575e-003</threshold>
- <left_val>-0.1226020976901054</left_val>
- <right_val>0.1153718009591103</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 8 2 2 -1.</_>
- <_>
- 16 8 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.7530350305605680e-004</threshold>
- <left_val>0.0850380733609200</left_val>
- <right_val>-0.0923559591174126</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 16 4 -1.</_>
- <_>
- 1 8 8 2 2.</_>
- <_>
- 9 10 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0667972564697266</threshold>
- <left_val>0.0270407292991877</left_val>
- <right_val>-0.4598272144794464</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 17 4 -1.</_>
- <_>
- 1 12 17 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0233794599771500</threshold>
- <left_val>-0.0620422512292862</left_val>
- <right_val>0.1758442968130112</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 6 2 -1.</_>
- <_>
- 0 13 3 1 2.</_>
- <_>
- 3 14 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0949910210911185e-004</threshold>
- <left_val>-0.1238159984350205</left_val>
- <right_val>0.0968135967850685</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 1 4 -1.</_>
- <_>
- 12 6 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0338632389903069</threshold>
- <left_val>0.0139471795409918</left_val>
- <right_val>-0.1836456954479218</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 3 8 -1.</_>
- <_>
- 3 0 1 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0349671207368374</threshold>
- <left_val>-0.8080993294715881</left_val>
- <right_val>0.0147994095459580</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 18 6 -1.</_>
- <_>
- 6 4 6 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4552179872989655</threshold>
- <left_val>0.0136053897440434</left_val>
- <right_val>-0.6047881841659546</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 4 1 -1.</_>
- <_>
- 6 6 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0160876307636499</threshold>
- <left_val>0.0580550096929073</left_val>
- <right_val>-0.1982652992010117</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 6 10 -1.</_>
- <_>
- 10 0 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1723546981811523</threshold>
- <left_val>7.4058459140360355e-003</left_val>
- <right_val>-0.5189927220344544</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 2 2 -1.</_>
- <_>
- 6 9 1 1 2.</_>
- <_>
- 7 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5957270516082644e-003</threshold>
- <left_val>-0.0428939200937748</left_val>
- <right_val>0.2644946873188019</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 9 1 4 -1.</_>
- <_>
- 17 10 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6875099912285805e-003</threshold>
- <left_val>-0.2731862962245941</left_val>
- <right_val>0.0131092797964811</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 2 2 -1.</_>
- <_>
- 5 8 1 1 2.</_>
- <_>
- 6 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5951599925756454e-003</threshold>
- <left_val>0.2096793055534363</left_val>
- <right_val>-0.0498337894678116</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 9 1 4 -1.</_>
- <_>
- 17 10 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0103497896343470</threshold>
- <left_val>7.2593181394040585e-003</left_val>
- <right_val>-0.4416640996932983</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 1 3 -1.</_>
- <_>
- 2 3 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.9909151643514633e-003</threshold>
- <left_val>0.0249945204705000</left_val>
- <right_val>-0.4013820886611939</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 2 -1.</_>
- <_>
- 16 2 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.7854268923401833e-003</threshold>
- <left_val>0.0235026106238365</left_val>
- <right_val>-0.0990978032350540</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 1 4 -1.</_>
- <_>
- 0 10 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3787118047475815e-003</threshold>
- <left_val>-0.3618378043174744</left_val>
- <right_val>0.0264573395252228</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 3 3 -1.</_>
- <_>
- 12 8 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1168339774012566e-003</threshold>
- <left_val>-0.0457625910639763</left_val>
- <right_val>0.1117715016007423</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 2 -1.</_>
- <_>
- 9 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0118435099720955</threshold>
- <left_val>0.2743585109710693</left_val>
- <right_val>-0.0350703783333302</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 2 -1.</_>
- <_>
- 9 0 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5275570331141353e-004</threshold>
- <left_val>0.0845544487237930</left_val>
- <right_val>-0.0753161907196045</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 15 4 -1.</_>
- <_>
- 1 7 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0862143188714981</threshold>
- <left_val>0.1382022053003311</left_val>
- <right_val>-0.0711062476038933</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 4 8 -1.</_>
- <_>
- 9 6 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0363043397665024</threshold>
- <left_val>-0.0381477884948254</left_val>
- <right_val>0.1162723004817963</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 2 -1.</_>
- <_>
- 8 0 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4807139523327351e-003</threshold>
- <left_val>-0.1041129976511002</left_val>
- <right_val>0.1122824996709824</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 10 2 -1.</_>
- <_>
- 9 3 5 1 2.</_>
- <_>
- 4 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3545570485293865e-003</threshold>
- <left_val>0.0333745889365673</left_val>
- <right_val>-0.3583162128925324</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 6 11 -1.</_>
- <_>
- 6 0 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0344681590795517</threshold>
- <left_val>-0.0549360811710358</left_val>
- <right_val>0.2039003074169159</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 11 12 4 -1.</_>
- <_>
- 3 12 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0592398792505264</threshold>
- <left_val>0.4322808086872101</left_val>
- <right_val>-0.0247077196836472</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 12 6 -1.</_>
- <_>
- 5 9 4 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2427041977643967</threshold>
- <left_val>0.0220374502241611</left_val>
- <right_val>-0.5419340133666992</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 1 -1.</_>
- <_>
- 15 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0122847901657224</threshold>
- <left_val>-0.3738442957401276</left_val>
- <right_val>9.2992689460515976e-003</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 4 -1.</_>
- <_>
- 3 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0116195902228355</threshold>
- <left_val>-0.5875784754753113</left_val>
- <right_val>0.0175772104412317</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 3 3 -1.</_>
- <_>
- 12 8 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0212285108864307</threshold>
- <left_val>5.6798839941620827e-003</left_val>
- <right_val>-0.3144912123680115</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 7 3 3 -1.</_>
- <_>
- 3 8 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5732479514554143e-003</threshold>
- <left_val>-0.0799057930707932</left_val>
- <right_val>0.1397677958011627</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 15 -1.</_>
- <_>
- 5 5 12 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6112009286880493</threshold>
- <left_val>0.0133211901411414</left_val>
- <right_val>-0.5509874224662781</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 2 2 -1.</_>
- <_>
- 6 9 1 1 2.</_>
- <_>
- 7 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0905339624732733e-004</threshold>
- <left_val>0.1030462011694908</left_val>
- <right_val>-0.0948901474475861</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 2 2 -1.</_>
- <_>
- 13 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5772361014969647e-005</threshold>
- <left_val>-0.0856239274144173</left_val>
- <right_val>0.0874491631984711</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 15 8 -1.</_>
- <_>
- 1 5 15 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0481263995170593</threshold>
- <left_val>0.2119800001382828</left_val>
- <right_val>-0.0476449094712734</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 2 3 -1.</_>
- <_>
- 9 7 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6747817695140839e-003</threshold>
- <left_val>-0.4238494038581848</left_val>
- <right_val>0.0213676095008850</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 4 3 -1.</_>
- <_>
- 5 6 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.1669818609952927e-003</threshold>
- <left_val>-0.0525886192917824</left_val>
- <right_val>0.2005645930767059</right_val></_></_></trees>
- <stage_threshold>-1.4003620147705078</stage_threshold>
- <parent>7</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 9 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 4 4 -1.</_>
- <_>
- 7 2 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5009383037686348e-003</threshold>
- <left_val>-0.4277128875255585</left_val>
- <right_val>0.2850086092948914</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 4 2 -1.</_>
- <_>
- 8 8 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6675720475614071e-003</threshold>
- <left_val>0.1830562055110931</left_val>
- <right_val>-0.4390658140182495</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 8 2 -1.</_>
- <_>
- 4 3 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0154511099681258</threshold>
- <left_val>-0.2517394125461578</left_val>
- <right_val>0.1886658966541290</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 16 10 -1.</_>
- <_>
- 2 3 8 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3004620969295502</threshold>
- <left_val>-0.0540388301014900</left_val>
- <right_val>0.4862416088581085</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 12 8 -1.</_>
- <_>
- 2 4 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3677250146865845</threshold>
- <left_val>0.0251029599457979</left_val>
- <right_val>-958.7188110351562500</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 4 2 -1.</_>
- <_>
- 14 2 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0474338456988335e-003</threshold>
- <left_val>0.2133570015430450</left_val>
- <right_val>-0.0978919863700867</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 2 9 -1.</_>
- <_>
- 0 7 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0533141195774078</threshold>
- <left_val>-0.6161444187164307</left_val>
- <right_val>0.0559876188635826</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 10 8 -1.</_>
- <_>
- 4 7 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2791661024093628</threshold>
- <left_val>0.4078379869461060</left_val>
- <right_val>-0.1185386031866074</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 4 3 -1.</_>
- <_>
- 2 2 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6125730257481337e-003</threshold>
- <left_val>0.2325060069561005</left_val>
- <right_val>-0.1566430926322937</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 2 4 -1.</_>
- <_>
- 8 1 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6726289652287960e-003</threshold>
- <left_val>0.1757100969552994</left_val>
- <right_val>-0.1549381017684937</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 1 4 -1.</_>
- <_>
- 6 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0118291797116399</threshold>
- <left_val>-0.6674782037734985</left_val>
- <right_val>0.0454935915768147</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 1 -1.</_>
- <_>
- 6 0 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4169160537421703e-003</threshold>
- <left_val>-0.2293940931558609</left_val>
- <right_val>0.1054278984665871</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 14 4 -1.</_>
- <_>
- 2 10 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1035784035921097</threshold>
- <left_val>0.3429427146911621</left_val>
- <right_val>-0.0699092075228691</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 16 2 -1.</_>
- <_>
- 1 11 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4325949382036924e-003</threshold>
- <left_val>-0.1846843063831329</left_val>
- <right_val>0.1679622977972031</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 4 2 -1.</_>
- <_>
- 2 9 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0220014695078135</threshold>
- <left_val>-0.4447999894618988</left_val>
- <right_val>0.0476888418197632</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 8 2 -1.</_>
- <_>
- 11 7 4 1 2.</_>
- <_>
- 7 8 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4049700479954481e-003</threshold>
- <left_val>-0.0612011514604092</left_val>
- <right_val>0.1349342018365860</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 10 -1.</_>
- <_>
- 0 0 9 5 2.</_>
- <_>
- 9 5 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1637541949748993</threshold>
- <left_val>-0.4972603917121887</left_val>
- <right_val>0.0431142188608646</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 5 10 -1.</_>
- <_>
- 11 0 5 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0426831394433975</threshold>
- <left_val>0.1905709058046341</left_val>
- <right_val>-0.0452457703649998</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 6 2 -1.</_>
- <_>
- 6 7 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8941352181136608e-003</threshold>
- <left_val>0.1255677938461304</left_val>
- <right_val>-0.1550654023885727</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 4 6 -1.</_>
- <_>
- 7 6 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0168734900653362</threshold>
- <left_val>-0.0661193132400513</left_val>
- <right_val>0.3474495112895966</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 4 14 -1.</_>
- <_>
- 0 8 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0430995784699917</threshold>
- <left_val>0.0575836002826691</left_val>
- <right_val>-0.3395290076732636</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 11 2 1 -1.</_>
- <_>
- 12 11 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0194772295653820</threshold>
- <left_val>-0.8039277791976929</left_val>
- <right_val>2.4795620702207088e-003</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 11 1 2 -1.</_>
- <_>
- 6 11 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.6851670049363747e-005</threshold>
- <left_val>0.1161905005574226</left_val>
- <right_val>-0.1725704073905945</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 12 6 -1.</_>
- <_>
- 3 6 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0618079304695129</threshold>
- <left_val>0.4056524932384491</left_val>
- <right_val>-0.0552820302546024</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 4 8 -1.</_>
- <_>
- 2 4 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0398896597325802</threshold>
- <left_val>-0.2851915061473846</left_val>
- <right_val>0.0710409730672836</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 2 10 -1.</_>
- <_>
- 15 0 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0517902411520481</threshold>
- <left_val>0.0102649601176381</left_val>
- <right_val>-0.3324474990367889</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 10 2 -1.</_>
- <_>
- 3 0 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.5987639352679253e-003</threshold>
- <left_val>-0.2374172061681747</left_val>
- <right_val>0.0760814696550369</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 4 10 -1.</_>
- <_>
- 11 1 4 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.3729403018951416</threshold>
- <left_val>-0.0144576001912355</left_val>
- <right_val>0.2766433060169220</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 10 4 -1.</_>
- <_>
- 7 1 5 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2840290069580078</threshold>
- <left_val>-0.0665690526366234</left_val>
- <right_val>0.3055528998374939</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 9 7 -1.</_>
- <_>
- 8 0 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0336107090115547</threshold>
- <left_val>0.3767885863780975</left_val>
- <right_val>-0.0386321581900120</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 2 4 -1.</_>
- <_>
- 8 2 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1422769427299500e-003</threshold>
- <left_val>-0.1114033982157707</left_val>
- <right_val>0.1607939004898071</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 12 8 -1.</_>
- <_>
- 3 4 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0784781575202942</threshold>
- <left_val>0.5287243723869324</left_val>
- <right_val>-0.0308714397251606</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 2 -1.</_>
- <_>
- 0 10 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3427408933639526e-003</threshold>
- <left_val>-0.0886204317212105</left_val>
- <right_val>0.1757823973894119</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 2 4 -1.</_>
- <_>
- 12 7 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.6650819238275290e-003</threshold>
- <left_val>-0.1401319950819016</left_val>
- <right_val>0.0889945700764656</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 5 2 -1.</_>
- <_>
- 6 7 5 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0249476097524166</threshold>
- <left_val>-0.0572457909584045</left_val>
- <right_val>0.2909868061542511</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 4 2 -1.</_>
- <_>
- 12 13 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5206424593925476e-003</threshold>
- <left_val>-0.5074890255928040</left_val>
- <right_val>0.0299209896475077</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 10 2 -1.</_>
- <_>
- 4 0 5 1 2.</_>
- <_>
- 9 1 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2697858773171902e-003</threshold>
- <left_val>-0.3367429077625275</left_val>
- <right_val>0.0424879901111126</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 2 -1.</_>
- <_>
- 9 0 4 1 2.</_>
- <_>
- 5 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2029830403625965e-003</threshold>
- <left_val>-0.3872976899147034</left_val>
- <right_val>0.0390708781778812</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 6 6 -1.</_>
- <_>
- 3 9 3 3 2.</_>
- <_>
- 6 12 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0155430398881435</threshold>
- <left_val>-0.0815093889832497</left_val>
- <right_val>0.1808387041091919</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 13 9 2 -1.</_>
- <_>
- 9 13 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0524194017052650</threshold>
- <left_val>-0.5531703829765320</left_val>
- <right_val>0.0184993594884872</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 1 3 -1.</_>
- <_>
- 7 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0111103300005198</threshold>
- <left_val>-0.7034459114074707</left_val>
- <right_val>0.0181828700006008</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 10 3 2 -1.</_>
- <_>
- 15 11 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.4250999558717012e-003</threshold>
- <left_val>-0.0457252115011215</left_val>
- <right_val>0.0519403293728828</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 3 6 -1.</_>
- <_>
- 5 3 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.0726835876703262e-003</threshold>
- <left_val>-0.2230128943920136</left_val>
- <right_val>0.0591846518218517</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 12 8 -1.</_>
- <_>
- 8 0 4 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0830495506525040</threshold>
- <left_val>-0.0779340714216232</left_val>
- <right_val>0.0390878692269325</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 12 8 -1.</_>
- <_>
- 6 0 4 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0832247883081436</threshold>
- <left_val>0.2976483106613159</left_val>
- <right_val>-0.0553525611758232</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 5 -1.</_>
- <_>
- 8 0 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0287941191345453</threshold>
- <left_val>0.1785778999328613</left_val>
- <right_val>-0.0220392197370529</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 12 5 -1.</_>
- <_>
- 4 0 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0564895309507847</threshold>
- <left_val>-0.0698909312486649</left_val>
- <right_val>0.2107651978731155</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 14 -1.</_>
- <_>
- 9 0 2 7 2.</_>
- <_>
- 7 7 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0616075918078423</threshold>
- <left_val>-0.6709880232810974</left_val>
- <right_val>0.0254087205976248</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 9 2 -1.</_>
- <_>
- 9 0 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0404302515089512</threshold>
- <left_val>-0.0430069416761398</left_val>
- <right_val>0.3612573146820068</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 18 4 -1.</_>
- <_>
- 9 6 9 2 2.</_>
- <_>
- 0 8 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0816636979579926</threshold>
- <left_val>0.0371078401803970</left_val>
- <right_val>-0.4014778137207031</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 2 -1.</_>
- <_>
- 10 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0200602691620588</threshold>
- <left_val>0.0283941105008125</left_val>
- <right_val>-0.4509697854518890</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 12 6 -1.</_>
- <_>
- 7 5 4 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4480923116207123</threshold>
- <left_val>-0.0288634896278381</left_val>
- <right_val>0.5443242192268372</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 3 4 -1.</_>
- <_>
- 5 2 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.4997808337211609e-003</threshold>
- <left_val>-0.0631850063800812</left_val>
- <right_val>0.2014364004135132</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 2 2 -1.</_>
- <_>
- 17 2 1 1 2.</_>
- <_>
- 16 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3604110538144596e-005</threshold>
- <left_val>0.0855014175176620</left_val>
- <right_val>-0.0625851824879646</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 2 2 -1.</_>
- <_>
- 0 2 1 1 2.</_>
- <_>
- 1 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9380017016083002e-005</threshold>
- <left_val>0.1278081983327866</left_val>
- <right_val>-0.1021258011460304</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 2 1 2 -1.</_>
- <_>
- 17 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0439419788308442e-004</threshold>
- <left_val>0.1362383067607880</left_val>
- <right_val>-0.0963960811495781</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 1 2 -1.</_>
- <_>
- 0 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1386282797902822e-005</threshold>
- <left_val>0.1202043965458870</left_val>
- <right_val>-0.1152094006538391</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 7 1 3 -1.</_>
- <_>
- 9 8 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.4278670363128185e-003</threshold>
- <left_val>-0.1176512986421585</left_val>
- <right_val>0.0256468392908573</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 1 4 -1.</_>
- <_>
- 1 3 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1655907453969121e-005</threshold>
- <left_val>-0.1066583022475243</left_val>
- <right_val>0.1162258014082909</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8285116362385452e-005</threshold>
- <left_val>0.1020200997591019</left_val>
- <right_val>-0.0947737917304039</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 8 6 -1.</_>
- <_>
- 9 0 8 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1716001033782959</threshold>
- <left_val>-0.0963247865438461</left_val>
- <right_val>0.1393671929836273</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 3 4 -1.</_>
- <_>
- 13 7 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.1614410951733589e-003</threshold>
- <left_val>-0.0783397704362869</left_val>
- <right_val>0.1986435055732727</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 1 3 -1.</_>
- <_>
- 2 4 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0104880100116134</threshold>
- <left_val>0.0224729795008898</left_val>
- <right_val>-0.5888965725898743</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 7 3 4 -1.</_>
- <_>
- 12 8 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0423890985548496</threshold>
- <left_val>3.2426279503852129e-003</left_val>
- <right_val>-0.3817951977252960</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 4 3 -1.</_>
- <_>
- 6 8 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0189421791583300</threshold>
- <left_val>-0.0385925881564617</left_val>
- <right_val>0.3448579013347626</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 3 2 -1.</_>
- <_>
- 8 9 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8505830084905028e-003</threshold>
- <left_val>0.0621170587837696</left_val>
- <right_val>-0.1422298997640610</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 8 8 2 -1.</_>
- <_>
- 3 8 4 1 2.</_>
- <_>
- 7 9 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4762551076710224e-003</threshold>
- <left_val>-0.0630814731121063</left_val>
- <right_val>0.2007206976413727</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 4 6 -1.</_>
- <_>
- 11 10 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2640787586569786e-003</threshold>
- <left_val>-0.0460104309022427</left_val>
- <right_val>0.1130814999341965</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 14 4 -1.</_>
- <_>
- 8 11 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0849933773279190</threshold>
- <left_val>0.2154290974140167</left_val>
- <right_val>-0.0659862980246544</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 13 6 2 -1.</_>
- <_>
- 11 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0231807008385658</threshold>
- <left_val>-0.3427445888519287</left_val>
- <right_val>0.0235659405589104</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 13 6 2 -1.</_>
- <_>
- 5 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0172915291041136</threshold>
- <left_val>0.0314326398074627</left_val>
- <right_val>-0.3918023109436035</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 16 2 -1.</_>
- <_>
- 1 12 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1471049878746271e-003</threshold>
- <left_val>-0.1212544962763786</left_val>
- <right_val>0.0950881168246269</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 16 4 -1.</_>
- <_>
- 1 12 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0957942008972168</threshold>
- <left_val>0.3747287988662720</left_val>
- <right_val>-0.0426806211471558</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 13 6 2 -1.</_>
- <_>
- 14 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0265573691576719</threshold>
- <left_val>-0.4792292118072510</left_val>
- <right_val>0.0261464007198811</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 1 -1.</_>
- <_>
- 1 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1971433246508241e-005</threshold>
- <left_val>0.1034777984023094</left_val>
- <right_val>-0.1175799965858460</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.4540100283920765e-003</threshold>
- <left_val>-0.5270028114318848</left_val>
- <right_val>0.0349571593105793</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 14 12 1 -1.</_>
- <_>
- 5 14 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0330873392522335</threshold>
- <left_val>-0.3979344069957733</left_val>
- <right_val>0.0254548005759716</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 6 6 -1.</_>
- <_>
- 6 6 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0701283663511276</threshold>
- <left_val>-0.0294641107320786</left_val>
- <right_val>0.4120103120803833</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 12 4 3 -1.</_>
- <_>
- 8 12 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.6940301591530442e-004</threshold>
- <left_val>0.1289426982402802</left_val>
- <right_val>-0.0847874134778976</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 9 1 2 -1.</_>
- <_>
- 9 9 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0186607595533133</threshold>
- <left_val>-6.2266499735414982e-003</left_val>
- <right_val>0.3669834136962891</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 9 2 1 -1.</_>
- <_>
- 9 9 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0135134300217032</threshold>
- <left_val>0.0170807391405106</left_val>
- <right_val>-0.7108424901962280</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 10 2 2 -1.</_>
- <_>
- 13 10 1 1 2.</_>
- <_>
- 12 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1627681609243155e-004</threshold>
- <left_val>0.0951879769563675</left_val>
- <right_val>-0.0463394597172737</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 1 3 -1.</_>
- <_>
- 0 7 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4968800395727158e-003</threshold>
- <left_val>0.0190170500427485</left_val>
- <right_val>-0.5660678744316101</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 16 4 -1.</_>
- <_>
- 1 7 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0339884310960770</threshold>
- <left_val>0.2053205966949463</left_val>
- <right_val>-0.0537301301956177</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 3 1 -1.</_>
- <_>
- 10 7 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.4949705526232719e-003</threshold>
- <left_val>-0.4779914915561676</left_val>
- <right_val>0.0261098798364401</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 10 2 2 -1.</_>
- <_>
- 13 10 1 1 2.</_>
- <_>
- 12 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8990468066185713e-004</threshold>
- <left_val>-0.0538782998919487</left_val>
- <right_val>0.1529861986637116</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 2 2 -1.</_>
- <_>
- 5 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1590311815962195e-005</threshold>
- <left_val>-0.1203349977731705</left_val>
- <right_val>0.0874421000480652</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 11 -1.</_>
- <_>
- 7 0 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0583840794861317</threshold>
- <left_val>0.1957484036684036</left_val>
- <right_val>-0.0669205635786057</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 3 3 -1.</_>
- <_>
- 7 6 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.6286900499835610e-003</threshold>
- <left_val>-0.1063129976391792</left_val>
- <right_val>0.1267475038766861</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 2 14 -1.</_>
- <_>
- 14 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0797880366444588</threshold>
- <left_val>0.0121673298999667</left_val>
- <right_val>-0.5167301297187805</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 2 -1.</_>
- <_>
- 7 0 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3892009891569614e-003</threshold>
- <left_val>-0.1291144043207169</left_val>
- <right_val>0.0887833982706070</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 16 7 -1.</_>
- <_>
- 5 3 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2509182095527649</threshold>
- <left_val>0.0321798510849476</left_val>
- <right_val>-0.3768610954284668</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 9 3 -1.</_>
- <_>
- 4 2 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0172097105532885</threshold>
- <left_val>0.0123794004321098</left_val>
- <right_val>-0.7875345945358276</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 8 13 -1.</_>
- <_>
- 6 2 4 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1891666054725647</threshold>
- <left_val>-0.0333567596971989</left_val>
- <right_val>0.1895112991333008</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 9 1 -1.</_>
- <_>
- 7 0 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8115151003003120e-003</threshold>
- <left_val>0.2050116956233978</left_val>
- <right_val>-0.0531618110835552</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 4 3 3 -1.</_>
- <_>
- 14 5 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0202697701752186</threshold>
- <left_val>-0.0289377495646477</left_val>
- <right_val>0.2185049951076508</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 1 2 -1.</_>
- <_>
- 8 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.8484037658199668e-005</threshold>
- <left_val>0.0575751215219498</left_val>
- <right_val>-0.1832818984985352</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 3 3 -1.</_>
- <_>
- 11 9 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2350680083036423e-003</threshold>
- <left_val>-0.0324196107685566</left_val>
- <right_val>0.0866090729832649</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 3 3 -1.</_>
- <_>
- 4 5 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0169897098094225</threshold>
- <left_val>0.2827008068561554</left_val>
- <right_val>-0.0383652187883854</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 3 3 -1.</_>
- <_>
- 14 4 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.4167408272624016e-003</threshold>
- <left_val>0.1313406974077225</left_val>
- <right_val>-0.0436117313802242</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 3 3 -1.</_>
- <_>
- 4 4 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.4191158637404442e-003</threshold>
- <left_val>-0.0706334635615349</left_val>
- <right_val>0.1760067045688629</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 8 2 -1.</_>
- <_>
- 11 0 4 1 2.</_>
- <_>
- 7 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3850679434835911e-003</threshold>
- <left_val>0.0321756713092327</left_val>
- <right_val>-0.3905653953552246</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 6 9 -1.</_>
- <_>
- 3 6 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1251693069934845</threshold>
- <left_val>-0.8182873725891113</left_val>
- <right_val>0.0108839897438884</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 2 2 -1.</_>
- <_>
- 12 5 1 1 2.</_>
- <_>
- 11 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4671529904007912e-003</threshold>
- <left_val>-0.5034620165824890</left_val>
- <right_val>4.6763787977397442e-003</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 2 2 -1.</_>
- <_>
- 5 5 1 1 2.</_>
- <_>
- 6 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7330769272521138e-005</threshold>
- <left_val>0.1123111024498940</left_val>
- <right_val>-0.0961181893944740</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 3 14 -1.</_>
- <_>
- 14 8 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0487493798136711</threshold>
- <left_val>0.0153942899778485</left_val>
- <right_val>-0.1379497051239014</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 6 8 -1.</_>
- <_>
- 4 5 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0150579595938325</threshold>
- <left_val>0.0967942178249359</left_val>
- <right_val>-0.1040832027792931</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 4 2 -1.</_>
- <_>
- 10 4 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0128671396523714</threshold>
- <left_val>-0.5594317913055420</left_val>
- <right_val>8.0226631835103035e-003</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 8 14 -1.</_>
- <_>
- 8 1 4 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4015636146068573</threshold>
- <left_val>0.0144503097981215</left_val>
- <right_val>-0.6986814141273499</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 4 2 -1.</_>
- <_>
- 10 4 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4811520231887698e-003</threshold>
- <left_val>-0.0602559782564640</left_val>
- <right_val>0.0617385916411877</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 3 7 -1.</_>
- <_>
- 5 7 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0360164083540440</threshold>
- <left_val>-0.7666615247726440</left_val>
- <right_val>0.0140148000791669</right_val></_></_></trees>
- <stage_threshold>-1.4018720388412476</stage_threshold>
- <parent>8</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 10 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 3 -1.</_>
- <_>
- 10 2 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0917561426758766</threshold>
- <left_val>-0.2386678010225296</left_val>
- <right_val>0.4141280055046082</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 10 10 -1.</_>
- <_>
- 13 3 5 5 2.</_>
- <_>
- 8 8 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0639683231711388</threshold>
- <left_val>0.2354369014501572</left_val>
- <right_val>-0.2272184938192368</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 8 5 -1.</_>
- <_>
- 2 0 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100612798705697</threshold>
- <left_val>0.1903312951326370</left_val>
- <right_val>-0.2668313086032867</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 6 6 -1.</_>
- <_>
- 12 8 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0135615598410368</threshold>
- <left_val>0.1492757946252823</left_val>
- <right_val>-0.1808369010686874</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 6 6 -1.</_>
- <_>
- 3 8 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0150768300518394</threshold>
- <left_val>0.2060939967632294</left_val>
- <right_val>-0.1853415071964264</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 1 -1.</_>
- <_>
- 11 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.1514219269156456e-003</threshold>
- <left_val>-0.5257387757301331</left_val>
- <right_val>0.0175556205213070</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 11 4 -1.</_>
- <_>
- 4 1 11 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.2476930432021618e-004</threshold>
- <left_val>-0.1458822041749954</left_val>
- <right_val>0.1516609936952591</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 16 2 -1.</_>
- <_>
- 2 13 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4739510845392942e-003</threshold>
- <left_val>-0.1880511939525604</left_val>
- <right_val>0.0956946983933449</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 1 3 -1.</_>
- <_>
- 7 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.1760678179562092e-003</threshold>
- <left_val>0.0520320907235146</left_val>
- <right_val>-0.4938291013240814</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 4 2 -1.</_>
- <_>
- 11 0 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.1702478453516960e-003</threshold>
- <left_val>-0.0941429212689400</left_val>
- <right_val>0.1121701002120972</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 3 4 -1.</_>
- <_>
- 7 1 3 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0200577601790428</threshold>
- <left_val>-0.5945836901664734</left_val>
- <right_val>0.0365518406033516</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 14 -1.</_>
- <_>
- 5 0 4 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2099146991968155</threshold>
- <left_val>0.2629818022251129</left_val>
- <right_val>-0.1024070009589195</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 3 2 -1.</_>
- <_>
- 6 8 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2166719213128090e-003</threshold>
- <left_val>0.1322692036628723</left_val>
- <right_val>-0.1503732055425644</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 8 -1.</_>
- <_>
- 8 2 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0149440001696348</threshold>
- <left_val>0.0650079399347305</left_val>
- <right_val>-0.0314821898937225</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 3 -1.</_>
- <_>
- 10 2 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0916189774870873</threshold>
- <left_val>0.1145974993705750</left_val>
- <right_val>-0.2158081978559494</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 2 -1.</_>
- <_>
- 8 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3998460490256548e-003</threshold>
- <left_val>-0.1513507068157196</left_val>
- <right_val>0.1351508945226669</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 9 2 -1.</_>
- <_>
- 12 4 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0627878010272980</threshold>
- <left_val>-0.1066391989588738</left_val>
- <right_val>0.2077779024839401</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 12 9 -1.</_>
- <_>
- 3 6 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1603447049856186</threshold>
- <left_val>-0.0674448832869530</left_val>
- <right_val>0.3066191077232361</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 8 2 -1.</_>
- <_>
- 5 6 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100808003917336</threshold>
- <left_val>0.2236672937870026</left_val>
- <right_val>-0.0887190401554108</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 6 2 6 -1.</_>
- <_>
- 13 6 1 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0218050591647625</threshold>
- <left_val>-0.0556704215705395</left_val>
- <right_val>0.1359948962926865</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 6 -1.</_>
- <_>
- 0 0 9 3 2.</_>
- <_>
- 9 3 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0624005310237408</threshold>
- <left_val>-0.4434593915939331</left_val>
- <right_val>0.0315365903079510</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 6 2 6 -1.</_>
- <_>
- 13 6 1 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0338275581598282</threshold>
- <left_val>0.2535226047039032</left_val>
- <right_val>-0.0142370602115989</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 6 2 -1.</_>
- <_>
- 5 6 6 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0249442607164383</threshold>
- <left_val>-0.0565281696617603</left_val>
- <right_val>0.2607103884220123</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 4 3 -1.</_>
- <_>
- 13 9 2 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0286747291684151</threshold>
- <left_val>-0.0299342703074217</left_val>
- <right_val>0.3963845074176788</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 18 8 -1.</_>
- <_>
- 0 5 9 4 2.</_>
- <_>
- 9 9 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0907829701900482</threshold>
- <left_val>0.0478614382445812</left_val>
- <right_val>-0.3908458948135376</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 1 -1.</_>
- <_>
- 15 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.8480619490146637e-003</threshold>
- <left_val>-0.5313044786453247</left_val>
- <right_val>0.0151046598330140</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 3 -1.</_>
- <_>
- 3 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.7331489883363247e-003</threshold>
- <left_val>0.0242120604962111</left_val>
- <right_val>-0.5601106882095337</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 5 3 -1.</_>
- <_>
- 12 1 5 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.7148418426513672e-003</threshold>
- <left_val>-0.0773390233516693</left_val>
- <right_val>0.2003569006919861</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 4 2 -1.</_>
- <_>
- 7 9 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.8716041017323732e-003</threshold>
- <left_val>0.0935838297009468</left_val>
- <right_val>-0.1630876958370209</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 3 3 -1.</_>
- <_>
- 13 8 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.5740120112895966e-003</threshold>
- <left_val>-0.0741003602743149</left_val>
- <right_val>0.1867326050996780</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 18 2 -1.</_>
- <_>
- 0 11 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5367589443922043e-003</threshold>
- <left_val>-0.1337856948375702</left_val>
- <right_val>0.1311887055635452</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 10 2 2 -1.</_>
- <_>
- 16 11 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7387451417744160e-003</threshold>
- <left_val>0.0191045496612787</left_val>
- <right_val>-0.2671408951282501</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 2 1 -1.</_>
- <_>
- 8 7 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.2638395726680756e-003</threshold>
- <left_val>0.0389440283179283</left_val>
- <right_val>-0.3811526894569397</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 6 4 -1.</_>
- <_>
- 6 6 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0180356502532959</threshold>
- <left_val>-0.0563138388097286</left_val>
- <right_val>0.2619901895523071</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 3 1 -1.</_>
- <_>
- 10 7 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.1390590853989124e-003</threshold>
- <left_val>0.0667682513594627</left_val>
- <right_val>-0.2474174052476883</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 3 3 -1.</_>
- <_>
- 13 8 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0207422897219658</threshold>
- <left_val>0.1581667959690094</left_val>
- <right_val>-0.0370551086962223</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 3 3 -1.</_>
- <_>
- 5 8 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.1745091117918491e-003</threshold>
- <left_val>-0.0627238526940346</left_val>
- <right_val>0.2400090992450714</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 2 -1.</_>
- <_>
- 15 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0139801297336817</threshold>
- <left_val>-0.2568688988685608</left_val>
- <right_val>0.0244082696735859</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 2 2 -1.</_>
- <_>
- 0 11 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0162561237812042e-003</threshold>
- <left_val>0.0346935093402863</left_val>
- <right_val>-0.3694097101688385</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 4 2 6 -1.</_>
- <_>
- 12 6 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2731141224503517e-003</threshold>
- <left_val>-0.0931362733244896</left_val>
- <right_val>0.0891287103295326</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 1 2 -1.</_>
- <_>
- 2 12 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.1432798393070698e-003</threshold>
- <left_val>-0.3862429857254028</left_val>
- <right_val>0.0327900089323521</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 3 -1.</_>
- <_>
- 13 1 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.4340949282050133e-003</threshold>
- <left_val>0.1252959072589874</left_val>
- <right_val>-0.0733088776469231</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 3 7 -1.</_>
- <_>
- 8 5 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0264763794839382</threshold>
- <left_val>0.0196925196796656</left_val>
- <right_val>-0.6520739793777466</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 11 -1.</_>
- <_>
- 7 0 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0531985610723495</threshold>
- <left_val>-0.0389075092971325</left_val>
- <right_val>0.3445923030376434</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 1 2 -1.</_>
- <_>
- 9 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.8159057991579175e-004</threshold>
- <left_val>-0.1429661959409714</left_val>
- <right_val>0.1105147972702980</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 3 -1.</_>
- <_>
- 13 1 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0273211896419525</threshold>
- <left_val>-0.0230135805904865</left_val>
- <right_val>0.3866828978061676</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 3 4 -1.</_>
- <_>
- 5 4 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0164375193417072</threshold>
- <left_val>-0.0503561496734619</left_val>
- <right_val>0.2543112933635712</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 14 2 -1.</_>
- <_>
- 10 0 7 1 2.</_>
- <_>
- 3 1 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0113530699163675</threshold>
- <left_val>-0.3853333890438080</left_val>
- <right_val>0.0233515705913305</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 4 6 -1.</_>
- <_>
- 0 0 2 3 2.</_>
- <_>
- 2 3 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6346738710999489e-003</threshold>
- <left_val>0.1851262003183365</left_val>
- <right_val>-0.0785678625106812</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 2 -1.</_>
- <_>
- 15 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.9470210000872612e-003</threshold>
- <left_val>0.0369826108217239</left_val>
- <right_val>-0.1762986034154892</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 2 4 -1.</_>
- <_>
- 3 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0165615193545818</threshold>
- <left_val>-0.4984858036041260</left_val>
- <right_val>0.0288834199309349</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 8 -1.</_>
- <_>
- 9 0 9 4 2.</_>
- <_>
- 0 4 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0768493562936783</threshold>
- <left_val>-0.3157871961593628</left_val>
- <right_val>0.0435194000601768</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 4 3 -1.</_>
- <_>
- 4 1 2 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0151811297982931</threshold>
- <left_val>0.2342346012592316</left_val>
- <right_val>-0.0625914782285690</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 5 6 2 -1.</_>
- <_>
- 12 6 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0194898601621389</threshold>
- <left_val>9.9025378003716469e-003</left_val>
- <right_val>-0.3876186013221741</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 4 -1.</_>
- <_>
- 5 1 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0180505998432636</threshold>
- <left_val>-0.0439307093620300</left_val>
- <right_val>0.3334142863750458</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 15 -1.</_>
- <_>
- 16 0 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9345480725169182e-003</threshold>
- <left_val>0.0809545367956162</left_val>
- <right_val>-0.0499147698283196</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 3 15 -1.</_>
- <_>
- 1 0 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0263634100556374</threshold>
- <left_val>0.0291267596185207</left_val>
- <right_val>-0.5075094103813171</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 2 -1.</_>
- <_>
- 9 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4248650297522545e-003</threshold>
- <left_val>0.0349614284932613</left_val>
- <right_val>-0.2873327136039734</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 1 -1.</_>
- <_>
- 8 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9459808506071568e-003</threshold>
- <left_val>0.0231612101197243</left_val>
- <right_val>-0.5071476101875305</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 14 -1.</_>
- <_>
- 15 8 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1527924984693527</threshold>
- <left_val>-0.3288157880306244</left_val>
- <right_val>0.0251827891916037</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 4 12 -1.</_>
- <_>
- 0 7 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4403219392988831e-004</threshold>
- <left_val>0.0755192562937737</left_val>
- <right_val>-0.1817900985479355</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 10 7 -1.</_>
- <_>
- 8 2 5 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2895443141460419</threshold>
- <left_val>0.0112048899754882</left_val>
- <right_val>-0.3839797973632813</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 9 6 -1.</_>
- <_>
- 2 3 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0487764589488506</threshold>
- <left_val>-0.3839943110942841</left_val>
- <right_val>0.0332496799528599</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 12 6 -1.</_>
- <_>
- 3 5 12 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0326264388859272</threshold>
- <left_val>0.3178147077560425</left_val>
- <right_val>-0.0470084510743618</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 10 2 -1.</_>
- <_>
- 5 5 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5620561838150024e-003</threshold>
- <left_val>-0.1639129966497421</left_val>
- <right_val>0.0883946195244789</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 9 3 3 -1.</_>
- <_>
- 14 10 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.5116498842835426e-003</threshold>
- <left_val>-0.0453669391572475</left_val>
- <right_val>0.1035958006978035</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 3 3 -1.</_>
- <_>
- 2 11 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8960359096527100e-003</threshold>
- <left_val>0.0258352104574442</left_val>
- <right_val>-0.4117685854434967</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 5 12 -1.</_>
- <_>
- 13 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0255158301442862</threshold>
- <left_val>0.0233579408377409</left_val>
- <right_val>-0.1015767008066177</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 4 4 -1.</_>
- <_>
- 0 8 2 2 2.</_>
- <_>
- 2 10 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7663391083478928e-003</threshold>
- <left_val>-0.0830834880471230</left_val>
- <right_val>0.1461292952299118</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 6 1 -1.</_>
- <_>
- 14 8 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0674580484628677e-003</threshold>
- <left_val>0.0921359285712242</left_val>
- <right_val>-0.0571467913687229</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 1 6 -1.</_>
- <_>
- 0 7 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.2945564538240433e-003</threshold>
- <left_val>0.0387363918125629</left_val>
- <right_val>-0.3532677888870239</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 16 6 -1.</_>
- <_>
- 1 7 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0674231275916100</threshold>
- <left_val>-0.0752417668700218</left_val>
- <right_val>0.1759665012359619</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 6 2 -1.</_>
- <_>
- 6 7 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4064600951969624e-003</threshold>
- <left_val>0.0977936610579491</left_val>
- <right_val>-0.1518930941820145</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 3 6 -1.</_>
- <_>
- 11 5 1 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0498286001384258</threshold>
- <left_val>-0.4579021930694580</left_val>
- <right_val>6.8976799957454205e-003</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 3 6 -1.</_>
- <_>
- 6 5 1 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0365433506667614</threshold>
- <left_val>0.0514394491910934</left_val>
- <right_val>-0.2690314948558807</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 5 12 -1.</_>
- <_>
- 13 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0641553029417992</threshold>
- <left_val>-0.0376881808042526</left_val>
- <right_val>0.0356850884854794</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 4 2 -1.</_>
- <_>
- 2 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6559410141780972e-003</threshold>
- <left_val>-0.0784540399909019</left_val>
- <right_val>0.1445766985416412</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 4 3 11 -1.</_>
- <_>
- 13 4 1 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0435861088335514</threshold>
- <left_val>-0.6851059794425964</left_val>
- <right_val>0.0130487699061632</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 5 12 -1.</_>
- <_>
- 0 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2223066985607147</threshold>
- <left_val>-0.5776153802871704</left_val>
- <right_val>0.0171249397099018</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 4 3 11 -1.</_>
- <_>
- 13 4 1 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0246731601655483</threshold>
- <left_val>0.0118981599807739</left_val>
- <right_val>-0.4052211046218872</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 13 4 2 -1.</_>
- <_>
- 5 14 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119292298331857</threshold>
- <left_val>0.3351877927780151</left_val>
- <right_val>-0.0336703099310398</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 1 2 -1.</_>
- <_>
- 11 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2319719826336950e-004</threshold>
- <left_val>-0.0857188627123833</left_val>
- <right_val>0.0837130919098854</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 7 2 -1.</_>
- <_>
- 0 5 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3408823013305664e-003</threshold>
- <left_val>-0.2854315042495728</left_val>
- <right_val>0.0407378897070885</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 4 3 3 -1.</_>
- <_>
- 13 5 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.4626510031521320e-003</threshold>
- <left_val>0.1119131967425346</left_val>
- <right_val>-0.0340123288333416</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 7 -1.</_>
- <_>
- 7 0 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0137237096205354</threshold>
- <left_val>0.2498622983694077</left_val>
- <right_val>-0.0450337603688240</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 12 15 -1.</_>
- <_>
- 8 0 4 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1521987020969391</threshold>
- <left_val>-0.0910210907459259</left_val>
- <right_val>0.0909610465168953</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 3 -1.</_>
- <_>
- 0 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7259603131096810e-005</threshold>
- <left_val>-0.1059086024761200</left_val>
- <right_val>0.1105574965476990</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.9416758120059967e-003</threshold>
- <left_val>0.0241890698671341</left_val>
- <right_val>-0.3095433115959168</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.4537155926227570e-003</threshold>
- <left_val>-0.4988319873809815</left_val>
- <right_val>0.0197901595383883</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 10 2 1 -1.</_>
- <_>
- 16 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5807019372005016e-004</threshold>
- <left_val>0.0810882821679115</left_val>
- <right_val>-0.0969615131616592</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 13 -1.</_>
- <_>
- 4 2 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0371250584721565</threshold>
- <left_val>-0.6658145189285278</left_val>
- <right_val>0.0148829696699977</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 4 3 3 -1.</_>
- <_>
- 13 5 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0268303193151951</threshold>
- <left_val>-0.0143090495839715</left_val>
- <right_val>0.1894340068101883</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 8 4 -1.</_>
- <_>
- 5 5 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0502456203103065</threshold>
- <left_val>0.2932176887989044</left_val>
- <right_val>-0.0342677310109138</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 3 1 -1.</_>
- <_>
- 13 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.9950302131474018e-003</threshold>
- <left_val>-0.3633973896503449</left_val>
- <right_val>0.0245582703500986</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 8 13 -1.</_>
- <_>
- 6 0 4 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0658775717020035</threshold>
- <left_val>-0.0696238428354263</left_val>
- <right_val>0.1689317971467972</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 1 4 -1.</_>
- <_>
- 10 2 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0134680103510618</threshold>
- <left_val>-0.5744501948356628</left_val>
- <right_val>7.6498151756823063e-003</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 4 1 -1.</_>
- <_>
- 8 2 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.5795979462563992e-003</threshold>
- <left_val>0.0468714609742165</left_val>
- <right_val>-0.2604298889636993</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 4 3 3 -1.</_>
- <_>
- 13 5 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0837022736668587</threshold>
- <left_val>-2.6280758902430534e-003</left_val>
- <right_val>0.9539653062820435</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 3 3 -1.</_>
- <_>
- 5 5 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0269146692007780</threshold>
- <left_val>0.4341320097446442</left_val>
- <right_val>-0.0251872204244137</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 2 1 8 -1.</_>
- <_>
- 17 2 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0681707710027695</threshold>
- <left_val>0.0113553795963526</left_val>
- <right_val>-0.1976965069770813</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 8 1 -1.</_>
- <_>
- 1 2 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0183866992592812</threshold>
- <left_val>-0.3016122877597809</left_val>
- <right_val>0.0400681607425213</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 3 4 -1.</_>
- <_>
- 12 7 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.8888311721384525e-003</threshold>
- <left_val>-0.0474995188415051</left_val>
- <right_val>0.0279497597366571</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 4 3 -1.</_>
- <_>
- 6 7 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0120319798588753</threshold>
- <left_val>-0.0417588092386723</left_val>
- <right_val>0.2567807137966156</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 4 3 -1.</_>
- <_>
- 13 2 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0452825687825680</threshold>
- <left_val>-0.0120907295495272</left_val>
- <right_val>0.5962427258491516</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 8 3 -1.</_>
- <_>
- 0 5 8 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0164286494255066</threshold>
- <left_val>0.0317231491208076</left_val>
- <right_val>-0.3415141999721527</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 6 6 -1.</_>
- <_>
- 10 5 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158072896301746</threshold>
- <left_val>-0.0876926332712173</left_val>
- <right_val>0.0733993873000145</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 6 8 -1.</_>
- <_>
- 4 1 3 4 2.</_>
- <_>
- 7 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0738655477762222</threshold>
- <left_val>0.0175666399300098</left_val>
- <right_val>-0.5859189033508301</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 4 4 2 -1.</_>
- <_>
- 10 4 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0817420035600662</threshold>
- <left_val>-0.0146944299340248</left_val>
- <right_val>0.3817226886749268</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 13 1 2 -1.</_>
- <_>
- 6 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6201290418393910e-004</threshold>
- <left_val>-0.1015762984752655</left_val>
- <right_val>0.1007106006145477</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 11 3 4 -1.</_>
- <_>
- 9 12 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6514606848359108e-003</threshold>
- <left_val>-0.0391967110335827</left_val>
- <right_val>0.1571251004934311</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 10 4 -1.</_>
- <_>
- 1 13 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1139461994171143</threshold>
- <left_val>0.0216240193694830</left_val>
- <right_val>-0.4994927048683167</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 4 2 -1.</_>
- <_>
- 14 1 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.1548771075904369e-003</threshold>
- <left_val>0.0503181293606758</left_val>
- <right_val>-0.0436193607747555</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 12 8 -1.</_>
- <_>
- 3 3 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0443513505160809</threshold>
- <left_val>0.3084303140640259</left_val>
- <right_val>-0.0323894284665585</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 4 2 8 -1.</_>
- <_>
- 12 4 1 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0593373291194439</threshold>
- <left_val>8.8634816929697990e-003</left_val>
- <right_val>-0.4340277016162872</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 8 2 -1.</_>
- <_>
- 6 4 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.4961997345089912e-003</threshold>
- <left_val>-0.1643534004688263</left_val>
- <right_val>0.0720200389623642</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 6 1 -1.</_>
- <_>
- 7 0 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126119097694755</threshold>
- <left_val>-0.0547339096665382</left_val>
- <right_val>0.2674084901809692</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 12 6 -1.</_>
- <_>
- 7 7 4 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1005614027380943</threshold>
- <left_val>0.0964706912636757</left_val>
- <right_val>-0.1237357035279274</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 1 2 -1.</_>
- <_>
- 10 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4684870368218981e-005</threshold>
- <left_val>-0.0654680281877518</left_val>
- <right_val>0.0757642164826393</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 6 3 -1.</_>
- <_>
- 8 1 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0173253808170557</threshold>
- <left_val>0.0493854694068432</left_val>
- <right_val>-0.2093895971775055</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 5 2 3 -1.</_>
- <_>
- 16 6 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1096980720758438e-003</threshold>
- <left_val>-0.2312972992658615</left_val>
- <right_val>0.0138064604252577</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 4 4 -1.</_>
- <_>
- 2 7 2 2 2.</_>
- <_>
- 4 9 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0394109934568405e-003</threshold>
- <left_val>-0.0485932305455208</left_val>
- <right_val>0.2104512006044388</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 5 2 3 -1.</_>
- <_>
- 16 6 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0678370017558336e-003</threshold>
- <left_val>0.0985712036490440</left_val>
- <right_val>-0.0456795394420624</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 2 3 -1.</_>
- <_>
- 0 6 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9888887703418732e-003</threshold>
- <left_val>0.0227227304130793</left_val>
- <right_val>-0.4730550050735474</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 2 4 -1.</_>
- <_>
- 12 6 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.8562550432980061e-003</threshold>
- <left_val>-0.1266745030879974</left_val>
- <right_val>0.0263468995690346</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 13 8 2 -1.</_>
- <_>
- 6 13 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0282390993088484</threshold>
- <left_val>-0.4817343056201935</left_val>
- <right_val>0.0202802792191505</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 3 -1.</_>
- <_>
- 8 0 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5814680159091949e-003</threshold>
- <left_val>0.1337555944919586</left_val>
- <right_val>-0.0751768574118614</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 10 12 -1.</_>
- <_>
- 4 3 5 6 2.</_>
- <_>
- 9 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1443670988082886</threshold>
- <left_val>-0.3129830062389374</left_val>
- <right_val>0.0385885089635849</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 11 8 4 -1.</_>
- <_>
- 7 11 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1250455975532532</threshold>
- <left_val>6.5982979722321033e-003</left_val>
- <right_val>-0.8157945275306702</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 11 8 4 -1.</_>
- <_>
- 7 11 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0130116604268551</threshold>
- <left_val>0.1292210072278976</left_val>
- <right_val>-0.0797087624669075</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 6 2 2 -1.</_>
- <_>
- 14 6 1 1 2.</_>
- <_>
- 13 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7209460493177176e-003</threshold>
- <left_val>0.1841018050909042</left_val>
- <right_val>-0.0381583906710148</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 2 2 -1.</_>
- <_>
- 3 6 1 1 2.</_>
- <_>
- 4 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2962076703552157e-005</threshold>
- <left_val>-0.0808445066213608</left_val>
- <right_val>0.1240184977650642</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 3 1 -1.</_>
- <_>
- 13 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.5386621281504631e-003</threshold>
- <left_val>0.0257210507988930</left_val>
- <right_val>-0.3472849130630493</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 4 6 -1.</_>
- <_>
- 4 4 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6022120192646980e-003</threshold>
- <left_val>-0.1327951997518539</left_val>
- <right_val>0.0695039033889771</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 1 2 -1.</_>
- <_>
- 17 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2741329555865377e-004</threshold>
- <left_val>0.0734610781073570</left_val>
- <right_val>-0.0567503012716770</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 7 3 -1.</_>
- <_>
- 5 1 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7483227252960205e-003</threshold>
- <left_val>-0.3874781131744385</left_val>
- <right_val>0.0252428594976664</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 1 2 -1.</_>
- <_>
- 17 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8606209778226912e-004</threshold>
- <left_val>-0.0807940736413002</left_val>
- <right_val>0.1112494990229607</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 2 -1.</_>
- <_>
- 0 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3457060160581023e-004</threshold>
- <left_val>0.1357578039169312</left_val>
- <right_val>-0.0805138573050499</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 1 6 -1.</_>
- <_>
- 17 2 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7333909636363387e-003</threshold>
- <left_val>-0.0408243499696255</left_val>
- <right_val>0.0704857334494591</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 11 12 2 -1.</_>
- <_>
- 3 12 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5763779412955046e-003</threshold>
- <left_val>-0.1058242991566658</left_val>
- <right_val>0.0882512032985687</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 11 1 2 -1.</_>
- <_>
- 17 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1439519952982664e-003</threshold>
- <left_val>0.0228503905236721</left_val>
- <right_val>-0.2287800014019013</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 4 2 -1.</_>
- <_>
- 7 2 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6810711286962032e-003</threshold>
- <left_val>-0.5519475936889648</left_val>
- <right_val>0.0166440196335316</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 3 3 -1.</_>
- <_>
- 14 3 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0102156195789576</threshold>
- <left_val>0.1151650995016098</left_val>
- <right_val>-0.0309206396341324</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 2 -1.</_>
- <_>
- 5 1 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8375351838767529e-003</threshold>
- <left_val>0.0355978682637215</left_val>
- <right_val>-0.2579573988914490</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 8 2 -1.</_>
- <_>
- 9 2 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1667288858443499e-003</threshold>
- <left_val>-0.1131158992648125</left_val>
- <right_val>0.0593770816922188</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 12 15 -1.</_>
- <_>
- 7 0 6 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1784611046314240</threshold>
- <left_val>-0.0910909771919250</left_val>
- <right_val>0.1021554023027420</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 1 6 -1.</_>
- <_>
- 17 2 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3922319523990154e-003</threshold>
- <left_val>0.1054854989051819</left_val>
- <right_val>-0.0409410186111927</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 6 -1.</_>
- <_>
- 0 2 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2479801494628191e-004</threshold>
- <left_val>-0.0925479605793953</left_val>
- <right_val>0.1070403009653091</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 2 -1.</_>
- <_>
- 14 0 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.3213559761643410e-003</threshold>
- <left_val>0.0474837012588978</left_val>
- <right_val>-0.0448017083108425</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 3 5 -1.</_>
- <_>
- 6 1 1 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.9881906062364578e-003</threshold>
- <left_val>-0.0531012415885925</left_val>
- <right_val>0.1893334984779358</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 3 4 -1.</_>
- <_>
- 14 0 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2582447901368141e-003</threshold>
- <left_val>0.0154708195477724</left_val>
- <right_val>-0.1627379059791565</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 4 8 -1.</_>
- <_>
- 9 3 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1220915019512177</threshold>
- <left_val>-0.6588258147239685</left_val>
- <right_val>0.0144322402775288</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 2 3 -1.</_>
- <_>
- 14 4 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0429302901029587</threshold>
- <left_val>-8.9507391676306725e-003</left_val>
- <right_val>0.7003753781318665</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 3 2 -1.</_>
- <_>
- 4 4 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0141837401315570</threshold>
- <left_val>0.2873809039592743</left_val>
- <right_val>-0.0324238389730453</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 3 2 2 -1.</_>
- <_>
- 13 3 1 1 2.</_>
- <_>
- 12 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5566753619350493e-005</threshold>
- <left_val>-0.0600121095776558</left_val>
- <right_val>0.0723430663347244</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 2 2 -1.</_>
- <_>
- 4 3 1 1 2.</_>
- <_>
- 5 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.1673799033742398e-005</threshold>
- <left_val>0.1241253018379211</left_val>
- <right_val>-0.0886371731758118</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 3 -1.</_>
- <_>
- 16 0 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0104515701532364</threshold>
- <left_val>0.0198976993560791</left_val>
- <right_val>-0.5485957860946655</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 3 3 -1.</_>
- <_>
- 1 0 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1406508795917034e-003</threshold>
- <left_val>0.0218714401125908</left_val>
- <right_val>-0.3995957076549530</right_val></_></_></trees>
- <stage_threshold>-1.4323190450668335</stage_threshold>
- <parent>9</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 11 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 10 4 -1.</_>
- <_>
- 4 8 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0790023133158684</threshold>
- <left_val>0.3242895007133484</left_val>
- <right_val>-0.2531394064426422</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 4 8 -1.</_>
- <_>
- 9 2 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0223373007029295</threshold>
- <left_val>-0.0941315069794655</left_val>
- <right_val>0.1378436982631683</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 9 12 -1.</_>
- <_>
- 4 0 3 12 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0666114836931229</threshold>
- <left_val>0.1753558069467545</left_val>
- <right_val>-0.2632693946361542</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 12 10 -1.</_>
- <_>
- 12 4 6 5 2.</_>
- <_>
- 6 9 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0181155707687140</threshold>
- <left_val>0.1001667976379395</left_val>
- <right_val>-0.2508405148983002</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 9 2 -1.</_>
- <_>
- 9 0 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0422082990407944</threshold>
- <left_val>-0.0464601181447506</left_val>
- <right_val>0.5075340270996094</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 4 3 -1.</_>
- <_>
- 13 2 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0219473801553249</threshold>
- <left_val>-0.0351926311850548</left_val>
- <right_val>0.2941356897354126</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 10 4 -1.</_>
- <_>
- 2 2 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0390684790909290</threshold>
- <left_val>0.0343180112540722</left_val>
- <right_val>-0.5963727831840515</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 4 3 -1.</_>
- <_>
- 13 2 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0171588398516178</threshold>
- <left_val>0.2207123041152954</left_val>
- <right_val>-0.0628029406070709</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 2 2 -1.</_>
- <_>
- 7 1 1 1 2.</_>
- <_>
- 8 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5410808272426948e-005</threshold>
- <left_val>0.1925067007541657</left_val>
- <right_val>-0.0979116931557655</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 4 3 -1.</_>
- <_>
- 13 2 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0577130392193794</threshold>
- <left_val>-0.0177523493766785</left_val>
- <right_val>0.3969089984893799</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 4 3 -1.</_>
- <_>
- 5 7 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0276702996343374</threshold>
- <left_val>0.2730920016765595</left_val>
- <right_val>-0.0699228271842003</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 2 4 -1.</_>
- <_>
- 12 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1078277863562107e-003</threshold>
- <left_val>-0.0490987785160542</left_val>
- <right_val>0.2490742951631546</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 2 2 -1.</_>
- <_>
- 7 1 1 1 2.</_>
- <_>
- 8 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8231639084406197e-005</threshold>
- <left_val>-0.1242284029722214</left_val>
- <right_val>0.1748877018690109</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 8 6 -1.</_>
- <_>
- 14 0 4 3 2.</_>
- <_>
- 10 3 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4101468995213509e-003</threshold>
- <left_val>-0.1163510009646416</left_val>
- <right_val>0.1120261996984482</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 10 -1.</_>
- <_>
- 0 0 9 5 2.</_>
- <_>
- 9 5 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1215678006410599</threshold>
- <left_val>0.0358167998492718</left_val>
- <right_val>-0.4239023923873901</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 8 -1.</_>
- <_>
- 16 4 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0457986593246460</threshold>
- <left_val>-0.3961238861083984</left_val>
- <right_val>0.0269146692007780</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 8 -1.</_>
- <_>
- 0 4 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3434510007500648e-003</threshold>
- <left_val>0.1517422944307327</left_val>
- <right_val>-0.1524718999862671</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 10 4 1 -1.</_>
- <_>
- 15 11 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.4885639110580087e-004</threshold>
- <left_val>-0.1039891019463539</left_val>
- <right_val>0.1021101996302605</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 2 4 -1.</_>
- <_>
- 4 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4605579674243927e-003</threshold>
- <left_val>-0.0920632407069206</left_val>
- <right_val>0.2008579969406128</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 10 4 1 -1.</_>
- <_>
- 15 11 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0204001795500517</threshold>
- <left_val>0.3931783139705658</left_val>
- <right_val>5.8226548135280609e-003</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 10 1 4 -1.</_>
- <_>
- 3 11 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.3037819482851774e-004</threshold>
- <left_val>-0.1504732072353363</left_val>
- <right_val>0.1060613021254540</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 1 4 -1.</_>
- <_>
- 13 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.2928410694003105e-003</threshold>
- <left_val>0.0726602599024773</left_val>
- <right_val>-0.0793565437197685</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 8 6 -1.</_>
- <_>
- 9 0 8 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1863780021667481</threshold>
- <left_val>-0.1124956011772156</left_val>
- <right_val>0.1569485962390900</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 16 4 -1.</_>
- <_>
- 9 0 8 2 2.</_>
- <_>
- 1 2 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0264334604144096</threshold>
- <left_val>-0.3909560143947601</left_val>
- <right_val>0.0494861491024494</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 16 11 -1.</_>
- <_>
- 5 3 8 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2413793057203293</threshold>
- <left_val>-0.6788706183433533</left_val>
- <right_val>0.0180502496659756</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 1 -1.</_>
- <_>
- 9 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0304666403681040</threshold>
- <left_val>2.7202309574931860e-003</left_val>
- <right_val>-0.6389626860618591</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 4 4 -1.</_>
- <_>
- 3 10 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7874959632754326e-003</threshold>
- <left_val>-0.0831275731325150</left_val>
- <right_val>0.1775137037038803</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 14 9 -1.</_>
- <_>
- 2 6 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1282777041196823</threshold>
- <left_val>-0.0936257764697075</left_val>
- <right_val>0.1679662019014359</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 4 2 -1.</_>
- <_>
- 7 6 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7217219360172749e-003</threshold>
- <left_val>0.1679864972829819</left_val>
- <right_val>-0.1074066013097763</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 2 4 -1.</_>
- <_>
- 13 0 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0251063294708729</threshold>
- <left_val>0.0170449391007423</left_val>
- <right_val>-0.4981293976306915</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 4 4 -1.</_>
- <_>
- 1 11 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5740294307470322e-003</threshold>
- <left_val>0.0389305390417576</left_val>
- <right_val>-0.3350399136543274</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 2 4 -1.</_>
- <_>
- 13 0 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0162992291152477</threshold>
- <left_val>-0.1772850006818771</left_val>
- <right_val>5.9367809444665909e-003</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 4 2 -1.</_>
- <_>
- 5 0 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0137555897235870</threshold>
- <left_val>0.0492921508848667</left_val>
- <right_val>-0.2990570068359375</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 4 1 -1.</_>
- <_>
- 14 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0101705603301525</threshold>
- <left_val>0.0125693203881383</left_val>
- <right_val>-0.3271737098693848</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 4 12 -1.</_>
- <_>
- 0 7 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1183888018131256</threshold>
- <left_val>-0.3064275085926056</left_val>
- <right_val>0.0404061898589134</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 16 12 -1.</_>
- <_>
- 10 3 8 6 2.</_>
- <_>
- 2 9 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2877846062183380</threshold>
- <left_val>8.6266417056322098e-003</left_val>
- <right_val>-0.5840386152267456</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 8 2 -1.</_>
- <_>
- 5 5 4 1 2.</_>
- <_>
- 9 6 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107093695551157</threshold>
- <left_val>-0.4581218063831329</left_val>
- <right_val>0.0267107002437115</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 4 1 -1.</_>
- <_>
- 14 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0168365407735109</threshold>
- <left_val>-0.4834601879119873</left_val>
- <right_val>1.4101839624345303e-003</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 3 6 -1.</_>
- <_>
- 7 1 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0268719699233770</threshold>
- <left_val>0.3023610115051270</left_val>
- <right_val>-0.0401738695800304</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 4 1 -1.</_>
- <_>
- 14 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.0822209771722555e-003</threshold>
- <left_val>0.0263978503644466</left_val>
- <right_val>-0.0711281672120094</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 8 7 -1.</_>
- <_>
- 9 2 4 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1830713003873825</threshold>
- <left_val>0.0315734706819057</left_val>
- <right_val>-0.4311215877532959</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 4 1 -1.</_>
- <_>
- 14 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.3969710133969784e-003</threshold>
- <left_val>-0.0999102368950844</left_val>
- <right_val>0.0134910000488162</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 1 4 -1.</_>
- <_>
- 4 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.5924688242375851e-003</threshold>
- <left_val>0.0344651006162167</left_val>
- <right_val>-0.4054282009601593</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 2 3 -1.</_>
- <_>
- 15 3 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.6914830133318901e-003</threshold>
- <left_val>-0.0393002107739449</left_val>
- <right_val>0.1681717932224274</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 3 2 -1.</_>
- <_>
- 3 3 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0134877096861601</threshold>
- <left_val>0.3188030123710632</left_val>
- <right_val>-0.0385033711791039</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 3 -1.</_>
- <_>
- 13 1 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0132067799568176</threshold>
- <left_val>0.1150619015097618</left_val>
- <right_val>-0.0261230692267418</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 4 -1.</_>
- <_>
- 5 1 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.5766428858041763e-003</threshold>
- <left_val>-0.0562361218035221</left_val>
- <right_val>0.2204838991165161</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 13 7 2 -1.</_>
- <_>
- 8 14 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0655260197818279e-003</threshold>
- <left_val>-0.0801741108298302</left_val>
- <right_val>0.1032200008630753</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 1 2 -1.</_>
- <_>
- 8 3 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.6779087723698467e-005</threshold>
- <left_val>-0.1722442954778671</left_val>
- <right_val>0.0690877288579941</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 8 -1.</_>
- <_>
- 10 1 2 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0961858332157135</threshold>
- <left_val>1.5162150375545025e-003</left_val>
- <right_val>-0.5543875098228455</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 8 4 -1.</_>
- <_>
- 8 1 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0381203815340996</threshold>
- <left_val>0.0515935495495796</left_val>
- <right_val>-0.2627368867397308</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 10 -1.</_>
- <_>
- 9 0 4 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5056834220886231</threshold>
- <left_val>0.0104669099673629</left_val>
- <right_val>-0.5157765746116638</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 3 2 -1.</_>
- <_>
- 7 7 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0121925799176097</threshold>
- <left_val>0.3058409094810486</left_val>
- <right_val>-0.0400131605565548</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 9 10 -1.</_>
- <_>
- 9 10 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1282064020633698</threshold>
- <left_val>0.0224020406603813</left_val>
- <right_val>-0.2776327133178711</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 12 10 -1.</_>
- <_>
- 5 0 4 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1294344961643219</threshold>
- <left_val>-0.0615348294377327</left_val>
- <right_val>0.2134552001953125</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 7 -1.</_>
- <_>
- 5 0 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0757145211100578</threshold>
- <left_val>0.1529033929109573</left_val>
- <right_val>-0.1166701018810272</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 2 2 -1.</_>
- <_>
- 6 0 1 1 2.</_>
- <_>
- 7 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3732179367216304e-005</threshold>
- <left_val>0.1280037015676498</left_val>
- <right_val>-0.0978259593248367</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 18 4 -1.</_>
- <_>
- 0 12 18 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5803599320352077e-003</threshold>
- <left_val>-0.0979151725769043</left_val>
- <right_val>0.1262035965919495</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 5 10 -1.</_>
- <_>
- 0 10 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0686360225081444</threshold>
- <left_val>0.0404322184622288</left_val>
- <right_val>-0.3132973015308380</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 3 3 -1.</_>
- <_>
- 9 9 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0114607503637671</threshold>
- <left_val>0.0253615006804466</left_val>
- <right_val>-0.4854018986225128</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 2 2 -1.</_>
- <_>
- 0 13 1 1 2.</_>
- <_>
- 1 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6128649551537819e-005</threshold>
- <left_val>-0.1043203026056290</left_val>
- <right_val>0.1133332997560501</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 13 2 2 -1.</_>
- <_>
- 17 13 1 1 2.</_>
- <_>
- 16 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4630657511297613e-005</threshold>
- <left_val>-0.1048785969614983</left_val>
- <right_val>0.1274009943008423</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 2 2 -1.</_>
- <_>
- 0 13 1 1 2.</_>
- <_>
- 1 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3739310563541949e-005</threshold>
- <left_val>0.1511404961347580</left_val>
- <right_val>-0.1025215014815331</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 1 -1.</_>
- <_>
- 10 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0116111198440194</threshold>
- <left_val>0.0148869697004557</left_val>
- <right_val>-0.2867495119571686</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 2 -1.</_>
- <_>
- 0 10 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0124207204207778</threshold>
- <left_val>-0.0620668604969978</left_val>
- <right_val>0.1777233928442001</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 5 2 6 -1.</_>
- <_>
- 14 5 1 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0234262607991695</threshold>
- <left_val>-0.0847592502832413</left_val>
- <right_val>0.1441590040922165</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 6 -1.</_>
- <_>
- 0 9 9 3 2.</_>
- <_>
- 9 12 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1436820030212402</threshold>
- <left_val>0.0257685091346502</left_val>
- <right_val>-0.4959807097911835</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 1 4 -1.</_>
- <_>
- 9 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6740589421242476e-003</threshold>
- <left_val>-0.3470003008842468</left_val>
- <right_val>0.0128000602126122</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 1 4 -1.</_>
- <_>
- 1 1 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1495590014383197e-005</threshold>
- <left_val>-0.1067951023578644</left_val>
- <right_val>0.0999599397182465</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 16 2 -1.</_>
- <_>
- 9 0 8 1 2.</_>
- <_>
- 1 1 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9259437993168831e-003</threshold>
- <left_val>0.0326209701597691</left_val>
- <right_val>-0.3536975979804993</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 2 -1.</_>
- <_>
- 8 0 1 1 2.</_>
- <_>
- 9 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1487040764186531e-005</threshold>
- <left_val>0.1253120005130768</left_val>
- <right_val>-0.0952782332897186</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 2 4 -1.</_>
- <_>
- 12 7 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0273266006261110</threshold>
- <left_val>-8.9491289108991623e-003</left_val>
- <right_val>0.0647247210144997</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 3 4 -1.</_>
- <_>
- 7 8 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0223257504403591</threshold>
- <left_val>0.0140139004215598</left_val>
- <right_val>-0.7404717206954956</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 2 4 -1.</_>
- <_>
- 12 7 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0402809605002403</threshold>
- <left_val>1.0004050564020872e-003</left_val>
- <right_val>-0.1177709996700287</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 4 2 -1.</_>
- <_>
- 6 7 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0218933299183846</threshold>
- <left_val>-0.0508843213319778</left_val>
- <right_val>0.2278957962989807</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 3 2 -1.</_>
- <_>
- 12 9 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1642571128904819e-003</threshold>
- <left_val>0.1285706013441086</left_val>
- <right_val>-0.0535524301230907</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 17 6 -1.</_>
- <_>
- 0 7 17 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0808411389589310</threshold>
- <left_val>0.2065366059541702</left_val>
- <right_val>-0.0666172280907631</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 6 2 2 -1.</_>
- <_>
- 15 6 1 1 2.</_>
- <_>
- 14 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1331298891454935e-004</threshold>
- <left_val>-0.0544428005814552</left_val>
- <right_val>0.1496316045522690</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 3 1 -1.</_>
- <_>
- 9 9 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.6274370551109314e-003</threshold>
- <left_val>0.0308179594576359</left_val>
- <right_val>-0.3672313988208771</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 6 2 2 -1.</_>
- <_>
- 15 6 1 1 2.</_>
- <_>
- 14 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7373692076653242e-004</threshold>
- <left_val>0.1390278041362763</left_val>
- <right_val>-0.0632526502013206</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 3 1 -1.</_>
- <_>
- 10 8 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0117200398817658</threshold>
- <left_val>-0.4767001867294312</left_val>
- <right_val>0.0244123209267855</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 1 6 -1.</_>
- <_>
- 9 0 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0488609895110130</threshold>
- <left_val>0.0100850900635123</left_val>
- <right_val>-0.4659259021282196</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 6 1 -1.</_>
- <_>
- 9 0 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0186931006610394</threshold>
- <left_val>-0.0719920396804810</left_val>
- <right_val>0.1769388020038605</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 6 10 -1.</_>
- <_>
- 6 5 3 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0539086498320103</threshold>
- <left_val>0.1467525959014893</left_val>
- <right_val>-0.0904555171728134</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 1 2 -1.</_>
- <_>
- 9 1 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.3356387913227081e-003</threshold>
- <left_val>0.0223987400531769</left_val>
- <right_val>-0.4941251873970032</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 6 2 2 -1.</_>
- <_>
- 15 6 1 1 2.</_>
- <_>
- 14 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7100899387733079e-005</threshold>
- <left_val>-0.0535624101758003</left_val>
- <right_val>0.0771028995513916</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 6 2 2 -1.</_>
- <_>
- 2 6 1 1 2.</_>
- <_>
- 3 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9839400162454695e-005</threshold>
- <left_val>-0.0879170671105385</left_val>
- <right_val>0.1276974976062775</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 6 2 2 -1.</_>
- <_>
- 15 6 1 1 2.</_>
- <_>
- 14 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5873789127217606e-005</threshold>
- <left_val>0.0862401127815247</left_val>
- <right_val>-0.0919469594955444</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 6 2 2 -1.</_>
- <_>
- 2 6 1 1 2.</_>
- <_>
- 3 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5616321585839614e-005</threshold>
- <left_val>0.1086385995149612</left_val>
- <right_val>-0.0997067466378212</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.4546090755611658e-003</threshold>
- <left_val>0.0336912795901299</left_val>
- <right_val>-0.2599461078643799</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 5 -1.</_>
- <_>
- 7 0 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0304389707744122</threshold>
- <left_val>0.3696292936801910</left_val>
- <right_val>-0.0292082708328962</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 12 6 -1.</_>
- <_>
- 7 5 4 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4395630061626434</threshold>
- <left_val>-0.0230350792407990</left_val>
- <right_val>0.4414143860340118</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 1 3 -1.</_>
- <_>
- 4 7 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8688350691227242e-005</threshold>
- <left_val>-0.1096998974680901</left_val>
- <right_val>0.0987688973546028</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 7 2 6 -1.</_>
- <_>
- 13 9 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4090819582343102e-003</threshold>
- <left_val>-0.0491456389427185</left_val>
- <right_val>0.1781875044107437</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 16 2 -1.</_>
- <_>
- 1 4 8 1 2.</_>
- <_>
- 9 5 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0149121098220348</threshold>
- <left_val>-0.4213177859783173</left_val>
- <right_val>0.0264007300138474</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 13 6 2 -1.</_>
- <_>
- 12 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0209064893424511</threshold>
- <left_val>-0.2946732044219971</left_val>
- <right_val>0.0150551898404956</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 7 2 2 -1.</_>
- <_>
- 3 7 1 1 2.</_>
- <_>
- 4 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3503939852816984e-005</threshold>
- <left_val>-0.0809751674532890</left_val>
- <right_val>0.1256861984729767</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 2 2 -1.</_>
- <_>
- 9 8 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0656829690560699e-003</threshold>
- <left_val>0.0537998713552952</left_val>
- <right_val>-0.1491664946079254</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 4 4 -1.</_>
- <_>
- 7 4 2 2 2.</_>
- <_>
- 9 6 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0148796895518899</threshold>
- <left_val>0.0201143808662891</left_val>
- <right_val>-0.4714792966842651</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 13 6 2 -1.</_>
- <_>
- 12 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0184495002031326</threshold>
- <left_val>0.0162126608192921</left_val>
- <right_val>-0.2607092857360840</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 1 4 -1.</_>
- <_>
- 3 8 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1283960193395615e-003</threshold>
- <left_val>-0.0618423111736774</left_val>
- <right_val>0.1573618054389954</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 13 6 2 -1.</_>
- <_>
- 12 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0417683906853199</threshold>
- <left_val>4.5171868987381458e-003</left_val>
- <right_val>-0.5230177044868469</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 11 2 -1.</_>
- <_>
- 3 1 11 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6589840203523636e-003</threshold>
- <left_val>-0.2460370063781738</left_val>
- <right_val>0.0389899984002113</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 2 -1.</_>
- <_>
- 6 1 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0121205700561404</threshold>
- <left_val>0.0129689900204539</left_val>
- <right_val>-0.6771157979965210</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 1 3 -1.</_>
- <_>
- 0 10 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1322788931429386e-003</threshold>
- <left_val>0.0152305504307151</left_val>
- <right_val>-0.5588334202766419</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 12 4 -1.</_>
- <_>
- 12 5 6 2 2.</_>
- <_>
- 6 7 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0852644816040993</threshold>
- <left_val>1.7884389963001013e-003</left_val>
- <right_val>-0.5704882144927979</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 12 4 -1.</_>
- <_>
- 0 5 6 2 2.</_>
- <_>
- 6 7 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0277299191802740</threshold>
- <left_val>-0.0375315397977829</left_val>
- <right_val>0.3102256953716278</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 4 2 -1.</_>
- <_>
- 10 3 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1674780659377575e-003</threshold>
- <left_val>-0.0953240767121315</left_val>
- <right_val>0.0961099192500114</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 4 4 -1.</_>
- <_>
- 0 6 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0350565910339355</threshold>
- <left_val>-0.3769027888774872</left_val>
- <right_val>0.0244747009128332</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 8 2 1 -1.</_>
- <_>
- 16 8 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0171847604215145</threshold>
- <left_val>-7.0347599685192108e-003</left_val>
- <right_val>0.4858829975128174</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 1 2 -1.</_>
- <_>
- 2 8 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.7842839956283569e-003</threshold>
- <left_val>0.0439080595970154</left_val>
- <right_val>-0.2523730993270874</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 15 -1.</_>
- <_>
- 6 0 6 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.8206691741943359</threshold>
- <left_val>0.0151718696579337</left_val>
- <right_val>-0.5394846200942993</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 6 4 -1.</_>
- <_>
- 4 2 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100911604240537</threshold>
- <left_val>-0.0969208627939224</left_val>
- <right_val>0.1118957996368408</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 2 13 -1.</_>
- <_>
- 13 2 1 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0160295106470585</threshold>
- <left_val>-0.2344131022691727</left_val>
- <right_val>0.0234555192291737</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 2 13 -1.</_>
- <_>
- 4 2 1 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0108496798202395</threshold>
- <left_val>0.0441476404666901</left_val>
- <right_val>-0.2696352899074554</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0130452997982502</threshold>
- <left_val>2.2153200116008520e-003</left_val>
- <right_val>-0.7978491783142090</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 3 3 -1.</_>
- <_>
- 4 1 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0112366396933794</threshold>
- <left_val>-0.0430468209087849</left_val>
- <right_val>0.2401491999626160</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.7543058432638645e-003</threshold>
- <left_val>-0.3550145030021668</left_val>
- <right_val>0.0110251400619745</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.3010800834745169e-003</threshold>
- <left_val>0.0303408205509186</left_val>
- <right_val>-0.3713628947734833</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 16 2 -1.</_>
- <_>
- 2 13 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5340842120349407e-003</threshold>
- <left_val>-0.0858052521944046</left_val>
- <right_val>0.0916388481855392</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 13 14 2 -1.</_>
- <_>
- 2 14 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0476196818053722</threshold>
- <left_val>0.4086326956748962</left_val>
- <right_val>-0.0264201592653990</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 1 2 -1.</_>
- <_>
- 16 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8403937621042132e-004</threshold>
- <left_val>-0.0323128588497639</left_val>
- <right_val>0.0880808010697365</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 1 2 -1.</_>
- <_>
- 1 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6149452070239931e-005</threshold>
- <left_val>0.1152559965848923</left_val>
- <right_val>-0.0890749320387840</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 2 2 -1.</_>
- <_>
- 16 0 1 1 2.</_>
- <_>
- 15 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4684870368218981e-005</threshold>
- <left_val>-0.0609943717718124</left_val>
- <right_val>0.0818466916680336</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 2 2 -1.</_>
- <_>
- 1 0 1 1 2.</_>
- <_>
- 2 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2685357483569533e-005</threshold>
- <left_val>0.1123972982168198</left_val>
- <right_val>-0.0878406614065170</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 2 2 -1.</_>
- <_>
- 16 0 1 1 2.</_>
- <_>
- 15 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1181959861423820e-005</threshold>
- <left_val>0.1241813972592354</left_val>
- <right_val>-0.0961579829454422</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 4 -1.</_>
- <_>
- 3 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.0426130443811417e-003</threshold>
- <left_val>-0.4060375988483429</left_val>
- <right_val>0.0250931605696678</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 2 2 -1.</_>
- <_>
- 16 0 1 1 2.</_>
- <_>
- 15 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4684870368218981e-005</threshold>
- <left_val>-0.0734931826591492</left_val>
- <right_val>0.0902145579457283</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 2 2 -1.</_>
- <_>
- 1 0 1 1 2.</_>
- <_>
- 2 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0119768275180832e-005</threshold>
- <left_val>-0.0829944536089897</left_val>
- <right_val>0.1139464974403381</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 8 2 -1.</_>
- <_>
- 8 4 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5925288042053580e-004</threshold>
- <left_val>-0.0712060630321503</left_val>
- <right_val>0.0428064316511154</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 1 3 -1.</_>
- <_>
- 6 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0211040973663330e-003</threshold>
- <left_val>0.0255169607698917</left_val>
- <right_val>-0.3551217019557953</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 4 4 -1.</_>
- <_>
- 10 6 2 2 2.</_>
- <_>
- 8 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0122425798326731</threshold>
- <left_val>0.0187698900699615</left_val>
- <right_val>-0.1980791985988617</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 7 6 -1.</_>
- <_>
- 5 3 7 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0142810503020883</threshold>
- <left_val>0.1960750967264175</left_val>
- <right_val>-0.0502470508217812</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 6 15 -1.</_>
- <_>
- 7 5 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4095694124698639</threshold>
- <left_val>0.0131073901429772</left_val>
- <right_val>-0.7247236967086792</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 4 4 -1.</_>
- <_>
- 6 6 2 2 2.</_>
- <_>
- 8 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6600460842018947e-005</threshold>
- <left_val>-0.0870764032006264</left_val>
- <right_val>0.1110621020197868</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 2 2 -1.</_>
- <_>
- 8 7 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1234419653192163e-003</threshold>
- <left_val>0.0774560794234276</left_val>
- <right_val>-0.1328455954790115</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 2 1 -1.</_>
- <_>
- 7 7 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.6427060626447201e-003</threshold>
- <left_val>0.0484460406005383</left_val>
- <right_val>-0.2187103033065796</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 6 4 3 -1.</_>
- <_>
- 12 7 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0135915102437139</threshold>
- <left_val>0.0825356394052505</left_val>
- <right_val>-0.0227083601057529</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 3 4 -1.</_>
- <_>
- 6 7 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0115914195775986</threshold>
- <left_val>-0.0487906895577908</left_val>
- <right_val>0.1949059069156647</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 2 12 -1.</_>
- <_>
- 13 6 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1260856986045837</threshold>
- <left_val>0.4181518852710724</left_val>
- <right_val>-9.5796259120106697e-003</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 1 10 -1.</_>
- <_>
- 3 6 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0263312608003616</threshold>
- <left_val>0.0167261492460966</left_val>
- <right_val>-0.5749161243438721</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 1 8 -1.</_>
- <_>
- 8 5 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0410546697676182</threshold>
- <left_val>-0.0108851799741387</left_val>
- <right_val>0.3410010039806366</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 8 1 -1.</_>
- <_>
- 10 5 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0710404366254807</threshold>
- <left_val>-0.0139168696478009</left_val>
- <right_val>0.6054865121841431</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 18 2 -1.</_>
- <_>
- 9 3 9 1 2.</_>
- <_>
- 0 4 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168137494474649</threshold>
- <left_val>-0.4152989089488983</left_val>
- <right_val>0.0231689400970936</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 3 4 -1.</_>
- <_>
- 5 2 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0169783309102058</threshold>
- <left_val>0.2203284054994583</left_val>
- <right_val>-0.0398988015949726</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 9 2 6 -1.</_>
- <_>
- 15 9 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5234332547988743e-005</threshold>
- <left_val>0.0811500027775764</left_val>
- <right_val>-0.1343881934881210</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 2 6 -1.</_>
- <_>
- 2 9 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0171206202358007</threshold>
- <left_val>-0.4246828854084015</left_val>
- <right_val>0.0203172601759434</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 9 3 6 -1.</_>
- <_>
- 16 9 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0212412606924772</threshold>
- <left_val>0.0140559002757072</left_val>
- <right_val>-0.5432608127593994</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 14 3 -1.</_>
- <_>
- 1 13 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0468163415789604</threshold>
- <left_val>0.3992395997047424</left_val>
- <right_val>-0.0228534191846848</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 9 3 6 -1.</_>
- <_>
- 16 9 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0220952108502388</threshold>
- <left_val>-0.4197512865066528</left_val>
- <right_val>0.0116702402010560</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 9 12 -1.</_>
- <_>
- 0 6 9 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2213370054960251</threshold>
- <left_val>0.0133688803762197</left_val>
- <right_val>-0.5849164724349976</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 3 4 -1.</_>
- <_>
- 12 7 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.7718330062925816e-003</threshold>
- <left_val>-0.0393010601401329</left_val>
- <right_val>0.0762483775615692</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 4 3 -1.</_>
- <_>
- 6 7 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.2696389183402061e-003</threshold>
- <left_val>-0.0408090092241764</left_val>
- <right_val>0.2058036029338837</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 8 2 -1.</_>
- <_>
- 14 10 4 1 2.</_>
- <_>
- 10 11 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6822699690237641e-003</threshold>
- <left_val>-0.0605597309768200</left_val>
- <right_val>0.0894235521554947</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 3 3 -1.</_>
- <_>
- 8 7 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0152791002765298</threshold>
- <left_val>-0.3989386856555939</left_val>
- <right_val>0.0227994602173567</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 2 3 -1.</_>
- <_>
- 9 2 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1749838963150978e-003</threshold>
- <left_val>0.1322595030069351</left_val>
- <right_val>-0.0460287705063820</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 4 4 -1.</_>
- <_>
- 8 1 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8258180245757103e-003</threshold>
- <left_val>-0.1063044965267181</left_val>
- <right_val>0.0968753024935722</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 4 2 -1.</_>
- <_>
- 14 1 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.4384778195526451e-005</threshold>
- <left_val>0.0512824915349483</left_val>
- <right_val>-0.0842741429805756</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 3 4 -1.</_>
- <_>
- 5 3 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0145618002861738</threshold>
- <left_val>-0.0433528609573841</left_val>
- <right_val>0.1977739930152893</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 11 2 2 -1.</_>
- <_>
- 11 11 1 1 2.</_>
- <_>
- 10 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3724558781832457e-004</threshold>
- <left_val>-0.0508190095424652</left_val>
- <right_val>0.1038798987865448</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 16 6 -1.</_>
- <_>
- 1 8 8 3 2.</_>
- <_>
- 9 11 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1090848967432976</threshold>
- <left_val>-0.3327077925205231</left_val>
- <right_val>0.0268289800733328</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 8 3 7 -1.</_>
- <_>
- 16 8 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0241180947050452e-004</threshold>
- <left_val>0.0761685222387314</left_val>
- <right_val>-0.0645192116498947</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 3 7 -1.</_>
- <_>
- 1 8 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0156365707516670</threshold>
- <left_val>-0.4480968117713928</left_val>
- <right_val>0.0202762503176928</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 9 2 4 -1.</_>
- <_>
- 10 9 1 2 2.</_>
- <_>
- 9 11 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0118979997932911</threshold>
- <left_val>-0.4953711926937103</left_val>
- <right_val>4.4984170235693455e-003</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 2 4 -1.</_>
- <_>
- 7 9 1 2 2.</_>
- <_>
- 8 11 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5789919998496771e-003</threshold>
- <left_val>0.1295803040266037</left_val>
- <right_val>-0.0726606398820877</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 14 9 -1.</_>
- <_>
- 3 6 7 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.4996011853218079</threshold>
- <left_val>-0.6673018932342529</left_val>
- <right_val>7.9309539869427681e-003</right_val></_></_></trees>
- <stage_threshold>-1.3140599727630615</stage_threshold>
- <parent>10</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 12 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 3 6 -1.</_>
- <_>
- 6 7 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0789403170347214</threshold>
- <left_val>0.3298887908458710</left_val>
- <right_val>-0.1970188021659851</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 8 3 -1.</_>
- <_>
- 11 0 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0173211302608252</threshold>
- <left_val>0.2198147028684616</left_val>
- <right_val>-0.0811920836567879</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 8 2 -1.</_>
- <_>
- 7 3 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0123552503064275</threshold>
- <left_val>-0.3098889887332916</left_val>
- <right_val>0.1442392021417618</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 16 8 -1.</_>
- <_>
- 1 8 16 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1042677983641625</threshold>
- <left_val>0.1562684029340744</left_val>
- <right_val>-0.1835990995168686</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 14 8 -1.</_>
- <_>
- 2 7 7 4 2.</_>
- <_>
- 9 11 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0851838812232018</threshold>
- <left_val>-0.2902274131774902</left_val>
- <right_val>0.1274231970310211</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 4 6 -1.</_>
- <_>
- 9 9 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1335712969303131</threshold>
- <left_val>-0.3019841909408569</left_val>
- <right_val>-0.0168216507881880</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 3 9 -1.</_>
- <_>
- 5 9 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2229336053133011</threshold>
- <left_val>0.0184083096683025</left_val>
- <right_val>-916.7813110351562500</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 6 8 -1.</_>
- <_>
- 12 7 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0277230702340603</threshold>
- <left_val>0.0996664837002754</left_val>
- <right_val>-0.1188244000077248</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 9 4 -1.</_>
- <_>
- 12 5 3 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1818269938230515</threshold>
- <left_val>-0.0572614409029484</left_val>
- <right_val>0.4625281095504761</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 6 8 -1.</_>
- <_>
- 12 7 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0246847905218601</threshold>
- <left_val>0.0688610523939133</left_val>
- <right_val>-0.1928416937589645</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 3 4 -1.</_>
- <_>
- 4 9 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0138146495446563</threshold>
- <left_val>-0.0780585184693336</left_val>
- <right_val>0.3078015148639679</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 6 -1.</_>
- <_>
- 8 3 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0245245005935431</threshold>
- <left_val>-0.2686735093593597</left_val>
- <right_val>0.0682309865951538</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 1 -1.</_>
- <_>
- 6 0 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0112771354615688e-003</threshold>
- <left_val>-0.1854297965764999</left_val>
- <right_val>0.1132294982671738</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 9 6 6 -1.</_>
- <_>
- 12 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1054819002747536</threshold>
- <left_val>-0.3402459919452667</left_val>
- <right_val>0.0109034497290850</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 6 6 -1.</_>
- <_>
- 3 9 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3391570001840591e-003</threshold>
- <left_val>0.1041952967643738</left_val>
- <right_val>-0.2051645964384079</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 14 -1.</_>
- <_>
- 15 8 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0789474770426750</threshold>
- <left_val>0.0161181092262268</left_val>
- <right_val>-0.4154053926467896</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 8 2 -1.</_>
- <_>
- 5 1 4 1 2.</_>
- <_>
- 9 2 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8509850166738033e-003</threshold>
- <left_val>0.0488411597907543</left_val>
- <right_val>-0.3838480114936829</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 5 -1.</_>
- <_>
- 8 0 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0458627305924892</threshold>
- <left_val>-0.1582973003387451</left_val>
- <right_val>0.1020084023475647</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 4 4 -1.</_>
- <_>
- 5 2 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0134294098243117</threshold>
- <left_val>0.0545731112360954</left_val>
- <right_val>-0.3658663928508759</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 2 3 -1.</_>
- <_>
- 12 0 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0191512107849121</threshold>
- <left_val>0.0119114201515913</left_val>
- <right_val>-0.4372132122516632</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 10 15 -1.</_>
- <_>
- 9 0 5 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2203599959611893</threshold>
- <left_val>0.3832859992980957</left_val>
- <right_val>-0.0577213913202286</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 3 -1.</_>
- <_>
- 8 0 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0423834510147572</threshold>
- <left_val>-0.0653426200151443</left_val>
- <right_val>0.0784513726830482</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 2 14 -1.</_>
- <_>
- 0 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0305247306823730</threshold>
- <left_val>0.0496221706271172</left_val>
- <right_val>-0.3494651019573212</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 8 4 -1.</_>
- <_>
- 5 6 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0195040404796600</threshold>
- <left_val>-0.0683437287807465</left_val>
- <right_val>0.2646135091781616</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 14 2 -1.</_>
- <_>
- 2 10 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8469397053122520e-003</threshold>
- <left_val>-0.0779279768466949</left_val>
- <right_val>0.2089402973651886</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 2 -1.</_>
- <_>
- 0 10 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0321953706443310</threshold>
- <left_val>0.2680011987686157</left_val>
- <right_val>-0.0700547993183136</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 8 2 -1.</_>
- <_>
- 5 7 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.8907537758350372e-003</threshold>
- <left_val>0.1219308972358704</left_val>
- <right_val>-0.1397545933723450</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 3 3 -1.</_>
- <_>
- 11 6 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0164340194314718</threshold>
- <left_val>0.0296364594250917</left_val>
- <right_val>-0.2387409955263138</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 2 1 -1.</_>
- <_>
- 1 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7646512838546187e-005</threshold>
- <left_val>0.1085129007697105</left_val>
- <right_val>-0.1371634006500244</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 4 2 -1.</_>
- <_>
- 13 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0145368697121739</threshold>
- <left_val>-0.3846626877784729</left_val>
- <right_val>0.0236762408167124</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 3 2 -1.</_>
- <_>
- 6 0 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0117109399288893</threshold>
- <left_val>0.0416956692934036</left_val>
- <right_val>-0.3195604085922241</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 3 3 -1.</_>
- <_>
- 11 6 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0116417696699500</threshold>
- <left_val>-0.2868010997772217</left_val>
- <right_val>0.0145577499642968</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 3 3 -1.</_>
- <_>
- 6 6 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0212982799857855</threshold>
- <left_val>0.0255194008350372</left_val>
- <right_val>-0.4896689057350159</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 1 -1.</_>
- <_>
- 11 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.2027969658374786e-003</threshold>
- <left_val>-0.6225293874740601</left_val>
- <right_val>8.7586138397455215e-003</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 13 10 2 -1.</_>
- <_>
- 4 14 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0201745200902224</threshold>
- <left_val>0.3080742061138153</left_val>
- <right_val>-0.0395388789474964</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 1 -1.</_>
- <_>
- 11 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0106579503044486</threshold>
- <left_val>0.0104256300255656</left_val>
- <right_val>-0.3719728887081146</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 14 2 -1.</_>
- <_>
- 1 13 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5577301643788815e-003</threshold>
- <left_val>-0.1160800009965897</left_val>
- <right_val>0.1050620973110199</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 4 6 -1.</_>
- <_>
- 8 7 4 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0598958581686020</threshold>
- <left_val>-8.2911262288689613e-003</left_val>
- <right_val>0.0757109001278877</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 6 4 -1.</_>
- <_>
- 10 7 2 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0925180464982986</threshold>
- <left_val>-0.3972209990024567</left_val>
- <right_val>0.0354158990085125</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 6 3 6 -1.</_>
- <_>
- 15 9 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3780227899551392e-003</threshold>
- <left_val>-0.0451698005199432</left_val>
- <right_val>0.1016537994146347</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 3 2 -1.</_>
- <_>
- 7 9 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1006090100854635e-003</threshold>
- <left_val>0.0736289173364639</left_val>
- <right_val>-0.1836252957582474</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 14 2 -1.</_>
- <_>
- 2 9 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4413066506385803e-003</threshold>
- <left_val>-0.0506231300532818</left_val>
- <right_val>0.2713204920291901</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 3 8 -1.</_>
- <_>
- 3 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0289131104946136</threshold>
- <left_val>-0.2333088964223862</left_val>
- <right_val>0.0561418682336807</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 18 8 -1.</_>
- <_>
- 9 1 9 4 2.</_>
- <_>
- 0 5 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0894289314746857</threshold>
- <left_val>0.0421395003795624</left_val>
- <right_val>-0.2966344952583313</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 7 -1.</_>
- <_>
- 7 0 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0222117304801941</threshold>
- <left_val>0.3223718106746674</left_val>
- <right_val>-0.0411601513624191</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 4 1 -1.</_>
- <_>
- 10 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.7851219531148672e-003</threshold>
- <left_val>-0.0707370936870575</left_val>
- <right_val>0.1099132969975472</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 10 2 -1.</_>
- <_>
- 2 0 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.3305174484848976e-003</threshold>
- <left_val>-0.1936282962560654</left_val>
- <right_val>0.0662610232830048</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 10 6 -1.</_>
- <_>
- 9 4 5 3 2.</_>
- <_>
- 4 7 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0234631896018982</threshold>
- <left_val>-0.2286916971206665</left_val>
- <right_val>0.0538989901542664</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 4 2 -1.</_>
- <_>
- 5 8 2 1 2.</_>
- <_>
- 7 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0604270501062274e-003</threshold>
- <left_val>-0.0725375488400459</left_val>
- <right_val>0.1586951017379761</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 6 3 6 -1.</_>
- <_>
- 15 9 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0659593567252159</threshold>
- <left_val>5.6216111406683922e-003</left_val>
- <right_val>-0.3923929035663605</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 16 6 -1.</_>
- <_>
- 1 6 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0548790097236633</threshold>
- <left_val>0.2852548062801361</left_val>
- <right_val>-0.0444187112152576</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 1 4 -1.</_>
- <_>
- 9 1 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4504090435802937e-003</threshold>
- <left_val>0.0136751402169466</left_val>
- <right_val>-0.4430586099624634</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 2 3 -1.</_>
- <_>
- 0 8 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9733468592166901e-003</threshold>
- <left_val>0.0208843499422073</left_val>
- <right_val>-0.5048171281814575</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 5 3 3 -1.</_>
- <_>
- 14 6 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0184303596615791</threshold>
- <left_val>-0.0379651300609112</left_val>
- <right_val>0.2141716927289963</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 1 3 -1.</_>
- <_>
- 7 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.0115829110145569e-003</threshold>
- <left_val>-0.3419860005378723</left_val>
- <right_val>0.0299799200147390</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 12 3 -1.</_>
- <_>
- 9 1 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0407630987465382</threshold>
- <left_val>0.2418240010738373</left_val>
- <right_val>-0.0324762500822544</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 12 3 -1.</_>
- <_>
- 3 1 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0456319898366928</threshold>
- <left_val>0.1947166025638580</left_val>
- <right_val>-0.0898651406168938</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 5 3 3 -1.</_>
- <_>
- 14 6 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0130249597132206</threshold>
- <left_val>0.1837466955184937</left_val>
- <right_val>-0.0397638715803623</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 8 7 -1.</_>
- <_>
- 4 0 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0353647805750370</threshold>
- <left_val>-0.0993380174040794</left_val>
- <right_val>0.1346897035837174</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 4 4 6 -1.</_>
- <_>
- 14 4 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1877132058143616</threshold>
- <left_val>0.0116381403058767</left_val>
- <right_val>-0.3422963023185730</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 6 4 -1.</_>
- <_>
- 4 4 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.5244922190904617e-003</threshold>
- <left_val>-0.2090182006359100</left_val>
- <right_val>0.0642698332667351</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 10 8 -1.</_>
- <_>
- 4 3 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0345222912728786</threshold>
- <left_val>0.3521693944931030</left_val>
- <right_val>-0.0368988513946533</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 2 2 -1.</_>
- <_>
- 8 8 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1451860191300511e-003</threshold>
- <left_val>0.0721520334482193</left_val>
- <right_val>-0.2084126025438309</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 3 2 -1.</_>
- <_>
- 12 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0108127798885107</threshold>
- <left_val>-0.3391103148460388</left_val>
- <right_val>0.0102402996271849</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 3 -1.</_>
- <_>
- 6 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.4051618315279484e-003</threshold>
- <left_val>0.0448350198566914</left_val>
- <right_val>-0.2321110069751740</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 2 -1.</_>
- <_>
- 9 0 6 1 2.</_>
- <_>
- 3 1 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1400611884891987e-003</threshold>
- <left_val>-0.2683916091918945</left_val>
- <right_val>0.0390401408076286</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 2 2 -1.</_>
- <_>
- 0 2 1 1 2.</_>
- <_>
- 1 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5988669221987948e-005</threshold>
- <left_val>0.1104065030813217</left_val>
- <right_val>-0.0973475277423859</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 3 -1.</_>
- <_>
- 14 2 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.7707603126764297e-003</threshold>
- <left_val>0.1318017989397049</left_val>
- <right_val>-0.0422173812985420</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 3 3 -1.</_>
- <_>
- 4 2 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0146375196054578</threshold>
- <left_val>-0.0399371199309826</left_val>
- <right_val>0.2667961120605469</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 14 4 -1.</_>
- <_>
- 9 0 7 2 2.</_>
- <_>
- 2 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0173694007098675</threshold>
- <left_val>0.0430083684623241</left_val>
- <right_val>-0.2683846950531006</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 3 6 -1.</_>
- <_>
- 7 2 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0207157004624605</threshold>
- <left_val>-0.0441390685737133</left_val>
- <right_val>0.2528851032257080</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 6 2 4 -1.</_>
- <_>
- 16 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4260770082473755e-003</threshold>
- <left_val>-0.0181482806801796</left_val>
- <right_val>0.0637400820851326</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 2 4 -1.</_>
- <_>
- 0 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0218196604400873</threshold>
- <left_val>-0.4530546069145203</left_val>
- <right_val>0.0241426993161440</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 3 2 -1.</_>
- <_>
- 9 3 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8437709920108318e-003</threshold>
- <left_val>0.0123435202986002</left_val>
- <right_val>-0.1561755985021591</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 3 2 -1.</_>
- <_>
- 6 3 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7822460979223251e-003</threshold>
- <left_val>-0.3078184127807617</left_val>
- <right_val>0.0338872000575066</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 4 4 -1.</_>
- <_>
- 14 0 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4766600215807557e-003</threshold>
- <left_val>0.0376610010862350</left_val>
- <right_val>-0.0371170900762081</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 4 4 -1.</_>
- <_>
- 2 0 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0203950908035040</threshold>
- <left_val>0.0135211497545242</left_val>
- <right_val>-0.7287003993988037</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 13 10 2 -1.</_>
- <_>
- 13 13 5 1 2.</_>
- <_>
- 8 14 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4377470361068845e-003</threshold>
- <left_val>-0.0554642193019390</left_val>
- <right_val>0.0552656501531601</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 3 3 -1.</_>
- <_>
- 5 5 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0298325493931770</threshold>
- <left_val>0.4261128008365631</left_val>
- <right_val>-0.0218381006270647</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 4 6 -1.</_>
- <_>
- 8 7 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0305558592081070</threshold>
- <left_val>0.0176318995654583</left_val>
- <right_val>-0.6095407009124756</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 8 2 -1.</_>
- <_>
- 9 3 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1229958981275559</threshold>
- <left_val>-0.0266627203673124</left_val>
- <right_val>0.3695833981037140</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 11 4 -1.</_>
- <_>
- 4 2 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0229585207998753</threshold>
- <left_val>-0.4633212983608246</left_val>
- <right_val>0.0184264499694109</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 12 4 3 -1.</_>
- <_>
- 5 12 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0132682900875807</threshold>
- <left_val>-0.4380893111228943</left_val>
- <right_val>0.0190128590911627</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 6 2 -1.</_>
- <_>
- 6 8 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0461827516555786</threshold>
- <left_val>-0.7000507116317749</left_val>
- <right_val>0.0115271303802729</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 6 -1.</_>
- <_>
- 0 11 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0263124592602253</threshold>
- <left_val>-0.0715227574110031</left_val>
- <right_val>0.1276880055665970</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 13 1 2 -1.</_>
- <_>
- 12 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8344743340276182e-005</threshold>
- <left_val>-0.0716612488031387</left_val>
- <right_val>0.0649365931749344</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 1 8 -1.</_>
- <_>
- 8 5 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0374639108777046</threshold>
- <left_val>-0.3165304958820343</left_val>
- <right_val>0.0307877492159605</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 4 13 -1.</_>
- <_>
- 11 2 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0563586615025997</threshold>
- <left_val>8.4295487031340599e-003</left_val>
- <right_val>-0.6067206263542175</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 4 13 -1.</_>
- <_>
- 5 2 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.3837172240018845e-003</threshold>
- <left_val>0.0977723896503448</left_val>
- <right_val>-0.0991689264774323</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 3 3 -1.</_>
- <_>
- 12 9 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9623919544974342e-005</threshold>
- <left_val>-0.0549541302025318</left_val>
- <right_val>0.0757452771067619</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 10 4 -1.</_>
- <_>
- 5 0 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1653591990470886</threshold>
- <left_val>0.0260911695659161</left_val>
- <right_val>-0.3525250852108002</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 18 4 -1.</_>
- <_>
- 9 7 9 2 2.</_>
- <_>
- 0 9 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0830756202340126</threshold>
- <left_val>-0.5360965728759766</left_val>
- <right_val>0.0153222400695086</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 2 2 -1.</_>
- <_>
- 4 8 1 1 2.</_>
- <_>
- 5 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3314849929884076e-003</threshold>
- <left_val>-0.0434926301240921</left_val>
- <right_val>0.2146005928516388</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 8 3 -1.</_>
- <_>
- 9 0 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0240376498550177</threshold>
- <left_val>0.3358427882194519</left_val>
- <right_val>-0.0249130893498659</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 3 1 -1.</_>
- <_>
- 9 7 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.2097259797155857e-003</threshold>
- <left_val>0.0491514205932617</left_val>
- <right_val>-0.1990129053592682</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 14 8 -1.</_>
- <_>
- 2 5 14 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0736415982246399</threshold>
- <left_val>-0.0872314572334290</left_val>
- <right_val>0.1094933003187180</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 1 8 -1.</_>
- <_>
- 8 6 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0289185196161270</threshold>
- <left_val>0.0510564483702183</left_val>
- <right_val>-0.2057587951421738</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 4 4 -1.</_>
- <_>
- 11 9 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7253550253808498e-003</threshold>
- <left_val>-0.0367016084492207</left_val>
- <right_val>0.1051134988665581</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 4 2 -1.</_>
- <_>
- 2 11 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2107484340667725e-003</threshold>
- <left_val>0.0238303001970053</left_val>
- <right_val>-0.3580070137977600</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 4 2 -1.</_>
- <_>
- 12 8 2 1 2.</_>
- <_>
- 10 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8392279744148254e-003</threshold>
- <left_val>-0.0447077900171280</left_val>
- <right_val>0.1189830973744392</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 3 3 -1.</_>
- <_>
- 8 8 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8104080855846405e-003</threshold>
- <left_val>-0.1684007942676544</left_val>
- <right_val>0.0483481995761395</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 4 2 -1.</_>
- <_>
- 15 8 2 1 2.</_>
- <_>
- 13 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3966489136219025e-003</threshold>
- <left_val>-0.0308044198900461</left_val>
- <right_val>0.1346226930618286</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 4 2 -1.</_>
- <_>
- 1 8 2 1 2.</_>
- <_>
- 3 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.3915819949470460e-004</threshold>
- <left_val>-0.0775286927819252</left_val>
- <right_val>0.1130381003022194</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 10 12 -1.</_>
- <_>
- 5 3 5 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1835324019193649</threshold>
- <left_val>0.0953205227851868</left_val>
- <right_val>-0.0324969291687012</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 10 12 -1.</_>
- <_>
- 8 3 5 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4486036896705627</threshold>
- <left_val>0.0139211900532246</left_val>
- <right_val>-0.7289006114006043</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 8 -1.</_>
- <_>
- 9 0 4 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0888018906116486</threshold>
- <left_val>-0.0640209093689919</left_val>
- <right_val>0.0364004485309124</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 12 8 -1.</_>
- <_>
- 5 0 4 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1080844029784203</threshold>
- <left_val>-0.0643229931592941</left_val>
- <right_val>0.1937687993049622</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 1 -1.</_>
- <_>
- 16 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.9059031084179878e-003</threshold>
- <left_val>-0.3109242916107178</left_val>
- <right_val>0.0205565802752972</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 2 -1.</_>
- <_>
- 9 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.5598949287086725e-003</threshold>
- <left_val>-0.0915503427386284</left_val>
- <right_val>0.0920273736119270</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 2 2 -1.</_>
- <_>
- 9 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.9356167437508702e-004</threshold>
- <left_val>-0.0242713205516338</left_val>
- <right_val>0.0657608583569527</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 2 2 -1.</_>
- <_>
- 9 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0153526701033115</threshold>
- <left_val>0.0173107199370861</left_val>
- <right_val>-0.4890041947364807</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 1 -1.</_>
- <_>
- 16 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.7035951912403107e-003</threshold>
- <left_val>8.9735705405473709e-003</left_val>
- <right_val>-0.4127190113067627</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 4 2 -1.</_>
- <_>
- 6 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1431730128824711e-003</threshold>
- <left_val>-0.1955125033855438</left_val>
- <right_val>0.0380251109600067</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 1 2 -1.</_>
- <_>
- 9 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3084579121787101e-005</threshold>
- <left_val>0.0705076232552528</left_val>
- <right_val>-0.0471289381384850</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 2 4 -1.</_>
- <_>
- 9 5 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0868036672472954</threshold>
- <left_val>-0.0163518991321325</left_val>
- <right_val>0.4782052040100098</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 6 4 -1.</_>
- <_>
- 11 8 3 2 2.</_>
- <_>
- 8 10 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0110789397731423</threshold>
- <left_val>-0.0255244206637144</left_val>
- <right_val>0.1099068000912666</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 1 3 -1.</_>
- <_>
- 2 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.1349938623607159e-003</threshold>
- <left_val>-0.3572841882705689</left_val>
- <right_val>0.0223970897495747</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 2 -1.</_>
- <_>
- 16 2 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.7654299996793270e-003</threshold>
- <left_val>-0.0850082710385323</left_val>
- <right_val>0.0223076492547989</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 2 3 -1.</_>
- <_>
- 2 2 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0122526502236724</threshold>
- <left_val>0.0178576093167067</left_val>
- <right_val>-0.4197686016559601</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 2 3 -1.</_>
- <_>
- 15 2 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0119714401662350</threshold>
- <left_val>-0.0210712291300297</left_val>
- <right_val>0.2378973066806793</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 3 2 -1.</_>
- <_>
- 3 2 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.2991201151162386e-003</threshold>
- <left_val>-0.0615648999810219</left_val>
- <right_val>0.1329257041215897</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 4 2 -1.</_>
- <_>
- 14 1 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0184490196406841</threshold>
- <left_val>0.1429833024740219</left_val>
- <right_val>-0.0252068098634481</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 2 4 -1.</_>
- <_>
- 4 1 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.4155619367957115e-003</threshold>
- <left_val>0.1799412965774536</left_val>
- <right_val>-0.0498336292803288</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 5 6 -1.</_>
- <_>
- 13 5 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0482065714895725</threshold>
- <left_val>0.0272459890693426</left_val>
- <right_val>-0.3813177943229675</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.1687170481309295e-003</threshold>
- <left_val>0.0469573400914669</left_val>
- <right_val>-0.1817303001880646</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 14 9 -1.</_>
- <_>
- 2 3 14 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1361666023731232</threshold>
- <left_val>0.4079889953136444</left_val>
- <right_val>-0.0224768593907356</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 1 2 -1.</_>
- <_>
- 2 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3739310563541949e-005</threshold>
- <left_val>0.1014733985066414</left_val>
- <right_val>-0.0845235288143158</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 5 6 -1.</_>
- <_>
- 13 5 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0767729580402374</threshold>
- <left_val>6.4514591358602047e-003</left_val>
- <right_val>-0.4604128003120422</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 8 9 -1.</_>
- <_>
- 2 0 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0634575635194778</threshold>
- <left_val>-0.0202501695603132</left_val>
- <right_val>0.3972662985324860</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 2 2 -1.</_>
- <_>
- 8 6 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3444589935243130e-003</threshold>
- <left_val>0.1526169925928116</left_val>
- <right_val>-0.0526536405086517</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 8 5 -1.</_>
- <_>
- 11 2 4 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0572412200272083</threshold>
- <left_val>-0.1344574987888336</left_val>
- <right_val>0.0807463303208351</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 5 6 -1.</_>
- <_>
- 13 5 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0416314415633678</threshold>
- <left_val>-0.1082227975130081</left_val>
- <right_val>0.0224370695650578</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 5 6 -1.</_>
- <_>
- 0 5 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0149030797183514</threshold>
- <left_val>0.0450070798397064</left_val>
- <right_val>-0.2200184017419815</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 12 10 -1.</_>
- <_>
- 9 4 6 5 2.</_>
- <_>
- 3 9 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2230342030525208</threshold>
- <left_val>0.0124958604574203</left_val>
- <right_val>-0.6004509925842285</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 2 3 -1.</_>
- <_>
- 7 6 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0169060304760933</threshold>
- <left_val>0.0127502698451281</left_val>
- <right_val>-0.5323861837387085</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 6 6 -1.</_>
- <_>
- 13 3 2 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2447734028100967</threshold>
- <left_val>3.1138889025896788e-003</left_val>
- <right_val>-0.5712805986404419</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 6 6 -1.</_>
- <_>
- 5 3 6 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1874004006385803</threshold>
- <left_val>0.4374476075172424</left_val>
- <right_val>-0.0196508895605803</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 4 1 6 -1.</_>
- <_>
- 13 6 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0131231546401978e-003</threshold>
- <left_val>-0.0674036368727684</left_val>
- <right_val>0.1013251990079880</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 1 2 -1.</_>
- <_>
- 8 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2101340107619762e-003</threshold>
- <left_val>0.0345095582306385</left_val>
- <right_val>-0.2193517982959747</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 13 6 2 -1.</_>
- <_>
- 13 13 3 1 2.</_>
- <_>
- 10 14 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109212100505829</threshold>
- <left_val>-0.1589787006378174</left_val>
- <right_val>6.7669888958334923e-003</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 13 6 2 -1.</_>
- <_>
- 2 13 3 1 2.</_>
- <_>
- 5 14 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0091220028698444e-003</threshold>
- <left_val>-0.0808166116476059</left_val>
- <right_val>0.0902162864804268</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 12 9 3 -1.</_>
- <_>
- 8 12 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0791598334908485</threshold>
- <left_val>-0.4955776035785675</left_val>
- <right_val>9.0577276423573494e-003</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 14 12 1 -1.</_>
- <_>
- 5 14 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0231257900595665</threshold>
- <left_val>0.0261550601571798</left_val>
- <right_val>-0.2640474140644074</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 12 15 -1.</_>
- <_>
- 8 0 4 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2539966106414795</threshold>
- <left_val>-0.0417557582259178</left_val>
- <right_val>0.0842676386237144</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 8 14 -1.</_>
- <_>
- 5 0 4 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0413385704159737</threshold>
- <left_val>-0.0543079786002636</left_val>
- <right_val>0.1632328033447266</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 8 4 -1.</_>
- <_>
- 14 10 4 2 2.</_>
- <_>
- 10 12 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9801427200436592e-003</threshold>
- <left_val>-0.0563799887895584</left_val>
- <right_val>0.0850874036550522</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 12 5 -1.</_>
- <_>
- 6 0 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0221821498125792</threshold>
- <left_val>0.1568063944578171</left_val>
- <right_val>-0.0526730790734291</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 2 1 -1.</_>
- <_>
- 12 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.8383043475914747e-005</threshold>
- <left_val>-0.1125876978039742</left_val>
- <right_val>0.0710221901535988</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 1 2 -1.</_>
- <_>
- 6 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.0613721832633018e-003</threshold>
- <left_val>-0.3759906888008118</left_val>
- <right_val>0.0229838006198406</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 5 2 8 -1.</_>
- <_>
- 12 5 1 8 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0636510029435158</threshold>
- <left_val>4.1155992075800896e-003</left_val>
- <right_val>-0.4183712899684906</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 8 2 -1.</_>
- <_>
- 6 5 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0198200307786465</threshold>
- <left_val>-0.0826675072312355</left_val>
- <right_val>0.0975382328033447</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 2 2 -1.</_>
- <_>
- 13 7 1 1 2.</_>
- <_>
- 12 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2445739703252912e-003</threshold>
- <left_val>-0.0334467291831970</left_val>
- <right_val>0.1453846991062164</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 14 4 -1.</_>
- <_>
- 2 6 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1117865964770317</threshold>
- <left_val>0.2502450942993164</left_val>
- <right_val>-0.0353329405188560</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 2 2 -1.</_>
- <_>
- 13 7 1 1 2.</_>
- <_>
- 12 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4203520733863115e-003</threshold>
- <left_val>0.1733037978410721</left_val>
- <right_val>-0.0227931998670101</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 2 2 -1.</_>
- <_>
- 4 7 1 1 2.</_>
- <_>
- 5 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2127320223953575e-004</threshold>
- <left_val>-0.0742904022336006</left_val>
- <right_val>0.1193578988313675</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 5 1 4 -1.</_>
- <_>
- 12 6 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.6516663432121277e-003</threshold>
- <left_val>0.0119632603600621</left_val>
- <right_val>-0.2848285138607025</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 1 4 -1.</_>
- <_>
- 5 6 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5779709176276810e-005</threshold>
- <left_val>-0.1187881007790566</left_val>
- <right_val>0.0836797133088112</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 3 2 -1.</_>
- <_>
- 13 8 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.6892090253531933e-003</threshold>
- <left_val>-0.0259499493986368</left_val>
- <right_val>0.0986363664269447</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 6 4 -1.</_>
- <_>
- 3 9 3 2 2.</_>
- <_>
- 6 11 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3373341001570225e-003</threshold>
- <left_val>-0.0568680502474308</left_val>
- <right_val>0.1380600035190582</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 12 6 1 -1.</_>
- <_>
- 9 12 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8734410665929317e-003</threshold>
- <left_val>0.0774335265159607</left_val>
- <right_val>-0.0352366790175438</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 4 1 -1.</_>
- <_>
- 8 3 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4124629716388881e-005</threshold>
- <left_val>-0.1245692968368530</left_val>
- <right_val>0.0716082230210304</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 13 8 2 -1.</_>
- <_>
- 6 13 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0303157493472099</threshold>
- <left_val>-0.1957962065935135</left_val>
- <right_val>0.0308573506772518</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 6 2 -1.</_>
- <_>
- 9 0 3 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0350410714745522</threshold>
- <left_val>0.1788015067577362</left_val>
- <right_val>-0.0489667803049088</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 11 10 4 -1.</_>
- <_>
- 7 11 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0419709086418152</threshold>
- <left_val>-0.0401918590068817</left_val>
- <right_val>0.1294634044170380</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 15 4 -1.</_>
- <_>
- 6 11 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0408818498253822</threshold>
- <left_val>0.1301825046539307</left_val>
- <right_val>-0.0782763436436653</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 6 4 -1.</_>
- <_>
- 7 1 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2412762306630611e-003</threshold>
- <left_val>-0.1829565018415451</left_val>
- <right_val>0.0371690504252911</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 2 2 -1.</_>
- <_>
- 1 10 1 1 2.</_>
- <_>
- 2 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0555911002447829e-005</threshold>
- <left_val>-0.0837283581495285</left_val>
- <right_val>0.0939808636903763</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 10 3 2 -1.</_>
- <_>
- 9 10 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0165926907211542</threshold>
- <left_val>5.7793757878243923e-003</left_val>
- <right_val>-0.8148245811462402</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 2 3 -1.</_>
- <_>
- 0 9 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3152369111776352e-003</threshold>
- <left_val>0.0213363692164421</left_val>
- <right_val>-0.3248454928398132</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 4 4 -1.</_>
- <_>
- 11 9 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0568882115185261</threshold>
- <left_val>-0.4159530103206635</left_val>
- <right_val>3.6880860570818186e-003</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 8 4 4 -1.</_>
- <_>
- 3 9 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4150490537285805e-003</threshold>
- <left_val>-0.0535964109003544</left_val>
- <right_val>0.1404040008783341</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 16 2 -1.</_>
- <_>
- 6 7 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1477995961904526</threshold>
- <left_val>4.9799410626292229e-003</left_val>
- <right_val>-0.6226087212562561</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 16 2 -1.</_>
- <_>
- 4 7 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0695117115974426</threshold>
- <left_val>-0.4330480098724365</left_val>
- <right_val>0.0189262200146914</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 10 4 2 -1.</_>
- <_>
- 14 10 2 1 2.</_>
- <_>
- 12 11 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6076939646154642e-003</threshold>
- <left_val>-0.0367941483855248</left_val>
- <right_val>0.0683272704482079</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 10 4 2 -1.</_>
- <_>
- 2 10 2 1 2.</_>
- <_>
- 4 11 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5456780092790723e-003</threshold>
- <left_val>-0.0668036863207817</left_val>
- <right_val>0.1335151940584183</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 9 2 3 -1.</_>
- <_>
- 16 10 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0159673895686865</threshold>
- <left_val>6.9505311548709869e-003</left_val>
- <right_val>-0.4713656008243561</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 6 9 -1.</_>
- <_>
- 8 7 2 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2871150970458984</threshold>
- <left_val>-0.0153487697243690</left_val>
- <right_val>0.4745875895023346</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 4 15 -1.</_>
- <_>
- 8 5 4 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3409349918365479</threshold>
- <left_val>5.4452791810035706e-003</left_val>
- <right_val>-0.7917565107345581</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 2 3 -1.</_>
- <_>
- 8 8 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6727129742503166e-003</threshold>
- <left_val>0.0294574107974768</left_val>
- <right_val>-0.2547746896743774</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 7 2 -1.</_>
- <_>
- 6 2 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6719029992818832e-003</threshold>
- <left_val>-0.1707005947828293</left_val>
- <right_val>0.0357673391699791</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 6 2 -1.</_>
- <_>
- 0 7 3 1 2.</_>
- <_>
- 3 8 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2617820911109447e-003</threshold>
- <left_val>-0.0336550511419773</left_val>
- <right_val>0.2133263945579529</right_val></_></_>
- <_>
- <!-- tree 181 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 3 5 3 -1.</_>
- <_>
- 11 4 5 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.1078894436359406e-003</threshold>
- <left_val>0.0301098693162203</left_val>
- <right_val>-0.0460237488150597</right_val></_></_>
- <_>
- <!-- tree 182 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 3 5 -1.</_>
- <_>
- 7 4 1 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0167319998145103</threshold>
- <left_val>-0.0437199696898460</left_val>
- <right_val>0.1943642944097519</right_val></_></_>
- <_>
- <!-- tree 183 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 4 3 -1.</_>
- <_>
- 7 9 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0191528107970953</threshold>
- <left_val>0.0174971204251051</left_val>
- <right_val>-0.4282760024070740</right_val></_></_>
- <_>
- <!-- tree 184 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 6 14 -1.</_>
- <_>
- 2 1 3 7 2.</_>
- <_>
- 5 8 3 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1417188942432404</threshold>
- <left_val>-0.3899391889572144</left_val>
- <right_val>0.0170895904302597</right_val></_></_>
- <_>
- <!-- tree 185 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 8 9 -1.</_>
- <_>
- 10 1 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8122260011732578e-003</threshold>
- <left_val>-0.1158609017729759</left_val>
- <right_val>0.0506625697016716</right_val></_></_>
- <_>
- <!-- tree 186 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 4 4 -1.</_>
- <_>
- 8 7 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0170307997614145</threshold>
- <left_val>-0.5399131178855896</left_val>
- <right_val>0.0119414301589131</right_val></_></_>
- <_>
- <!-- tree 187 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 9 2 4 -1.</_>
- <_>
- 10 9 1 2 2.</_>
- <_>
- 9 11 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8250916451215744e-003</threshold>
- <left_val>-0.3324021995067596</left_val>
- <right_val>8.3178747445344925e-003</right_val></_></_>
- <_>
- <!-- tree 188 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 4 2 -1.</_>
- <_>
- 3 9 2 1 2.</_>
- <_>
- 5 10 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9308991767466068e-003</threshold>
- <left_val>0.2211183011531830</left_val>
- <right_val>-0.0314335711300373</right_val></_></_>
- <_>
- <!-- tree 189 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 9 2 3 -1.</_>
- <_>
- 16 10 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7457819562405348e-003</threshold>
- <left_val>-0.1030357033014298</left_val>
- <right_val>0.0240999702364206</right_val></_></_>
- <_>
- <!-- tree 190 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 2 3 -1.</_>
- <_>
- 0 10 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8495861701667309e-003</threshold>
- <left_val>0.0257306694984436</left_val>
- <right_val>-0.2665663063526154</right_val></_></_>
- <_>
- <!-- tree 191 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 16 9 -1.</_>
- <_>
- 6 0 8 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3076910078525543</threshold>
- <left_val>0.0261018890887499</left_val>
- <right_val>-0.1869533061981201</right_val></_></_>
- <_>
- <!-- tree 192 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 8 4 -1.</_>
- <_>
- 5 1 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0117959501221776</threshold>
- <left_val>-0.1118796989321709</left_val>
- <right_val>0.0688933432102203</right_val></_></_>
- <_>
- <!-- tree 193 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 2 6 -1.</_>
- <_>
- 7 5 2 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1020568981766701</threshold>
- <left_val>0.1641097962856293</left_val>
- <right_val>-3.9911000058054924e-003</right_val></_></_>
- <_>
- <!-- tree 194 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 6 2 -1.</_>
- <_>
- 11 5 2 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1050693020224571</threshold>
- <left_val>-0.0170984808355570</left_val>
- <right_val>0.4288966059684753</right_val></_></_>
- <_>
- <!-- tree 195 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 2 2 -1.</_>
- <_>
- 15 1 1 1 2.</_>
- <_>
- 14 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8301670176442713e-005</threshold>
- <left_val>-0.0416239388287067</left_val>
- <right_val>0.0495718717575073</right_val></_></_>
- <_>
- <!-- tree 196 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 3 2 -1.</_>
- <_>
- 3 4 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.2682799026370049e-003</threshold>
- <left_val>-0.0688075497746468</left_val>
- <right_val>0.1021673977375031</right_val></_></_>
- <_>
- <!-- tree 197 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 2 2 -1.</_>
- <_>
- 15 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.0366461984813213e-003</threshold>
- <left_val>-0.1738830953836441</left_val>
- <right_val>0.0198664106428623</right_val></_></_>
- <_>
- <!-- tree 198 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 2 2 -1.</_>
- <_>
- 3 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.9747680313885212e-003</threshold>
- <left_val>0.0331093408167362</left_val>
- <right_val>-0.2326231002807617</right_val></_></_>
- <_>
- <!-- tree 199 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 1 8 -1.</_>
- <_>
- 8 2 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0342620797455311</threshold>
- <left_val>-0.2156396061182022</left_val>
- <right_val>0.0115074804052711</right_val></_></_></trees>
- <stage_threshold>-1.2872380018234253</stage_threshold>
- <parent>11</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 13 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 12 8 -1.</_>
- <_>
- 3 4 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0882937535643578</threshold>
- <left_val>-0.2489404976367950</left_val>
- <right_val>0.2646526992321014</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 9 2 -1.</_>
- <_>
- 11 0 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0165174994617701</threshold>
- <left_val>0.1308764964342117</left_val>
- <right_val>-0.0483017005026340</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 9 6 -1.</_>
- <_>
- 4 8 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2429573982954025</threshold>
- <left_val>2.4608039529994130e-004</left_val>
- <right_val>-1.2118969726562500e+003</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 9 2 -1.</_>
- <_>
- 11 0 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0178556293249130</threshold>
- <left_val>-0.0218822807073593</left_val>
- <right_val>0.0629134327173233</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 9 2 -1.</_>
- <_>
- 4 0 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0112768700346351</threshold>
- <left_val>0.1816959977149963</left_val>
- <right_val>-0.2307166010141373</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 8 4 -1.</_>
- <_>
- 7 2 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0232120305299759</threshold>
- <left_val>0.1088896989822388</left_val>
- <right_val>-0.2810558974742889</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 3 3 -1.</_>
- <_>
- 6 7 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0334626212716103</threshold>
- <left_val>0.4264681041240692</left_val>
- <right_val>-0.1128323003649712</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 14 6 -1.</_>
- <_>
- 9 0 7 3 2.</_>
- <_>
- 2 3 7 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0309944301843643</threshold>
- <left_val>0.0578055083751678</left_val>
- <right_val>-0.3916975855827332</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 4 14 -1.</_>
- <_>
- 0 7 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1508056074380875</threshold>
- <left_val>-0.4463602006435394</left_val>
- <right_val>0.0689948424696922</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 18 10 -1.</_>
- <_>
- 9 5 9 5 2.</_>
- <_>
- 0 10 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1966764926910400</threshold>
- <left_val>0.0504155196249485</left_val>
- <right_val>-0.5162950158119202</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 1 3 -1.</_>
- <_>
- 5 8 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2066079545766115e-003</threshold>
- <left_val>-0.0707260966300964</left_val>
- <right_val>0.2782576084136963</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 12 4 -1.</_>
- <_>
- 3 7 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1075704991817474</threshold>
- <left_val>0.2446808069944382</left_val>
- <right_val>-0.0725844725966454</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 14 6 -1.</_>
- <_>
- 2 7 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0601789988577366</threshold>
- <left_val>-0.0937738493084908</left_val>
- <right_val>0.2090716958045960</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 6 6 -1.</_>
- <_>
- 11 5 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0721643567085266</threshold>
- <left_val>0.0246197003871202</left_val>
- <right_val>-0.3774946033954620</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 2 2 -1.</_>
- <_>
- 6 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.8397889798507094e-003</threshold>
- <left_val>-0.3659551143646240</left_val>
- <right_val>0.0356928594410419</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.3323359675705433e-003</threshold>
- <left_val>0.0274193398654461</left_val>
- <right_val>-0.2183060944080353</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 9 15 -1.</_>
- <_>
- 3 5 3 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2554239928722382</threshold>
- <left_val>0.0424718111753464</left_val>
- <right_val>-0.4045555889606476</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 5 3 -1.</_>
- <_>
- 10 9 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3238910883665085e-003</threshold>
- <left_val>-0.0382980890572071</left_val>
- <right_val>0.1997260004281998</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 3 4 -1.</_>
- <_>
- 6 1 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6837169900536537e-003</threshold>
- <left_val>0.0516507886350155</left_val>
- <right_val>-0.3148872852325440</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 8 6 -1.</_>
- <_>
- 7 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1580109000205994</threshold>
- <left_val>7.9839415848255157e-003</left_val>
- <right_val>-0.6459161043167114</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 8 5 -1.</_>
- <_>
- 8 9 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1195484027266502</threshold>
- <left_val>0.0303646996617317</left_val>
- <right_val>-0.4835926890373230</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 2 1 -1.</_>
- <_>
- 16 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1479396612849087e-005</threshold>
- <left_val>0.0919145867228508</left_val>
- <right_val>-0.1064620986580849</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.5267980527132750e-003</threshold>
- <left_val>0.0452573001384735</left_val>
- <right_val>-0.3438262939453125</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 6 8 -1.</_>
- <_>
- 11 2 2 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1789875030517578</threshold>
- <left_val>0.0144175197929144</left_val>
- <right_val>-0.5026544928550720</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 1 6 -1.</_>
- <_>
- 9 8 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0395551882684231</threshold>
- <left_val>-0.3588069081306458</left_val>
- <right_val>0.0342500805854797</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 18 2 -1.</_>
- <_>
- 0 11 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6789730228483677e-003</threshold>
- <left_val>-0.1114436984062195</left_val>
- <right_val>0.1351636946201325</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 8 5 3 -1.</_>
- <_>
- 3 9 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0105727799236774</threshold>
- <left_val>-0.0437579788267612</left_val>
- <right_val>0.3159857988357544</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 16 4 -1.</_>
- <_>
- 5 1 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0357067584991455</threshold>
- <left_val>-0.1592438071966171</left_val>
- <right_val>0.0833674669265747</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 2 -1.</_>
- <_>
- 9 0 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0151766203343868</threshold>
- <left_val>-0.1096644029021263</left_val>
- <right_val>0.1435447037220001</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 4 4 7 -1.</_>
- <_>
- 15 5 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0519099794328213</threshold>
- <left_val>0.1371318995952606</left_val>
- <right_val>-0.0289334002882242</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 7 4 -1.</_>
- <_>
- 3 5 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0249809008091688</threshold>
- <left_val>0.1281910985708237</left_val>
- <right_val>-0.1016400977969170</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 6 2 -1.</_>
- <_>
- 8 3 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1697930321097374e-003</threshold>
- <left_val>0.0397001393139362</left_val>
- <right_val>-0.1693688929080963</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 10 2 -1.</_>
- <_>
- 4 2 5 1 2.</_>
- <_>
- 9 3 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7851498238742352e-003</threshold>
- <left_val>-0.2804721891880035</left_val>
- <right_val>0.0424798987805843</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 2 2 -1.</_>
- <_>
- 16 11 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0114343902096152</threshold>
- <left_val>-0.3007369041442871</left_val>
- <right_val>0.0279115606099367</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 14 3 -1.</_>
- <_>
- 2 13 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0310384295880795</threshold>
- <left_val>-0.0384156294167042</left_val>
- <right_val>0.3191024065017700</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 2 2 -1.</_>
- <_>
- 16 12 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9539990462362766e-003</threshold>
- <left_val>0.0490082204341888</left_val>
- <right_val>-0.2434009015560150</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 2 2 -1.</_>
- <_>
- 1 12 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5783209819346666e-003</threshold>
- <left_val>0.0490619093179703</left_val>
- <right_val>-0.2172895967960358</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 7 6 6 -1.</_>
- <_>
- 12 9 2 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1410228013992310</threshold>
- <left_val>0.1238534972071648</left_val>
- <right_val>-0.0194560904055834</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 6 6 -1.</_>
- <_>
- 4 9 2 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0257594697177410</threshold>
- <left_val>-0.0577305890619755</left_val>
- <right_val>0.2235246002674103</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 1 9 -1.</_>
- <_>
- 8 8 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1394301950931549</threshold>
- <left_val>-0.4331279098987579</left_val>
- <right_val>5.1124738529324532e-003</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 18 4 -1.</_>
- <_>
- 0 5 9 2 2.</_>
- <_>
- 9 7 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0970044583082199</threshold>
- <left_val>-0.5865799188613892</left_val>
- <right_val>0.0171818397939205</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 1 3 -1.</_>
- <_>
- 16 4 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.5027927309274673e-003</threshold>
- <left_val>-0.0287947598844767</left_val>
- <right_val>0.2973892986774445</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 6 4 -1.</_>
- <_>
- 4 5 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0262469295412302</threshold>
- <left_val>-0.2123412042856216</left_val>
- <right_val>0.0494075715541840</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 6 2 -1.</_>
- <_>
- 13 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0285178907215595</threshold>
- <left_val>-0.4101974964141846</left_val>
- <right_val>0.0107241403311491</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 3 1 -1.</_>
- <_>
- 2 4 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.9501066356897354e-003</threshold>
- <left_val>0.2974866032600403</left_val>
- <right_val>-0.0357652083039284</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 18 4 -1.</_>
- <_>
- 9 1 9 2 2.</_>
- <_>
- 0 3 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0294742994010448</threshold>
- <left_val>-0.2744587957859039</left_val>
- <right_val>0.0378581508994102</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 6 2 -1.</_>
- <_>
- 3 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0197004098445177</threshold>
- <left_val>-0.3731251060962677</left_val>
- <right_val>0.0246061906218529</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 1 9 -1.</_>
- <_>
- 8 8 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0202972404658794</threshold>
- <left_val>-0.0114561002701521</left_val>
- <right_val>0.1300147026777268</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 9 1 -1.</_>
- <_>
- 10 8 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0733654201030731</threshold>
- <left_val>-0.3339675962924957</left_val>
- <right_val>0.0288594998419285</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 16 2 -1.</_>
- <_>
- 1 10 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3272351399064064e-003</threshold>
- <left_val>-0.0767316669225693</left_val>
- <right_val>0.1508390009403229</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 16 8 -1.</_>
- <_>
- 1 9 16 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1366160064935684</threshold>
- <left_val>0.1624336987733841</left_val>
- <right_val>-0.0956437736749649</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 2 -1.</_>
- <_>
- 15 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0107580302283168</threshold>
- <left_val>-0.2373815029859543</left_val>
- <right_val>0.0315589606761932</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 11 2 -1.</_>
- <_>
- 3 1 11 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0666851326823235</threshold>
- <left_val>0.0154138403013349</left_val>
- <right_val>-0.6251338124275208</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 9 6 -1.</_>
- <_>
- 8 5 3 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3032520115375519</threshold>
- <left_val>-0.0291348807513714</left_val>
- <right_val>0.3611342906951904</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 2 4 -1.</_>
- <_>
- 5 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0158231593668461</threshold>
- <left_val>-0.4098587930202484</left_val>
- <right_val>0.0231184493750334</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 3 3 -1.</_>
- <_>
- 14 3 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0253745596855879</threshold>
- <left_val>-0.0204721000045538</left_val>
- <right_val>0.2705202996730804</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 3 -1.</_>
- <_>
- 4 3 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0163469407707453</threshold>
- <left_val>-0.0353308208286762</left_val>
- <right_val>0.2803629040718079</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 4 2 -1.</_>
- <_>
- 10 3 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4061360638588667e-003</threshold>
- <left_val>-0.1116679012775421</left_val>
- <right_val>0.0920868366956711</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 12 6 -1.</_>
- <_>
- 9 1 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2318589985370636</threshold>
- <left_val>-0.0533741116523743</left_val>
- <right_val>0.2265139967203140</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 4 6 -1.</_>
- <_>
- 9 5 2 3 2.</_>
- <_>
- 7 8 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7358150631189346e-003</threshold>
- <left_val>0.0622405707836151</left_val>
- <right_val>-0.1609788984060288</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 12 6 -1.</_>
- <_>
- 3 6 6 3 2.</_>
- <_>
- 9 9 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0479816384613514</threshold>
- <left_val>0.0325308404862881</left_val>
- <right_val>-0.2702659070491791</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 4 6 -1.</_>
- <_>
- 7 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0325526595115662</threshold>
- <left_val>-0.0267996098846197</left_val>
- <right_val>0.3613330125808716</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 2 2 -1.</_>
- <_>
- 8 6 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.2017602138221264e-003</threshold>
- <left_val>-0.2269695997238159</left_val>
- <right_val>0.0536908693611622</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 14 2 -1.</_>
- <_>
- 2 13 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0520097799599171</threshold>
- <left_val>0.5167415738105774</left_val>
- <right_val>-0.0205913390964270</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 6 7 -1.</_>
- <_>
- 4 8 2 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0841891206800938e-003</threshold>
- <left_val>0.0838762521743774</left_val>
- <right_val>-0.1215421035885811</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 2 -1.</_>
- <_>
- 15 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.3035072050988674e-003</threshold>
- <left_val>0.0314468108117580</left_val>
- <right_val>-0.1233906000852585</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 3 3 -1.</_>
- <_>
- 4 7 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5940061099827290e-003</threshold>
- <left_val>-0.0627442970871925</left_val>
- <right_val>0.1418178975582123</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 2 -1.</_>
- <_>
- 9 0 6 1 2.</_>
- <_>
- 3 1 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9754808209836483e-003</threshold>
- <left_val>0.0279876105487347</left_val>
- <right_val>-0.3049218058586121</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 4 2 -1.</_>
- <_>
- 1 13 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3900879789143801e-003</threshold>
- <left_val>-0.2176389992237091</left_val>
- <right_val>0.0362194888293743</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 6 3 5 -1.</_>
- <_>
- 14 7 1 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.5793427899479866e-003</threshold>
- <left_val>-0.0433258786797524</left_val>
- <right_val>0.1642747074365616</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 6 3 -1.</_>
- <_>
- 9 6 2 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0550329610705376</threshold>
- <left_val>-0.2693688869476318</left_val>
- <right_val>0.0320559591054916</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 16 6 -1.</_>
- <_>
- 1 7 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0955175980925560</threshold>
- <left_val>0.2161073982715607</left_val>
- <right_val>-0.0582397803664207</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 2 2 -1.</_>
- <_>
- 8 10 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8512140791863203e-004</threshold>
- <left_val>0.0752959027886391</left_val>
- <right_val>-0.1217793971300125</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 8 2 -1.</_>
- <_>
- 12 9 4 1 2.</_>
- <_>
- 8 10 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4586488083004951e-003</threshold>
- <left_val>-0.0455720499157906</left_val>
- <right_val>0.2856633067131043</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 12 15 -1.</_>
- <_>
- 3 0 6 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1383175998926163</threshold>
- <left_val>-0.0303479190915823</left_val>
- <right_val>0.2803717851638794</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 4 2 -1.</_>
- <_>
- 10 3 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5889035835862160e-003</threshold>
- <left_val>0.2595542967319489</left_val>
- <right_val>-0.0248014405369759</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 4 2 -1.</_>
- <_>
- 6 3 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6830460410565138e-003</threshold>
- <left_val>-0.1356775015592575</left_val>
- <right_val>0.0750199928879738</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 9 9 -1.</_>
- <_>
- 9 0 3 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0561147592961788</threshold>
- <left_val>-0.1331470012664795</left_val>
- <right_val>0.0675303786993027</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 8 2 -1.</_>
- <_>
- 2 2 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4768209122121334e-003</threshold>
- <left_val>-0.0428345091640949</left_val>
- <right_val>0.2283774018287659</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 2 1 -1.</_>
- <_>
- 15 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.5396071188151836e-003</threshold>
- <left_val>0.0175717808306217</left_val>
- <right_val>-0.4712331891059876</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 2 8 -1.</_>
- <_>
- 8 5 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0322765894234180</threshold>
- <left_val>0.1667342931032181</left_val>
- <right_val>-0.0572832897305489</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 2 2 -1.</_>
- <_>
- 16 3 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.1356316804885864e-003</threshold>
- <left_val>0.0272685103118420</left_val>
- <right_val>-0.1111190989613533</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 2 2 -1.</_>
- <_>
- 2 3 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0104770399630070</threshold>
- <left_val>0.0260039307177067</left_val>
- <right_val>-0.3676153123378754</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 4 3 -1.</_>
- <_>
- 13 3 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0309956707060337</threshold>
- <left_val>-0.0286454297602177</left_val>
- <right_val>0.3315067887306213</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 8 2 -1.</_>
- <_>
- 5 3 4 1 2.</_>
- <_>
- 9 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0666121318936348e-003</threshold>
- <left_val>-0.4054433107376099</left_val>
- <right_val>0.0251925494521856</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 5 3 -1.</_>
- <_>
- 12 2 5 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.6987180355936289e-003</threshold>
- <left_val>0.0631407573819160</left_val>
- <right_val>-0.0327784791588783</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 3 5 -1.</_>
- <_>
- 6 2 1 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0306662693619728</threshold>
- <left_val>0.3254658877849579</left_val>
- <right_val>-0.0277023594826460</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 9 6 -1.</_>
- <_>
- 7 3 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0788802430033684</threshold>
- <left_val>0.0153381098061800</left_val>
- <right_val>-0.2206629961729050</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 9 6 -1.</_>
- <_>
- 2 3 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0326623804867268</threshold>
- <left_val>-0.2611115872859955</left_val>
- <right_val>0.0396143011748791</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 10 8 -1.</_>
- <_>
- 4 4 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2029986977577210</threshold>
- <left_val>0.4685623049736023</left_val>
- <right_val>-0.0211902894079685</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 4 2 -1.</_>
- <_>
- 7 9 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3156479690223932e-003</threshold>
- <left_val>0.0511390715837479</left_val>
- <right_val>-0.1778022050857544</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 6 8 -1.</_>
- <_>
- 11 2 2 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2458626925945282</threshold>
- <left_val>2.0771999843418598e-003</left_val>
- <right_val>-0.7230259180068970</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 4 3 -1.</_>
- <_>
- 4 7 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.6061620861291885e-003</threshold>
- <left_val>-0.0438566096127033</left_val>
- <right_val>0.2025624066591263</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 6 8 -1.</_>
- <_>
- 11 2 2 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0928886383771896</threshold>
- <left_val>0.0257623400539160</left_val>
- <right_val>-0.0818297490477562</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 6 4 -1.</_>
- <_>
- 1 11 3 2 2.</_>
- <_>
- 4 13 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8360089743509889e-003</threshold>
- <left_val>-0.1065806970000267</left_val>
- <right_val>0.0778321474790573</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 6 8 -1.</_>
- <_>
- 11 2 2 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0101813804358244</threshold>
- <left_val>-0.0704501271247864</left_val>
- <right_val>0.0211151205003262</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 8 6 -1.</_>
- <_>
- 7 2 8 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2291380017995834</threshold>
- <left_val>0.0105785802006722</left_val>
- <right_val>-0.8155276179313660</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 4 -1.</_>
- <_>
- 15 1 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0212600603699684</threshold>
- <left_val>-0.2375449985265732</left_val>
- <right_val>0.0127379801124334</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 3 4 -1.</_>
- <_>
- 4 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9725849851965904e-003</threshold>
- <left_val>0.0572128705680370</left_val>
- <right_val>-0.1377062946557999</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 3 1 -1.</_>
- <_>
- 14 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6411700168391690e-005</threshold>
- <left_val>0.0502910390496254</left_val>
- <right_val>-0.0575029999017715</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 11 8 -1.</_>
- <_>
- 0 11 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3620679974555969</threshold>
- <left_val>-0.7733700871467590</left_val>
- <right_val>0.0101746097207069</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 17 4 -1.</_>
- <_>
- 1 11 17 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1428683996200562</threshold>
- <left_val>0.3628562092781067</left_val>
- <right_val>-0.0296504106372595</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 16 6 -1.</_>
- <_>
- 1 8 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0601753890514374</threshold>
- <left_val>0.1093005985021591</left_val>
- <right_val>-0.0907286480069160</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 3 1 -1.</_>
- <_>
- 14 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7640471166232601e-005</threshold>
- <left_val>-0.0555778108537197</left_val>
- <right_val>0.0779178664088249</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 3 1 -1.</_>
- <_>
- 3 0 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4806099797133356e-005</threshold>
- <left_val>0.0850946307182312</left_val>
- <right_val>-0.0902227982878685</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 9 6 -1.</_>
- <_>
- 5 4 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2555618137121201e-003</threshold>
- <left_val>0.1677850037813187</left_val>
- <right_val>-0.0391292311251163</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 3 2 -1.</_>
- <_>
- 7 2 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4975580163300037e-003</threshold>
- <left_val>-0.2542758882045746</left_val>
- <right_val>0.0310085993260145</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 11 12 4 -1.</_>
- <_>
- 6 13 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1691354960203171</threshold>
- <left_val>7.6711731962859631e-003</left_val>
- <right_val>-0.4777897894382477</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 16 2 -1.</_>
- <_>
- 0 0 8 1 2.</_>
- <_>
- 8 1 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0642458051443100e-003</threshold>
- <left_val>0.0320016816258430</left_val>
- <right_val>-0.2201628983020783</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 2 2 -1.</_>
- <_>
- 17 11 1 1 2.</_>
- <_>
- 16 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8364861615700647e-005</threshold>
- <left_val>-0.0927060320973396</left_val>
- <right_val>0.0926686972379684</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 3 3 -1.</_>
- <_>
- 4 2 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0242639407515526</threshold>
- <left_val>0.3061330020427704</left_val>
- <right_val>-0.0236746892333031</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 6 2 -1.</_>
- <_>
- 14 2 2 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1245393976569176</threshold>
- <left_val>-1.1398720089346170e-003</left_val>
- <right_val>0.6500102877616882</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 2 6 -1.</_>
- <_>
- 4 2 2 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0308606103062630</threshold>
- <left_val>-0.2340030968189240</left_val>
- <right_val>0.0343167595565319</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 8 3 6 -1.</_>
- <_>
- 16 10 1 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0127543099224567</threshold>
- <left_val>-0.0391327291727066</left_val>
- <right_val>0.0949018001556396</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 3 6 -1.</_>
- <_>
- 1 10 1 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0376567393541336</threshold>
- <left_val>0.0261963903903961</left_val>
- <right_val>-0.3091090917587280</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 4 3 3 -1.</_>
- <_>
- 13 5 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0312218796461821</threshold>
- <left_val>-0.2861835062503815</left_val>
- <right_val>5.0922371447086334e-003</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 3 3 -1.</_>
- <_>
- 5 5 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0134689500555396</threshold>
- <left_val>0.2125725001096726</left_val>
- <right_val>-0.0359573401510715</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 9 3 6 -1.</_>
- <_>
- 12 9 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5858170166611671e-003</threshold>
- <left_val>-0.1451039016246796</left_val>
- <right_val>0.0284003801643848</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 9 2 -1.</_>
- <_>
- 12 3 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0325641296803951</threshold>
- <left_val>0.2121015936136246</left_val>
- <right_val>-0.0337405614554882</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 4 1 8 -1.</_>
- <_>
- 13 6 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0478576682507992</threshold>
- <left_val>-0.2893986105918884</left_val>
- <right_val>8.2710552960634232e-003</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 8 1 -1.</_>
- <_>
- 5 6 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0408857800066471</threshold>
- <left_val>0.0154061401262879</left_val>
- <right_val>-0.5273528099060059</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 6 -1.</_>
- <_>
- 8 0 2 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0111554395407438</threshold>
- <left_val>0.2048159986734390</left_val>
- <right_val>-0.0385781601071358</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 10 1 -1.</_>
- <_>
- 8 3 5 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0436525382101536</threshold>
- <left_val>-0.5605732202529907</left_val>
- <right_val>0.0155440401285887</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 3 5 -1.</_>
- <_>
- 9 8 1 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0237427093088627</threshold>
- <left_val>-0.7845674157142639</left_val>
- <right_val>3.1750639900565147e-003</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 8 2 -1.</_>
- <_>
- 9 4 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1069891974329948</threshold>
- <left_val>-0.0261800494045019</left_val>
- <right_val>0.2701598107814789</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 3 13 -1.</_>
- <_>
- 12 2 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0378550700843334</threshold>
- <left_val>6.5697189420461655e-003</left_val>
- <right_val>-0.4029164910316467</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 3 13 -1.</_>
- <_>
- 5 2 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0300023406744003</threshold>
- <left_val>-0.3640936017036438</left_val>
- <right_val>0.0191395506262779</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 7 1 6 -1.</_>
- <_>
- 17 9 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0177240408957005</threshold>
- <left_val>0.0121768601238728</left_val>
- <right_val>-0.3674328923225403</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 1 6 -1.</_>
- <_>
- 0 9 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9289022833108902e-003</threshold>
- <left_val>-0.2345584928989410</left_val>
- <right_val>0.0312652811408043</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 8 4 -1.</_>
- <_>
- 12 7 4 2 2.</_>
- <_>
- 8 9 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0411901511251926</threshold>
- <left_val>0.1780917942523956</left_val>
- <right_val>-0.0286607407033443</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 8 4 -1.</_>
- <_>
- 2 7 4 2 2.</_>
- <_>
- 6 9 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0104142995551229</threshold>
- <left_val>-0.0461356192827225</left_val>
- <right_val>0.2206518948078156</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 12 4 -1.</_>
- <_>
- 9 5 6 2 2.</_>
- <_>
- 3 7 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0623511299490929</threshold>
- <left_val>-0.6013355255126953</left_val>
- <right_val>0.0119700403884053</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 12 3 3 -1.</_>
- <_>
- 8 13 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0107688298448920</threshold>
- <left_val>-0.0378835014998913</left_val>
- <right_val>0.1919409930706024</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 12 2 3 -1.</_>
- <_>
- 8 13 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5350959729403257e-003</threshold>
- <left_val>0.1343532949686050</left_val>
- <right_val>-0.0599097199738026</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 6 3 -1.</_>
- <_>
- 5 1 6 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9390122294425964e-003</threshold>
- <left_val>-0.2264474928379059</left_val>
- <right_val>0.0331381000578403</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 2 -1.</_>
- <_>
- 7 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9866439290344715e-003</threshold>
- <left_val>0.0395365394651890</left_val>
- <right_val>-0.1798572987318039</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 4 1 -1.</_>
- <_>
- 5 4 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1302180003840476e-005</threshold>
- <left_val>-0.1217418983578682</left_val>
- <right_val>0.0578663200139999</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 9 1 -1.</_>
- <_>
- 9 0 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0141327697783709</threshold>
- <left_val>-0.0697263032197952</left_val>
- <right_val>0.1077838987112045</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 4 2 -1.</_>
- <_>
- 6 8 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.7037831544876099e-003</threshold>
- <left_val>0.1353736072778702</left_val>
- <right_val>-0.0617493800818920</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 2 4 -1.</_>
- <_>
- 12 7 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0396597199141979</threshold>
- <left_val>0.2866846919059753</left_val>
- <right_val>-4.0120128542184830e-003</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 4 2 -1.</_>
- <_>
- 6 7 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0165502801537514</threshold>
- <left_val>-0.0549145303666592</left_val>
- <right_val>0.1501951068639755</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 12 4 -1.</_>
- <_>
- 7 1 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0182081703096628</threshold>
- <left_val>-0.0716051831841469</left_val>
- <right_val>0.0196856409311295</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 12 4 -1.</_>
- <_>
- 5 1 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0295192506164312</threshold>
- <left_val>0.2099193036556244</left_val>
- <right_val>-0.0432162992656231</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 12 3 -1.</_>
- <_>
- 9 1 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0212850607931614</threshold>
- <left_val>0.1869163960218430</left_val>
- <right_val>-0.0237888600677252</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 11 8 -1.</_>
- <_>
- 3 3 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0378306210041046</threshold>
- <left_val>-0.1275478005409241</left_val>
- <right_val>0.0723592489957809</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 15 4 -1.</_>
- <_>
- 2 8 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0116437599062920</threshold>
- <left_val>-0.0464428104460239</left_val>
- <right_val>0.1379096060991287</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 11 2 2 -1.</_>
- <_>
- 5 11 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.9127039276063442e-003</threshold>
- <left_val>-0.1696089953184128</left_val>
- <right_val>0.0449999384582043</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 10 8 5 -1.</_>
- <_>
- 8 10 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0576444491744041</threshold>
- <left_val>-0.2977206110954285</left_val>
- <right_val>8.5106249898672104e-003</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 10 8 5 -1.</_>
- <_>
- 6 10 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0539292395114899</threshold>
- <left_val>-0.3482970893383026</left_val>
- <right_val>0.0207772795110941</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 17 2 -1.</_>
- <_>
- 1 12 17 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7844387851655483e-004</threshold>
- <left_val>-0.1067842990159988</left_val>
- <right_val>0.0631283298134804</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 17 4 -1.</_>
- <_>
- 0 10 17 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0217015091329813</threshold>
- <left_val>-0.0430709086358547</left_val>
- <right_val>0.2051513940095902</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 18 2 -1.</_>
- <_>
- 9 6 9 1 2.</_>
- <_>
- 0 7 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0142901800572872</threshold>
- <left_val>0.0401067808270454</left_val>
- <right_val>-0.1963661015033722</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 3 6 -1.</_>
- <_>
- 5 3 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0479065105319023</threshold>
- <left_val>0.0266829095780849</left_val>
- <right_val>-0.2608106136322022</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 13 6 2 -1.</_>
- <_>
- 11 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0207046903669834</threshold>
- <left_val>8.2300165668129921e-003</left_val>
- <right_val>-0.1717294007539749</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 13 6 2 -1.</_>
- <_>
- 5 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0228998996317387</threshold>
- <left_val>-0.3708100020885468</left_val>
- <right_val>0.0185417495667934</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 2 2 -1.</_>
- <_>
- 13 6 1 1 2.</_>
- <_>
- 12 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9879220053553581e-003</threshold>
- <left_val>0.1643680930137634</left_val>
- <right_val>-0.0217982996255159</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 2 2 -1.</_>
- <_>
- 4 6 1 1 2.</_>
- <_>
- 5 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4986838222248480e-005</threshold>
- <left_val>-0.0649014934897423</left_val>
- <right_val>0.1062330007553101</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 2 2 -1.</_>
- <_>
- 13 6 1 1 2.</_>
- <_>
- 12 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3559920480474830e-003</threshold>
- <left_val>-0.0245978496968746</left_val>
- <right_val>0.1436166018247604</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 2 2 -1.</_>
- <_>
- 4 6 1 1 2.</_>
- <_>
- 5 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6802290449268185e-005</threshold>
- <left_val>0.0772759467363358</left_val>
- <right_val>-0.0916534364223480</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 5 8 -1.</_>
- <_>
- 13 4 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0716202333569527</threshold>
- <left_val>-0.2455226033926010</left_val>
- <right_val>0.0295341201126575</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 6 3 -1.</_>
- <_>
- 10 8 2 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0243309102952480</threshold>
- <left_val>0.0413995198905468</left_val>
- <right_val>-0.1590318977832794</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 11 1 3 -1.</_>
- <_>
- 8 12 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0279465708881617</threshold>
- <left_val>2.2586109116673470e-003</left_val>
- <right_val>-0.6731820106506348</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 11 3 1 -1.</_>
- <_>
- 10 12 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.4360989443957806e-003</threshold>
- <left_val>0.1064805015921593</left_val>
- <right_val>-0.0644265785813332</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 6 2 -1.</_>
- <_>
- 10 1 3 1 2.</_>
- <_>
- 7 2 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7291368246078491e-003</threshold>
- <left_val>0.0197015404701233</left_val>
- <right_val>-0.2857697010040283</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 16 5 -1.</_>
- <_>
- 5 5 8 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0992026627063751</threshold>
- <left_val>-0.3520042896270752</left_val>
- <right_val>0.0168160591274500</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 6 1 -1.</_>
- <_>
- 14 6 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9718345552682877e-003</threshold>
- <left_val>0.0913507118821144</left_val>
- <right_val>-0.0237340200692415</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 6 1 -1.</_>
- <_>
- 2 6 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2134570647031069e-003</threshold>
- <left_val>-0.0494450889527798</left_val>
- <right_val>0.1423113048076630</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 4 2 1 -1.</_>
- <_>
- 15 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0166129795834422e-003</threshold>
- <left_val>0.0645815804600716</left_val>
- <right_val>-0.0191290695220232</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 2 1 -1.</_>
- <_>
- 2 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1253100284375250e-005</threshold>
- <left_val>0.0835471376776695</left_val>
- <right_val>-0.0906196907162666</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 2 -1.</_>
- <_>
- 8 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1647429782897234e-003</threshold>
- <left_val>-0.1799729019403458</left_val>
- <right_val>0.0400951690971851</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 10 -1.</_>
- <_>
- 0 5 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0643320977687836</threshold>
- <left_val>-0.3869268894195557</left_val>
- <right_val>0.0174406096339226</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 12 6 -1.</_>
- <_>
- 3 5 12 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1375796943902969</threshold>
- <left_val>0.2280858010053635</left_val>
- <right_val>-0.0328599512577057</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 4 3 -1.</_>
- <_>
- 5 1 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.3165339417755604e-003</threshold>
- <left_val>0.0429877601563931</left_val>
- <right_val>-0.1599061042070389</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 3 6 -1.</_>
- <_>
- 10 1 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0210752394050360</threshold>
- <left_val>0.0137607501819730</left_val>
- <right_val>-0.0974362194538116</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 8 8 -1.</_>
- <_>
- 4 0 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0470838211476803</threshold>
- <left_val>-0.0716910064220428</left_val>
- <right_val>0.1070054024457932</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 9 1 -1.</_>
- <_>
- 9 0 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9396019205451012e-003</threshold>
- <left_val>-0.0633967369794846</left_val>
- <right_val>0.0387225411832333</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 9 -1.</_>
- <_>
- 6 0 6 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5819712877273560</threshold>
- <left_val>0.0216003507375717</left_val>
- <right_val>-0.3787331879138947</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 11 9 4 -1.</_>
- <_>
- 5 12 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0160421207547188</threshold>
- <left_val>-0.0466817095875740</left_val>
- <right_val>0.1436420977115631</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 13 -1.</_>
- <_>
- 4 2 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0383162610232830</threshold>
- <left_val>-0.6240848898887634</left_val>
- <right_val>0.0108488202095032</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 6 2 -1.</_>
- <_>
- 10 3 3 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1245153993368149</threshold>
- <left_val>-9.1985529288649559e-003</left_val>
- <right_val>0.1117267012596130</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 2 6 -1.</_>
- <_>
- 8 3 2 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1228756979107857</threshold>
- <left_val>-0.0130921201780438</left_val>
- <right_val>0.5222136974334717</right_val></_></_>
- <_>
- <!-- tree 181 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 6 3 3 -1.</_>
- <_>
- 12 7 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.1833565384149551e-003</threshold>
- <left_val>-0.0758661031723022</left_val>
- <right_val>0.0255879797041416</right_val></_></_>
- <_>
- <!-- tree 182 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 3 3 -1.</_>
- <_>
- 6 7 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0168187208473682</threshold>
- <left_val>-0.0309611707925797</left_val>
- <right_val>0.2313760071992874</right_val></_></_>
- <_>
- <!-- tree 183 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 2 2 -1.</_>
- <_>
- 12 6 1 1 2.</_>
- <_>
- 11 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6163040173705667e-005</threshold>
- <left_val>-0.0593904405832291</left_val>
- <right_val>0.0742034986615181</right_val></_></_>
- <_>
- <!-- tree 184 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 11 -1.</_>
- <_>
- 9 0 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0548779107630253</threshold>
- <left_val>0.2598169147968292</left_val>
- <right_val>-0.0269930195063353</right_val></_></_>
- <_>
- <!-- tree 185 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 5 -1.</_>
- <_>
- 8 0 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6188119128346443e-003</threshold>
- <left_val>0.1337952017784119</left_val>
- <right_val>-0.0559991188347340</right_val></_></_>
- <_>
- <!-- tree 186 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 5 12 -1.</_>
- <_>
- 2 8 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2336242049932480</threshold>
- <left_val>0.3275535106658936</left_val>
- <right_val>-0.0214694291353226</right_val></_></_>
- <_>
- <!-- tree 187 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 18 10 -1.</_>
- <_>
- 9 5 9 5 2.</_>
- <_>
- 0 10 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1114932000637054</threshold>
- <left_val>-0.2446383982896805</left_val>
- <right_val>0.0362425111234188</right_val></_></_>
- <_>
- <!-- tree 188 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 8 4 -1.</_>
- <_>
- 0 10 4 2 2.</_>
- <_>
- 4 12 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0441570281982422</threshold>
- <left_val>0.4340217113494873</left_val>
- <right_val>-0.0166491009294987</right_val></_></_>
- <_>
- <!-- tree 189 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 1 3 -1.</_>
- <_>
- 9 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7168701459886506e-005</threshold>
- <left_val>0.0668948367238045</left_val>
- <right_val>-0.0507181882858276</right_val></_></_>
- <_>
- <!-- tree 190 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 11 2 2 -1.</_>
- <_>
- 2 11 1 1 2.</_>
- <_>
- 3 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3646868764190003e-005</threshold>
- <left_val>-0.0803783014416695</left_val>
- <right_val>0.0818097665905952</right_val></_></_>
- <_>
- <!-- tree 191 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 2 14 -1.</_>
- <_>
- 14 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1059508994221687</threshold>
- <left_val>5.0716297701001167e-003</left_val>
- <right_val>-0.6473715901374817</right_val></_></_>
- <_>
- <!-- tree 192 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 2 14 -1.</_>
- <_>
- 2 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0836684033274651</threshold>
- <left_val>8.6071500554680824e-003</left_val>
- <right_val>-0.6509302854537964</right_val></_></_>
- <_>
- <!-- tree 193 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 7 3 4 -1.</_>
- <_>
- 15 8 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.3153052255511284e-003</threshold>
- <left_val>-0.0472831390798092</left_val>
- <right_val>0.1902991980314255</right_val></_></_>
- <_>
- <!-- tree 194 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 6 -1.</_>
- <_>
- 0 9 9 3 2.</_>
- <_>
- 9 12 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0621465183794498</threshold>
- <left_val>-0.1851356029510498</left_val>
- <right_val>0.0434024408459663</right_val></_></_>
- <_>
- <!-- tree 195 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 7 3 5 -1.</_>
- <_>
- 12 8 1 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.5061040176078677e-003</threshold>
- <left_val>-0.0425548888742924</left_val>
- <right_val>0.0472707785665989</right_val></_></_>
- <_>
- <!-- tree 196 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 5 3 -1.</_>
- <_>
- 6 8 5 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0126304496079683</threshold>
- <left_val>0.1005629971623421</left_val>
- <right_val>-0.0700350031256676</right_val></_></_>
- <_>
- <!-- tree 197 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 2 -1.</_>
- <_>
- 16 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.2226561605930328e-003</threshold>
- <left_val>-0.1351246982812882</left_val>
- <right_val>0.0165191907435656</right_val></_></_>
- <_>
- <!-- tree 198 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 4 5 -1.</_>
- <_>
- 8 8 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0398441106081009</threshold>
- <left_val>6.1076539568603039e-003</left_val>
- <right_val>-1.0002349615097046</right_val></_></_>
- <_>
- <!-- tree 199 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 10 12 -1.</_>
- <_>
- 8 5 10 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5386329293251038</threshold>
- <left_val>4.2299588676542044e-004</left_val>
- <right_val>-0.9881020188331604</right_val></_></_>
- <_>
- <!-- tree 200 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 2 3 -1.</_>
- <_>
- 2 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0243477690964937</threshold>
- <left_val>-0.9888607263565064</left_val>
- <right_val>4.6373298391699791e-003</right_val></_></_>
- <_>
- <!-- tree 201 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 5 1 3 -1.</_>
- <_>
- 16 6 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.4827940873801708e-003</threshold>
- <left_val>-0.0541374906897545</left_val>
- <right_val>0.1380057930946350</right_val></_></_>
- <_>
- <!-- tree 202 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 15 4 -1.</_>
- <_>
- 5 0 5 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0796409398317337</threshold>
- <left_val>-0.0579614713788033</left_val>
- <right_val>0.1078020036220551</right_val></_></_>
- <_>
- <!-- tree 203 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 6 5 -1.</_>
- <_>
- 12 0 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5154298208653927e-003</threshold>
- <left_val>-0.0951096937060356</left_val>
- <right_val>0.0761779919266701</right_val></_></_>
- <_>
- <!-- tree 204 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 5 -1.</_>
- <_>
- 3 0 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0639263466000557</threshold>
- <left_val>0.0221496708691120</left_val>
- <right_val>-0.3681097030639648</right_val></_></_></trees>
- <stage_threshold>-1.2998509407043457</stage_threshold>
- <parent>12</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 14 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 2 4 -1.</_>
- <_>
- 7 7 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0227022804319859</threshold>
- <left_val>0.3458436131477356</left_val>
- <right_val>-0.1496108025312424</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 10 12 -1.</_>
- <_>
- 11 3 5 6 2.</_>
- <_>
- 6 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0113259796053171</threshold>
- <left_val>0.0946362167596817</left_val>
- <right_val>-0.1482031047344208</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 6 1 -1.</_>
- <_>
- 5 0 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0080899810418487e-003</threshold>
- <left_val>0.1488129943609238</left_val>
- <right_val>-0.2323223948478699</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 16 8 -1.</_>
- <_>
- 10 4 8 4 2.</_>
- <_>
- 2 8 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1050098985433579</threshold>
- <left_val>-0.2153766006231308</left_val>
- <right_val>0.0894507020711899</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 4 4 -1.</_>
- <_>
- 1 6 2 2 2.</_>
- <_>
- 3 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0126776201650500</threshold>
- <left_val>0.2758413851261139</left_val>
- <right_val>-0.1148819997906685</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 4 2 -1.</_>
- <_>
- 14 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.9704289995133877e-003</threshold>
- <left_val>0.0440389215946198</left_val>
- <right_val>-0.1627631038427353</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 2 4 -1.</_>
- <_>
- 4 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.1556040309369564e-003</threshold>
- <left_val>0.0742129236459732</left_val>
- <right_val>-0.3247778117656708</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 1 3 -1.</_>
- <_>
- 12 9 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2180028073489666e-003</threshold>
- <left_val>0.4252533912658691</left_val>
- <right_val>-0.0276413895189762</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 1 3 -1.</_>
- <_>
- 5 9 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9266420751810074e-003</threshold>
- <left_val>-0.0529128387570381</left_val>
- <right_val>0.3920814096927643</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 4 4 -1.</_>
- <_>
- 10 1 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9688094556331635e-003</threshold>
- <left_val>0.0333337001502514</left_val>
- <right_val>-0.4196723997592926</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 1 3 -1.</_>
- <_>
- 5 8 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5101311989128590e-003</threshold>
- <left_val>-0.0477215312421322</left_val>
- <right_val>0.4440034925937653</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 2 -1.</_>
- <_>
- 3 1 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2346827946603298e-003</threshold>
- <left_val>-0.4201810956001282</left_val>
- <right_val>0.0553282685577869</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 4 4 -1.</_>
- <_>
- 4 1 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4523041471838951e-003</threshold>
- <left_val>0.0427102707326412</left_val>
- <right_val>-0.4007393121719360</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 10 12 -1.</_>
- <_>
- 11 3 5 6 2.</_>
- <_>
- 6 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1354739069938660</threshold>
- <left_val>0.0132751995697618</left_val>
- <right_val>-0.4189395010471344</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 10 12 -1.</_>
- <_>
- 2 3 5 6 2.</_>
- <_>
- 7 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0285219997167587</threshold>
- <left_val>0.0712370425462723</left_val>
- <right_val>-0.2356449067592621</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 9 -1.</_>
- <_>
- 9 0 1 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0678908079862595</threshold>
- <left_val>-0.6082717180252075</left_val>
- <right_val>2.7981699531665072e-005</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 1 -1.</_>
- <_>
- 1 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7107769710710272e-005</threshold>
- <left_val>0.1002285033464432</left_val>
- <right_val>-0.1364476978778839</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 6 14 -1.</_>
- <_>
- 12 8 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2596256136894226</threshold>
- <left_val>-0.1378504037857056</left_val>
- <right_val>0.0266530998051167</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 6 14 -1.</_>
- <_>
- 0 8 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1188557967543602</threshold>
- <left_val>0.0274891909211874</left_val>
- <right_val>-0.5429527163505554</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 9 -1.</_>
- <_>
- 9 0 1 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0568522512912750</threshold>
- <left_val>-0.0112552195787430</left_val>
- <right_val>0.3833953142166138</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 9 2 -1.</_>
- <_>
- 9 0 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0415694713592529</threshold>
- <left_val>-0.0417712591588497</left_val>
- <right_val>0.3420456945896149</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 14 3 -1.</_>
- <_>
- 2 13 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0441399216651917</threshold>
- <left_val>-0.0225493591278791</left_val>
- <right_val>0.4669098854064941</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 8 -1.</_>
- <_>
- 0 0 9 4 2.</_>
- <_>
- 9 4 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1063582971692085</threshold>
- <left_val>0.0297107696533203</left_val>
- <right_val>-0.4509320855140686</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 5 6 -1.</_>
- <_>
- 11 4 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2869287580251694e-003</threshold>
- <left_val>-0.1222324967384338</left_val>
- <right_val>0.0532477386295795</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 5 6 -1.</_>
- <_>
- 2 4 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0367316715419292</threshold>
- <left_val>0.0420367904007435</left_val>
- <right_val>-0.4483470916748047</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 10 8 5 -1.</_>
- <_>
- 8 10 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0577655285596848</threshold>
- <left_val>-0.5459136962890625</left_val>
- <right_val>7.4861990287899971e-003</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 10 6 -1.</_>
- <_>
- 9 9 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1748784929513931</threshold>
- <left_val>0.0281722098588943</left_val>
- <right_val>-0.4324407875537872</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5779709176276810e-005</threshold>
- <left_val>0.0849614813923836</left_val>
- <right_val>-0.0936162620782852</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 6 4 -1.</_>
- <_>
- 0 11 3 2 2.</_>
- <_>
- 3 13 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4103060645284131e-005</threshold>
- <left_val>-0.1574534028768539</left_val>
- <right_val>0.0785599797964096</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 14 2 1 -1.</_>
- <_>
- 14 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5306469760835171e-003</threshold>
- <left_val>-0.1860491931438446</left_val>
- <right_val>0.0132554396986961</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 14 2 1 -1.</_>
- <_>
- 3 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5649809686001390e-005</threshold>
- <left_val>0.1080086007714272</left_val>
- <right_val>-0.1149718016386032</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 18 8 -1.</_>
- <_>
- 0 7 18 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.5427448749542236</threshold>
- <left_val>-0.6514676809310913</left_val>
- <right_val>0.0198722109198570</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 3 -1.</_>
- <_>
- 4 3 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0104538202285767</threshold>
- <left_val>-0.0576840490102768</left_val>
- <right_val>0.2180927991867065</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 1 2 -1.</_>
- <_>
- 16 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4684870368218981e-005</threshold>
- <left_val>0.0703076869249344</left_val>
- <right_val>-0.0687716603279114</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 6 8 -1.</_>
- <_>
- 5 4 3 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0386879108846188</threshold>
- <left_val>-0.2357024997472763</left_val>
- <right_val>0.0593729391694069</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 4 2 -1.</_>
- <_>
- 10 9 2 1 2.</_>
- <_>
- 8 10 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0146778095513582</threshold>
- <left_val>-4.5802700333297253e-003</left_val>
- <right_val>0.6644542217254639</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 4 2 -1.</_>
- <_>
- 6 9 2 1 2.</_>
- <_>
- 8 10 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0101802004501224</threshold>
- <left_val>0.5220292210578919</left_val>
- <right_val>-0.0238862205296755</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 1 2 -1.</_>
- <_>
- 16 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5779709176276810e-005</threshold>
- <left_val>-0.0755427628755569</left_val>
- <right_val>0.1076302006840706</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 1 2 -1.</_>
- <_>
- 1 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3739310563541949e-005</threshold>
- <left_val>0.1134765967726708</left_val>
- <right_val>-0.1176417991518974</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 16 2 -1.</_>
- <_>
- 9 1 8 1 2.</_>
- <_>
- 1 2 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0110010495409369</threshold>
- <left_val>-0.4163585901260376</left_val>
- <right_val>0.0291555207222700</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 10 4 2 -1.</_>
- <_>
- 6 10 2 1 2.</_>
- <_>
- 8 11 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0100403595715761</threshold>
- <left_val>0.5015233755111694</left_val>
- <right_val>-0.0244732499122620</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 4 3 -1.</_>
- <_>
- 8 7 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0110518001019955</threshold>
- <left_val>0.0379601791501045</left_val>
- <right_val>-0.2977263033390045</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 4 4 -1.</_>
- <_>
- 6 0 2 2 2.</_>
- <_>
- 8 2 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120895402505994</threshold>
- <left_val>-0.5163480043411255</left_val>
- <right_val>0.0215219203382730</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 6 3 -1.</_>
- <_>
- 14 7 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0844105631113052</threshold>
- <left_val>0.4913380146026611</left_val>
- <right_val>-0.0146038103848696</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 6 3 -1.</_>
- <_>
- 2 7 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0227140001952648</threshold>
- <left_val>-0.0488631390035152</left_val>
- <right_val>0.2357286959886551</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 13 2 2 -1.</_>
- <_>
- 15 13 1 1 2.</_>
- <_>
- 14 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3879110813140869e-005</threshold>
- <left_val>-0.0642457678914070</left_val>
- <right_val>0.0656965523958206</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 13 2 2 -1.</_>
- <_>
- 2 13 1 1 2.</_>
- <_>
- 3 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5649809686001390e-005</threshold>
- <left_val>-0.1007627993822098</left_val>
- <right_val>0.1006717979907990</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 12 4 2 -1.</_>
- <_>
- 15 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0106822997331619</threshold>
- <left_val>0.0119797298684716</left_val>
- <right_val>-0.4758862853050232</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 7 4 -1.</_>
- <_>
- 9 4 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1425171047449112</threshold>
- <left_val>0.0269787404686213</left_val>
- <right_val>-0.3589037954807282</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 9 1 2 -1.</_>
- <_>
- 17 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6178720872849226e-005</threshold>
- <left_val>-0.0519438087940216</left_val>
- <right_val>0.0596988387405872</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 1 2 -1.</_>
- <_>
- 0 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5015379758551717e-003</threshold>
- <left_val>0.0426829196512699</left_val>
- <right_val>-0.2474233061075211</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7750380468205549e-005</threshold>
- <left_val>-0.0659698769450188</left_val>
- <right_val>0.0952353179454803</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 1 -1.</_>
- <_>
- 1 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3739310563541949e-005</threshold>
- <left_val>0.0914406329393387</left_val>
- <right_val>-0.1140132024884224</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 2 2 -1.</_>
- <_>
- 17 4 1 1 2.</_>
- <_>
- 16 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8318339716643095e-003</threshold>
- <left_val>-0.0358028709888458</left_val>
- <right_val>0.2800019085407257</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 2 2 -1.</_>
- <_>
- 0 4 1 1 2.</_>
- <_>
- 1 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6216499463771470e-005</threshold>
- <left_val>0.1192717030644417</left_val>
- <right_val>-0.0900511220097542</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 4 6 -1.</_>
- <_>
- 9 3 2 3 2.</_>
- <_>
- 7 6 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0184157993644476</threshold>
- <left_val>0.0286770407110453</left_val>
- <right_val>-0.3459722101688385</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 2 -1.</_>
- <_>
- 0 0 1 1 2.</_>
- <_>
- 1 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5649809686001390e-005</threshold>
- <left_val>0.1055520027875900</left_val>
- <right_val>-0.0939618200063705</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 16 4 -1.</_>
- <_>
- 9 3 8 2 2.</_>
- <_>
- 1 5 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0442830286920071</threshold>
- <left_val>-0.3937725126743317</left_val>
- <right_val>0.0249951407313347</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 14 2 -1.</_>
- <_>
- 2 13 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0374921411275864</threshold>
- <left_val>0.4075055122375488</left_val>
- <right_val>-0.0246863309293985</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 2 2 -1.</_>
- <_>
- 13 0 1 1 2.</_>
- <_>
- 12 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4684870368218981e-005</threshold>
- <left_val>0.0595886707305908</left_val>
- <right_val>-0.0425871796905994</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 2 2 -1.</_>
- <_>
- 4 0 1 1 2.</_>
- <_>
- 5 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3879110813140869e-005</threshold>
- <left_val>0.1165246963500977</left_val>
- <right_val>-0.0811222568154335</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 8 2 -1.</_>
- <_>
- 5 2 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9012550842016935e-003</threshold>
- <left_val>-0.2543003857135773</left_val>
- <right_val>0.0380770415067673</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 2 2 -1.</_>
- <_>
- 4 7 1 1 2.</_>
- <_>
- 5 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6903450489044189e-003</threshold>
- <left_val>0.3091157972812653</left_val>
- <right_val>-0.0310623906552792</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 14 6 1 -1.</_>
- <_>
- 14 14 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0722219534218311e-003</threshold>
- <left_val>-0.2149100005626679</left_val>
- <right_val>0.0302512794733047</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 2 -1.</_>
- <_>
- 7 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1917349658906460e-003</threshold>
- <left_val>0.0556822307407856</left_val>
- <right_val>-0.1667632013559341</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 2 -1.</_>
- <_>
- 5 1 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5904899302986450e-005</threshold>
- <left_val>-0.1224227026104927</left_val>
- <right_val>0.0827013477683067</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 16 6 -1.</_>
- <_>
- 1 3 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6123133078217506e-003</threshold>
- <left_val>0.1525671035051346</left_val>
- <right_val>-0.0702950879931450</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 10 8 -1.</_>
- <_>
- 8 7 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0323125012218952</threshold>
- <left_val>0.1056381016969681</left_val>
- <right_val>-0.0887572914361954</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 11 8 -1.</_>
- <_>
- 0 9 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2404166013002396</threshold>
- <left_val>-0.5687471032142639</left_val>
- <right_val>0.0155827002599835</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 2 2 -1.</_>
- <_>
- 12 8 1 1 2.</_>
- <_>
- 11 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6818000953644514e-003</threshold>
- <left_val>0.3900842964649200</left_val>
- <right_val>-0.0244826804846525</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 16 1 -1.</_>
- <_>
- 4 7 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0375609807670116</threshold>
- <left_val>-0.5919058918952942</left_val>
- <right_val>0.0148836802691221</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 10 8 -1.</_>
- <_>
- 8 7 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2604623138904572</threshold>
- <left_val>-0.8078975081443787</left_val>
- <right_val>8.0495169386267662e-003</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 10 8 -1.</_>
- <_>
- 5 7 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2200307995080948</threshold>
- <left_val>0.0114593897014856</left_val>
- <right_val>-0.6656962037086487</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 3 2 -1.</_>
- <_>
- 13 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0142070800065994</threshold>
- <left_val>0.0114870695397258</left_val>
- <right_val>-0.4328494071960449</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 2 2 -1.</_>
- <_>
- 5 8 1 1 2.</_>
- <_>
- 6 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9708760082721710e-003</threshold>
- <left_val>-0.0313467793166637</left_val>
- <right_val>0.2830441892147064</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 3 2 -1.</_>
- <_>
- 13 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0168589502573013</threshold>
- <left_val>-0.6498271822929382</left_val>
- <right_val>9.0222535654902458e-003</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 18 8 -1.</_>
- <_>
- 0 7 9 4 2.</_>
- <_>
- 9 11 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1187689974904060</threshold>
- <left_val>0.0299480501562357</left_val>
- <right_val>-0.2969210147857666</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 12 4 2 -1.</_>
- <_>
- 15 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5489429719746113e-003</threshold>
- <left_val>0.0224479902535677</left_val>
- <right_val>-0.1188597008585930</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 4 2 -1.</_>
- <_>
- 1 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2591039780527353e-003</threshold>
- <left_val>0.0439781881868839</left_val>
- <right_val>-0.2000851929187775</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 3 -1.</_>
- <_>
- 14 1 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.9489958696067333e-003</threshold>
- <left_val>0.1097998991608620</left_val>
- <right_val>-0.0513728708028793</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 3 3 -1.</_>
- <_>
- 4 1 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0116512998938560</threshold>
- <left_val>-0.0391622781753540</left_val>
- <right_val>0.2311145961284638</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 3 3 -1.</_>
- <_>
- 13 3 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.0093740895390511e-003</threshold>
- <left_val>0.0655085071921349</left_val>
- <right_val>-0.0361764915287495</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 3 3 -1.</_>
- <_>
- 5 3 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.4954619370400906e-003</threshold>
- <left_val>-0.0742958337068558</left_val>
- <right_val>0.1480637043714523</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 1 -1.</_>
- <_>
- 16 2 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.0165609680116177e-003</threshold>
- <left_val>0.0192055609077215</left_val>
- <right_val>-0.1320295929908752</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 1 3 -1.</_>
- <_>
- 2 2 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.1109711639583111e-003</threshold>
- <left_val>0.0305455308407545</left_val>
- <right_val>-0.3213159143924713</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 1 -1.</_>
- <_>
- 16 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.6829841081053019e-003</threshold>
- <left_val>0.0255360994488001</left_val>
- <right_val>-0.1154488995671272</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 1 3 -1.</_>
- <_>
- 2 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.2579500693827868e-003</threshold>
- <left_val>-0.2527283132076263</left_val>
- <right_val>0.0394384711980820</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 7 2 2 -1.</_>
- <_>
- 16 7 1 1 2.</_>
- <_>
- 15 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9859049934893847e-003</threshold>
- <left_val>0.2665804922580719</left_val>
- <right_val>-0.0468473583459854</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 6 5 -1.</_>
- <_>
- 8 6 2 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1254094988107681</threshold>
- <left_val>-0.4057011008262634</left_val>
- <right_val>0.0230680201202631</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 10 2 -1.</_>
- <_>
- 11 9 5 1 2.</_>
- <_>
- 6 10 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4464139975607395e-003</threshold>
- <left_val>-0.0338515192270279</left_val>
- <right_val>0.1091032028198242</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 5 8 -1.</_>
- <_>
- 4 9 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0291290692985058</threshold>
- <left_val>0.0829424485564232</left_val>
- <right_val>-0.1039045974612236</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 15 6 -1.</_>
- <_>
- 2 7 15 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0533427894115448</threshold>
- <left_val>0.1423411965370178</left_val>
- <right_val>-0.0637678280472755</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 2 15 -1.</_>
- <_>
- 3 5 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0698260366916656</threshold>
- <left_val>-0.2996051907539368</left_val>
- <right_val>0.0381423793733120</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 7 2 2 -1.</_>
- <_>
- 16 7 1 1 2.</_>
- <_>
- 15 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0430120164528489e-003</threshold>
- <left_val>-0.0486700199544430</left_val>
- <right_val>0.2204319983720779</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 18 2 -1.</_>
- <_>
- 0 11 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8559759743511677e-003</threshold>
- <left_val>-0.0910003632307053</left_val>
- <right_val>0.0976040363311768</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 2 4 -1.</_>
- <_>
- 9 10 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6559829972684383e-003</threshold>
- <left_val>0.0504679903388023</left_val>
- <right_val>-0.0828957930207253</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 18 6 -1.</_>
- <_>
- 0 8 18 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3969191014766693</threshold>
- <left_val>-0.5970314741134644</left_val>
- <right_val>0.0172442905604839</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 11 12 4 -1.</_>
- <_>
- 3 12 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0546870790421963</threshold>
- <left_val>0.3900310099124908</left_val>
- <right_val>-0.0251556299626827</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 14 6 1 -1.</_>
- <_>
- 2 14 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4253779128193855e-003</threshold>
- <left_val>-0.2550624907016754</left_val>
- <right_val>0.0394066199660301</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 14 6 1 -1.</_>
- <_>
- 14 14 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.5719041526317596e-003</threshold>
- <left_val>0.0186648592352867</left_val>
- <right_val>-0.2220326066017151</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 1 -1.</_>
- <_>
- 9 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2086849892511964e-003</threshold>
- <left_val>-0.0721488967537880</left_val>
- <right_val>0.1184407994151115</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 1 -1.</_>
- <_>
- 8 0 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0130339497700334</threshold>
- <left_val>0.2058676034212112</left_val>
- <right_val>-0.0158201493322849</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 8 1 -1.</_>
- <_>
- 6 0 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.2425887919962406e-003</threshold>
- <left_val>-0.0630722567439079</left_val>
- <right_val>0.1470635980367661</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 14 6 1 -1.</_>
- <_>
- 14 14 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0152673702687025</threshold>
- <left_val>-0.2679902017116547</left_val>
- <right_val>6.9345328956842422e-003</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 14 6 1 -1.</_>
- <_>
- 2 14 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9866169467568398e-003</threshold>
- <left_val>0.0335439704358578</left_val>
- <right_val>-0.2607846856117249</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 10 2 -1.</_>
- <_>
- 11 9 5 1 2.</_>
- <_>
- 6 10 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0108856903389096</threshold>
- <left_val>0.0855251327157021</left_val>
- <right_val>-0.0212142392992973</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 6 2 -1.</_>
- <_>
- 4 9 3 1 2.</_>
- <_>
- 7 10 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8979911953210831e-003</threshold>
- <left_val>-0.0451360605657101</left_val>
- <right_val>0.2241200953722000</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 2 9 -1.</_>
- <_>
- 13 6 2 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1925639063119888</threshold>
- <left_val>-0.6348158717155457</left_val>
- <right_val>4.2262570932507515e-003</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 9 2 -1.</_>
- <_>
- 5 6 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1086068972945213</threshold>
- <left_val>0.0170917399227619</left_val>
- <right_val>-0.5451073050498962</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 6 2 -1.</_>
- <_>
- 13 2 2 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0548367016017437</threshold>
- <left_val>-0.3548921942710877</left_val>
- <right_val>4.5531531795859337e-003</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 3 2 -1.</_>
- <_>
- 7 1 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8792168274521828e-003</threshold>
- <left_val>0.0155201097950339</left_val>
- <right_val>-0.5407999157905579</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 2 3 -1.</_>
- <_>
- 11 0 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.5071100145578384e-003</threshold>
- <left_val>-0.0158542692661285</left_val>
- <right_val>0.0666517317295074</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 3 2 -1.</_>
- <_>
- 7 0 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0169021207839251</threshold>
- <left_val>0.0222053807228804</left_val>
- <right_val>-0.3737033903598785</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 2 1 -1.</_>
- <_>
- 9 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.1124811357585713e-005</threshold>
- <left_val>0.0337283685803413</left_val>
- <right_val>-0.0621243193745613</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 10 8 -1.</_>
- <_>
- 4 4 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0782682672142982</threshold>
- <left_val>0.4304488897323608</left_val>
- <right_val>-0.0193186104297638</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 3 3 -1.</_>
- <_>
- 12 1 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0221087392419577</threshold>
- <left_val>0.0139799099415541</left_val>
- <right_val>-0.4232504069805145</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 3 3 -1.</_>
- <_>
- 6 1 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.4141050204634666e-003</threshold>
- <left_val>0.0420096218585968</left_val>
- <right_val>-0.1836881935596466</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 2 2 -1.</_>
- <_>
- 13 0 1 1 2.</_>
- <_>
- 12 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6600460842018947e-005</threshold>
- <left_val>-0.0531449504196644</left_val>
- <right_val>0.0663439631462097</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 2 2 -1.</_>
- <_>
- 4 0 1 1 2.</_>
- <_>
- 5 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4684870368218981e-005</threshold>
- <left_val>-0.0851690322160721</left_val>
- <right_val>0.1034568026661873</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 18 3 -1.</_>
- <_>
- 0 13 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6517298370599747e-003</threshold>
- <left_val>-0.0677581280469894</left_val>
- <right_val>0.1238183006644249</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 2 1 -1.</_>
- <_>
- 5 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3739310563541949e-005</threshold>
- <left_val>-0.1085200011730194</left_val>
- <right_val>0.0826930627226830</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 4 2 -1.</_>
- <_>
- 11 1 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5218860246241093e-003</threshold>
- <left_val>-0.1045825034379959</left_val>
- <right_val>0.0663281828165054</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 15 2 -1.</_>
- <_>
- 5 0 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0529961399734020</threshold>
- <left_val>0.2392195016145706</left_val>
- <right_val>-0.0411417894065380</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 3 1 -1.</_>
- <_>
- 13 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.9717630241066217e-003</threshold>
- <left_val>0.0353552810847759</left_val>
- <right_val>-0.1536100953817368</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 1 3 -1.</_>
- <_>
- 5 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.0528207793831825e-003</threshold>
- <left_val>-0.2838408052921295</left_val>
- <right_val>0.0291973706334829</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 2 1 -1.</_>
- <_>
- 11 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4023650437593460e-003</threshold>
- <left_val>0.1938752979040146</left_val>
- <right_val>-0.0234654601663351</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 2 1 -1.</_>
- <_>
- 6 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6361160053056665e-005</threshold>
- <left_val>-0.1317539066076279</left_val>
- <right_val>0.0617644004523754</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 4 -1.</_>
- <_>
- 15 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.7318392209708691e-003</threshold>
- <left_val>-0.0376738198101521</left_val>
- <right_val>0.1486400067806244</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 4 2 -1.</_>
- <_>
- 3 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.6025160700082779e-003</threshold>
- <left_val>-0.0600823499262333</left_val>
- <right_val>0.1475746929645538</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 2 -1.</_>
- <_>
- 9 0 9 1 2.</_>
- <_>
- 0 1 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9826940521597862e-003</threshold>
- <left_val>0.0502174682915211</left_val>
- <right_val>-0.1770825982093811</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 18 4 -1.</_>
- <_>
- 0 4 9 2 2.</_>
- <_>
- 9 6 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0732960328459740</threshold>
- <left_val>-0.4974305033683777</left_val>
- <right_val>0.0167066808789968</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 7 4 2 -1.</_>
- <_>
- 12 7 2 1 2.</_>
- <_>
- 10 8 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0142388697713614</threshold>
- <left_val>0.5217555761337280</left_val>
- <right_val>-0.0113009298220277</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 3 4 -1.</_>
- <_>
- 5 4 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0181554593145847</threshold>
- <left_val>-0.0388248786330223</left_val>
- <right_val>0.2092700004577637</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 7 2 2 -1.</_>
- <_>
- 16 7 1 1 2.</_>
- <_>
- 15 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5779709176276810e-005</threshold>
- <left_val>0.0649056732654572</left_val>
- <right_val>-0.0738614425063133</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 2 2 -1.</_>
- <_>
- 1 7 1 1 2.</_>
- <_>
- 2 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9359169275267050e-005</threshold>
- <left_val>-0.0757590234279633</left_val>
- <right_val>0.1107048019766808</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 7 4 2 -1.</_>
- <_>
- 12 7 2 1 2.</_>
- <_>
- 10 8 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5904899302986450e-005</threshold>
- <left_val>-0.0566908791661263</left_val>
- <right_val>0.0705650299787521</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 2 2 -1.</_>
- <_>
- 6 8 1 1 2.</_>
- <_>
- 7 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5659629609435797e-003</threshold>
- <left_val>-0.0226817093789577</left_val>
- <right_val>0.3264203071594238</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 2 8 -1.</_>
- <_>
- 8 7 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0431340709328651</threshold>
- <left_val>0.0913139432668686</left_val>
- <right_val>-0.0776849165558815</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 16 9 -1.</_>
- <_>
- 1 7 16 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1150510013103485</threshold>
- <left_val>-0.0538835301995277</left_val>
- <right_val>0.1738277971744537</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 6 3 6 -1.</_>
- <_>
- 15 8 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0376834310591221</threshold>
- <left_val>0.0119111798703671</left_val>
- <right_val>-0.1632004976272583</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 3 6 -1.</_>
- <_>
- 0 8 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0287051200866699</threshold>
- <left_val>0.0230644904077053</left_val>
- <right_val>-0.3434646129608154</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 11 -1.</_>
- <_>
- 6 0 3 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0741745382547379</threshold>
- <left_val>-0.0364534594118595</left_val>
- <right_val>0.2226549983024597</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 4 10 -1.</_>
- <_>
- 8 0 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0387266613543034</threshold>
- <left_val>-0.0861116796731949</left_val>
- <right_val>0.0941641926765442</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 4 4 -1.</_>
- <_>
- 14 1 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.1428101249039173e-003</threshold>
- <left_val>-0.1222383007407188</left_val>
- <right_val>0.0341765694320202</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 6 2 -1.</_>
- <_>
- 9 5 6 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0246735997498035</threshold>
- <left_val>0.0565831884741783</left_val>
- <right_val>-0.1488883048295975</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 10 6 2 -1.</_>
- <_>
- 11 10 3 1 2.</_>
- <_>
- 8 11 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9808704107999802e-003</threshold>
- <left_val>-0.0197595097124577</left_val>
- <right_val>0.3030026853084564</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 2 2 -1.</_>
- <_>
- 1 7 1 1 2.</_>
- <_>
- 2 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6217122366651893e-005</threshold>
- <left_val>0.0897242724895477</left_val>
- <right_val>-0.0896338075399399</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 3 -1.</_>
- <_>
- 10 1 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9440250471234322e-003</threshold>
- <left_val>0.0459239892661572</left_val>
- <right_val>-0.1608746051788330</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 10 3 -1.</_>
- <_>
- 4 1 10 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.9218348041176796e-003</threshold>
- <left_val>-0.3382751941680908</left_val>
- <right_val>0.0233459603041410</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 7 1 2 -1.</_>
- <_>
- 15 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7032099751522765e-005</threshold>
- <left_val>-0.0716137290000916</left_val>
- <right_val>0.1437425017356873</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 8 2 -1.</_>
- <_>
- 5 8 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0115753803402185</threshold>
- <left_val>0.0729895383119583</left_val>
- <right_val>-0.1120665967464447</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 6 9 -1.</_>
- <_>
- 13 8 2 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3822771012783051</threshold>
- <left_val>4.3869050568901002e-004</left_val>
- <right_val>-0.9693664908409119</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 6 9 -1.</_>
- <_>
- 3 8 2 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0256045106798410</threshold>
- <left_val>-0.0532096885144711</left_val>
- <right_val>0.1605699956417084</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 3 6 -1.</_>
- <_>
- 9 8 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0652327984571457</threshold>
- <left_val>-5.0901030190289021e-003</left_val>
- <right_val>0.1052659004926682</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 6 3 -1.</_>
- <_>
- 9 8 2 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0765335634350777</threshold>
- <left_val>-0.2762224972248077</left_val>
- <right_val>0.0298370793461800</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 1 3 -1.</_>
- <_>
- 10 11 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0668321414850652e-005</threshold>
- <left_val>0.0497616194188595</left_val>
- <right_val>-0.0646989569067955</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 1 3 -1.</_>
- <_>
- 7 11 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.1437079459428787e-003</threshold>
- <left_val>0.4274195134639740</left_val>
- <right_val>-0.0177215505391359</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 18 4 -1.</_>
- <_>
- 9 11 9 2 2.</_>
- <_>
- 0 13 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0706991031765938</threshold>
- <left_val>-0.3164018988609314</left_val>
- <right_val>0.0242118407040834</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 11 6 4 -1.</_>
- <_>
- 7 11 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0839718133211136</threshold>
- <left_val>7.6198792085051537e-003</left_val>
- <right_val>-0.8065518140792847</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 18 12 -1.</_>
- <_>
- 0 5 18 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4975746870040894</threshold>
- <left_val>6.2387259677052498e-003</left_val>
- <right_val>-0.8305639028549194</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 1 4 -1.</_>
- <_>
- 0 12 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4929931648075581e-003</threshold>
- <left_val>0.0266029108315706</left_val>
- <right_val>-0.2259957939386368</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 3 3 -1.</_>
- <_>
- 13 7 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0275369994342327</threshold>
- <left_val>0.1843355000019074</left_val>
- <right_val>-7.0537109859287739e-003</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 3 3 -1.</_>
- <_>
- 4 7 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5211901888251305e-003</threshold>
- <left_val>-0.0542923994362354</left_val>
- <right_val>0.1254532933235169</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 4 4 -1.</_>
- <_>
- 14 1 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0386416800320148</threshold>
- <left_val>8.4282690659165382e-003</left_val>
- <right_val>-0.2196173965930939</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 4 4 -1.</_>
- <_>
- 4 1 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0216541700065136</threshold>
- <left_val>-0.2808293104171753</left_val>
- <right_val>0.0244111791253090</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 8 4 -1.</_>
- <_>
- 9 6 4 2 2.</_>
- <_>
- 5 8 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0290211308747530</threshold>
- <left_val>-0.3131417036056519</left_val>
- <right_val>0.0223867595195770</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 11 2 2 -1.</_>
- <_>
- 3 11 1 1 2.</_>
- <_>
- 4 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4424049556255341e-003</threshold>
- <left_val>0.6493849158287048</left_val>
- <right_val>-0.0114663699641824</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 16 2 -1.</_>
- <_>
- 1 11 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0140129495412111</threshold>
- <left_val>-0.0560599118471146</left_val>
- <right_val>0.1226307973265648</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 15 2 -1.</_>
- <_>
- 1 14 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5773880816996098e-003</threshold>
- <left_val>-0.0738088190555573</left_val>
- <right_val>0.0975568890571594</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 1 2 -1.</_>
- <_>
- 16 12 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.6077621150761843e-003</threshold>
- <left_val>-0.0911063700914383</left_val>
- <right_val>0.0298527106642723</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 4 2 -1.</_>
- <_>
- 0 8 2 1 2.</_>
- <_>
- 2 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3739310563541949e-005</threshold>
- <left_val>-0.0737720802426338</left_val>
- <right_val>0.0916053429245949</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 5 1 2 -1.</_>
- <_>
- 13 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4684870368218981e-005</threshold>
- <left_val>-0.0690594092011452</left_val>
- <right_val>0.1320232003927231</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 10 4 -1.</_>
- <_>
- 4 6 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0574019812047482</threshold>
- <left_val>0.1449442952871323</left_val>
- <right_val>-0.0600692182779312</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 5 1 2 -1.</_>
- <_>
- 13 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.3912649899721146e-003</threshold>
- <left_val>0.5008565187454224</left_val>
- <right_val>-4.1706929914653301e-003</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 1 2 -1.</_>
- <_>
- 4 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6128649551537819e-005</threshold>
- <left_val>-0.0762275531888008</left_val>
- <right_val>0.1260772049427033</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 3 7 -1.</_>
- <_>
- 14 3 1 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0503179281949997</threshold>
- <left_val>0.0103605901822448</left_val>
- <right_val>-0.3189758956432343</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 7 3 -1.</_>
- <_>
- 4 3 7 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.1848609000444412e-003</threshold>
- <left_val>-0.0647242292761803</left_val>
- <right_val>0.1234103962779045</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 5 2 7 -1.</_>
- <_>
- 13 5 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3910661004483700e-003</threshold>
- <left_val>-0.1028840020298958</left_val>
- <right_val>0.0440409816801548</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 2 7 -1.</_>
- <_>
- 4 5 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0285101644694805e-003</threshold>
- <left_val>0.0370522104203701</left_val>
- <right_val>-0.2127301990985870</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 6 2 -1.</_>
- <_>
- 9 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0247735399752855</threshold>
- <left_val>0.3038080930709839</left_val>
- <right_val>-0.0141654303297400</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 6 2 -1.</_>
- <_>
- 6 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0162911191582680</threshold>
- <left_val>-0.0679637491703033</left_val>
- <right_val>0.1020710021257401</right_val></_></_>
- <_>
- <!-- tree 181 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 5 6 -1.</_>
- <_>
- 13 6 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0864686071872711</threshold>
- <left_val>4.0547042153775692e-003</left_val>
- <right_val>-0.4740296006202698</right_val></_></_>
- <_>
- <!-- tree 182 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 4 2 -1.</_>
- <_>
- 5 10 2 1 2.</_>
- <_>
- 7 11 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6333149764686823e-003</threshold>
- <left_val>-0.0353813916444778</left_val>
- <right_val>0.2016796022653580</right_val></_></_>
- <_>
- <!-- tree 183 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 11 4 2 -1.</_>
- <_>
- 12 11 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8694689497351646e-003</threshold>
- <left_val>0.0223653502762318</left_val>
- <right_val>-0.0570879615843296</right_val></_></_>
- <_>
- <!-- tree 184 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 11 4 2 -1.</_>
- <_>
- 4 11 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7068868987262249e-003</threshold>
- <left_val>-0.1603562980890274</left_val>
- <right_val>0.0456907190382481</right_val></_></_>
- <_>
- <!-- tree 185 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 1 2 -1.</_>
- <_>
- 16 12 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.0651168344775215e-005</threshold>
- <left_val>0.0354789905250072</left_val>
- <right_val>-0.0344920493662357</right_val></_></_>
- <_>
- <!-- tree 186 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 2 1 -1.</_>
- <_>
- 2 12 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.0897028520703316e-003</threshold>
- <left_val>-0.2681294083595276</left_val>
- <right_val>0.0277175307273865</right_val></_></_>
- <_>
- <!-- tree 187 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 2 3 -1.</_>
- <_>
- 15 4 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.0142004191875458e-003</threshold>
- <left_val>0.1276749074459076</left_val>
- <right_val>-0.0258717201650143</right_val></_></_>
- <_>
- <!-- tree 188 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 5 6 -1.</_>
- <_>
- 0 6 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0101045602932572</threshold>
- <left_val>0.0417612902820110</left_val>
- <right_val>-0.1633320003747940</right_val></_></_>
- <_>
- <!-- tree 189 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 2 3 -1.</_>
- <_>
- 15 4 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0232086200267076</threshold>
- <left_val>-0.0154512897133827</left_val>
- <right_val>0.2684479057788849</right_val></_></_>
- <_>
- <!-- tree 190 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 16 9 -1.</_>
- <_>
- 1 6 16 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1134508028626442</threshold>
- <left_val>-0.0744702816009521</left_val>
- <right_val>0.1102133989334106</right_val></_></_>
- <_>
- <!-- tree 191 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 2 -1.</_>
- <_>
- 0 10 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1667109793052077e-003</threshold>
- <left_val>-0.0686589777469635</left_val>
- <right_val>0.0979631170630455</right_val></_></_>
- <_>
- <!-- tree 192 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 11 2 2 -1.</_>
- <_>
- 1 11 1 1 2.</_>
- <_>
- 2 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1848782934248447e-005</threshold>
- <left_val>-0.0807370617985725</left_val>
- <right_val>0.0817197933793068</right_val></_></_>
- <_>
- <!-- tree 193 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 13 2 2 -1.</_>
- <_>
- 16 13 1 1 2.</_>
- <_>
- 15 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7750380468205549e-005</threshold>
- <left_val>-0.0818600133061409</left_val>
- <right_val>0.0863137766718864</right_val></_></_>
- <_>
- <!-- tree 194 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 2 2 -1.</_>
- <_>
- 1 13 1 1 2.</_>
- <_>
- 2 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7259990019956604e-005</threshold>
- <left_val>-0.0809563770890236</left_val>
- <right_val>0.0821038633584976</right_val></_></_>
- <_>
- <!-- tree 195 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 13 2 2 -1.</_>
- <_>
- 16 13 1 1 2.</_>
- <_>
- 15 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9359169275267050e-005</threshold>
- <left_val>0.1045090034604073</left_val>
- <right_val>-0.0726457983255386</right_val></_></_>
- <_>
- <!-- tree 196 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 2 2 -1.</_>
- <_>
- 1 13 1 1 2.</_>
- <_>
- 2 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5649809686001390e-005</threshold>
- <left_val>0.1062941998243332</left_val>
- <right_val>-0.0679890736937523</right_val></_></_>
- <_>
- <!-- tree 197 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 2 4 -1.</_>
- <_>
- 10 7 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0163933802396059</threshold>
- <left_val>-0.1715642064809799</left_val>
- <right_val>0.0276966094970703</right_val></_></_>
- <_>
- <!-- tree 198 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 3 2 -1.</_>
- <_>
- 3 4 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0233597904443741</threshold>
- <left_val>0.3885076045989990</left_val>
- <right_val>-0.0166453197598457</right_val></_></_>
- <_>
- <!-- tree 199 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 3 2 2 -1.</_>
- <_>
- 15 3 1 1 2.</_>
- <_>
- 14 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2364470642060041e-003</threshold>
- <left_val>-0.0172002408653498</left_val>
- <right_val>0.2104862928390503</right_val></_></_>
- <_>
- <!-- tree 200 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 6 4 -1.</_>
- <_>
- 6 2 3 2 2.</_>
- <_>
- 9 4 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0127381896600127</threshold>
- <left_val>-0.2532509863376617</left_val>
- <right_val>0.0284554697573185</right_val></_></_>
- <_>
- <!-- tree 201 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 6 3 -1.</_>
- <_>
- 10 2 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0130351698026061</threshold>
- <left_val>-0.0366394892334938</left_val>
- <right_val>0.0509026385843754</right_val></_></_>
- <_>
- <!-- tree 202 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 1 2 -1.</_>
- <_>
- 7 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8332999136182480e-005</threshold>
- <left_val>-0.0837918072938919</left_val>
- <right_val>0.0838518589735031</right_val></_></_>
- <_>
- <!-- tree 203 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 6 4 -1.</_>
- <_>
- 12 1 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0123362001031637</threshold>
- <left_val>-0.0514171607792377</left_val>
- <right_val>0.0532306805253029</right_val></_></_>
- <_>
- <!-- tree 204 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 9 2 -1.</_>
- <_>
- 12 3 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0327928103506565</threshold>
- <left_val>0.2327339947223663</left_val>
- <right_val>-0.0373882502317429</right_val></_></_>
- <_>
- <!-- tree 205 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 2 1 -1.</_>
- <_>
- 8 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0052760373800993e-003</threshold>
- <left_val>0.0278136208653450</left_val>
- <right_val>-0.2950099110603333</right_val></_></_>
- <_>
- <!-- tree 206 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 6 4 -1.</_>
- <_>
- 3 1 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0139068197458982</threshold>
- <left_val>-0.0543732605874538</left_val>
- <right_val>0.1252592056989670</right_val></_></_>
- <_>
- <!-- tree 207 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 16 7 -1.</_>
- <_>
- 5 1 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2173788994550705</threshold>
- <left_val>0.0416372790932655</left_val>
- <right_val>-0.1780032962560654</right_val></_></_>
- <_>
- <!-- tree 208 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 12 9 -1.</_>
- <_>
- 7 6 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6798750162124634</threshold>
- <left_val>-0.0189819093793631</left_val>
- <right_val>0.3512358963489533</right_val></_></_>
- <_>
- <!-- tree 209 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 7 2 -1.</_>
- <_>
- 6 9 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0497565008699894</threshold>
- <left_val>-0.8002396821975708</left_val>
- <right_val>9.7657497972249985e-003</right_val></_></_>
- <_>
- <!-- tree 210 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 3 -1.</_>
- <_>
- 4 1 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5796870253980160e-003</threshold>
- <left_val>0.0210781805217266</left_val>
- <right_val>-0.2844468951225281</right_val></_></_></trees>
- <stage_threshold>-1.2603249549865723</stage_threshold>
- <parent>13</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 15 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 8 2 -1.</_>
- <_>
- 9 3 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1051426008343697</threshold>
- <left_val>-0.1030462011694908</left_val>
- <right_val>0.5264183282852173</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 8 5 -1.</_>
- <_>
- 8 5 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0218748692423105</threshold>
- <left_val>-0.1149196997284889</left_val>
- <right_val>0.0879510119557381</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 4 11 -1.</_>
- <_>
- 8 0 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2591390013694763</threshold>
- <left_val>-1.8469070710125379e-005</left_val>
- <right_val>-789.6055297851562500</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 6 5 -1.</_>
- <_>
- 12 8 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2329362630844116e-003</threshold>
- <left_val>0.1215251982212067</left_val>
- <right_val>-0.2199721932411194</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 9 2 -1.</_>
- <_>
- 3 1 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4537489563226700e-003</threshold>
- <left_val>0.1169904991984367</left_val>
- <right_val>-0.1987470984458923</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 6 5 -1.</_>
- <_>
- 12 8 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0507839918136597</threshold>
- <left_val>0.0343447588384151</left_val>
- <right_val>-0.1997928023338318</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 6 5 -1.</_>
- <_>
- 3 8 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3065801039338112e-003</threshold>
- <left_val>0.1021941006183624</left_val>
- <right_val>-0.2324876040220261</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 2 2 -1.</_>
- <_>
- 10 2 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0198521409183741</threshold>
- <left_val>-0.5773574709892273</left_val>
- <right_val>0.0107486303895712</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 1 4 -1.</_>
- <_>
- 9 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0251020099967718</threshold>
- <left_val>0.0335165187716484</left_val>
- <right_val>-0.5189111232757568</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 16 2 -1.</_>
- <_>
- 1 11 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9596240967512131e-003</threshold>
- <left_val>-0.1546567976474762</left_val>
- <right_val>0.1001181975007057</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 12 2 -1.</_>
- <_>
- 3 2 6 1 2.</_>
- <_>
- 9 3 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9100659564137459e-003</threshold>
- <left_val>-0.3358919024467468</left_val>
- <right_val>0.0603443384170532</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 2 -1.</_>
- <_>
- 16 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.0328548103570938e-003</threshold>
- <left_val>-0.0104679698124528</left_val>
- <right_val>-0.3561008870601654</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 2 3 -1.</_>
- <_>
- 2 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.5141025483608246e-003</threshold>
- <left_val>0.0334267392754555</left_val>
- <right_val>-0.4149996042251587</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 1 -1.</_>
- <_>
- 7 0 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145813003182411</threshold>
- <left_val>-0.1194749996066093</left_val>
- <right_val>0.1058669984340668</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 9 2 -1.</_>
- <_>
- 12 5 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1152421012520790</threshold>
- <left_val>-0.0234193205833435</left_val>
- <right_val>0.3951525986194611</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 6 -1.</_>
- <_>
- 16 3 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1557710133492947e-003</threshold>
- <left_val>0.1136960014700890</left_val>
- <right_val>-0.1149196028709412</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 18 6 -1.</_>
- <_>
- 0 6 9 3 2.</_>
- <_>
- 9 9 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1315298974514008</threshold>
- <left_val>-0.4076144099235535</left_val>
- <right_val>0.0280955005437136</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 18 6 -1.</_>
- <_>
- 9 1 9 3 2.</_>
- <_>
- 0 4 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0877189636230469</threshold>
- <left_val>0.0119158001616597</left_val>
- <right_val>-0.6239578723907471</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 1 -1.</_>
- <_>
- 9 0 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1810648292303085e-003</threshold>
- <left_val>-0.1093714982271195</left_val>
- <right_val>0.1119602024555206</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 1 2 -1.</_>
- <_>
- 9 5 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.5339239984750748e-003</threshold>
- <left_val>0.1208496019244194</left_val>
- <right_val>-5.4252031259238720e-003</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 2 1 -1.</_>
- <_>
- 9 5 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.1804329697042704e-003</threshold>
- <left_val>-0.1230735033750534</left_val>
- <right_val>0.1281574070453644</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 5 2 -1.</_>
- <_>
- 7 2 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6288531050086021e-003</threshold>
- <left_val>0.0316065102815628</left_val>
- <right_val>-0.2810359895229340</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 1 3 -1.</_>
- <_>
- 5 9 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.9457567557692528e-004</threshold>
- <left_val>-0.0659783333539963</left_val>
- <right_val>0.1489125043153763</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 5 2 -1.</_>
- <_>
- 7 8 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7337269168347120e-003</threshold>
- <left_val>0.0598995685577393</left_val>
- <right_val>-0.1800362020730972</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 3 3 -1.</_>
- <_>
- 7 7 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.0250649938825518e-004</threshold>
- <left_val>-0.0862240791320801</left_val>
- <right_val>0.1390471011400223</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 9 3 2 -1.</_>
- <_>
- 11 10 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1721882298588753e-003</threshold>
- <left_val>-0.0246597994118929</left_val>
- <right_val>0.0794360563158989</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 18 4 -1.</_>
- <_>
- 0 8 9 2 2.</_>
- <_>
- 9 10 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0485266894102097</threshold>
- <left_val>0.0381521992385387</left_val>
- <right_val>-0.3375906944274902</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 8 2 3 -1.</_>
- <_>
- 16 9 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4143159911036491e-003</threshold>
- <left_val>5.1525980234146118e-003</left_val>
- <right_val>-0.1651131063699722</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 2 3 -1.</_>
- <_>
- 0 9 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5702888853847980e-003</threshold>
- <left_val>-0.2356259971857071</left_val>
- <right_val>0.0417603217065334</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 4 6 -1.</_>
- <_>
- 11 10 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0222564004361629</threshold>
- <left_val>-0.0281212199479342</left_val>
- <right_val>0.1349356025457382</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 18 2 -1.</_>
- <_>
- 0 12 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8191271014511585e-003</threshold>
- <left_val>-0.1185360997915268</left_val>
- <right_val>0.0843502730131149</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 14 8 -1.</_>
- <_>
- 2 7 14 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1453399956226349</threshold>
- <left_val>-0.0286314208060503</left_val>
- <right_val>0.3568331897258759</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 2 2 -1.</_>
- <_>
- 8 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.9769659098237753e-004</threshold>
- <left_val>0.0549010299146175</left_val>
- <right_val>-0.1785632967948914</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 4 6 -1.</_>
- <_>
- 11 10 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0416826009750366</threshold>
- <left_val>-0.0183632392436266</left_val>
- <right_val>0.1616858989000320</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 3 -1.</_>
- <_>
- 9 0 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0501397587358952</threshold>
- <left_val>-0.0449284687638283</left_val>
- <right_val>0.2146534025669098</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 4 2 -1.</_>
- <_>
- 9 1 2 1 2.</_>
- <_>
- 7 2 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0929069034755230e-003</threshold>
- <left_val>0.0301715005189180</left_val>
- <right_val>-0.3513563871383667</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 8 4 6 -1.</_>
- <_>
- 3 10 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0181560907512903</threshold>
- <left_val>-0.0552617982029915</left_val>
- <right_val>0.1947118937969208</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 6 4 -1.</_>
- <_>
- 9 6 3 2 2.</_>
- <_>
- 6 8 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0202469304203987</threshold>
- <left_val>0.0373657196760178</left_val>
- <right_val>-0.3007850944995880</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 6 3 -1.</_>
- <_>
- 3 8 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0117160901427269</threshold>
- <left_val>-0.0614580996334553</left_val>
- <right_val>0.1639769971370697</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 7 2 3 -1.</_>
- <_>
- 9 8 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.1182513386011124e-003</threshold>
- <left_val>-0.0887261107563972</left_val>
- <right_val>0.0327240005135536</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 18 6 -1.</_>
- <_>
- 0 8 9 3 2.</_>
- <_>
- 9 11 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1468164026737213</threshold>
- <left_val>-0.4930160939693451</left_val>
- <right_val>0.0201582796871662</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 3 1 -1.</_>
- <_>
- 10 2 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.2891620434820652e-003</threshold>
- <left_val>-0.2514236867427826</left_val>
- <right_val>9.5387678593397141e-003</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 5 -1.</_>
- <_>
- 7 0 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0148622198030353</threshold>
- <left_val>0.2594371140003204</left_val>
- <right_val>-0.0313785411417484</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 3 2 -1.</_>
- <_>
- 10 3 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0177154596894979</threshold>
- <left_val>-0.5113834142684937</left_val>
- <right_val>7.5401309877634048e-003</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 2 1 -1.</_>
- <_>
- 7 2 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.5196522306650877e-004</threshold>
- <left_val>0.0692363083362579</left_val>
- <right_val>-0.1258170008659363</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 6 3 -1.</_>
- <_>
- 11 2 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0662163421511650</threshold>
- <left_val>-9.8208645358681679e-003</left_val>
- <right_val>0.3608235120773315</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 3 6 -1.</_>
- <_>
- 7 2 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.2799885421991348e-003</threshold>
- <left_val>-0.0748182237148285</left_val>
- <right_val>0.1512002944946289</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 16 4 -1.</_>
- <_>
- 9 3 8 2 2.</_>
- <_>
- 1 5 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126259000971913</threshold>
- <left_val>0.0625171065330505</left_val>
- <right_val>-0.1584693044424057</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 4 4 -1.</_>
- <_>
- 8 5 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0506105907261372</threshold>
- <left_val>0.4304474890232086</left_val>
- <right_val>-0.0195215903222561</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 15 14 -1.</_>
- <_>
- 8 0 5 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6441524028778076</threshold>
- <left_val>0.0196064803749323</left_val>
- <right_val>-0.3712278902530670</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 12 10 -1.</_>
- <_>
- 6 1 6 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0629194527864456</threshold>
- <left_val>-0.1244589984416962</left_val>
- <right_val>0.0681276023387909</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 11 3 1 -1.</_>
- <_>
- 16 12 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0158867593854666</threshold>
- <left_val>3.7582379300147295e-003</left_val>
- <right_val>-0.2513279914855957</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 11 1 3 -1.</_>
- <_>
- 2 12 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.3676711134612560e-003</threshold>
- <left_val>-0.1814053952693939</left_val>
- <right_val>0.0453032106161118</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 1 14 -1.</_>
- <_>
- 15 7 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0252422392368317</threshold>
- <left_val>0.0168007891625166</left_val>
- <right_val>-0.3151563107967377</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 2 6 -1.</_>
- <_>
- 8 6 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0137373497709632</threshold>
- <left_val>-0.0329083986580372</left_val>
- <right_val>0.2309325933456421</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 4 2 -1.</_>
- <_>
- 7 7 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1248359698802233e-003</threshold>
- <left_val>0.0645555630326271</left_val>
- <right_val>-0.1412463039159775</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 4 -1.</_>
- <_>
- 8 1 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0910829342901707e-003</threshold>
- <left_val>-0.4605179131031036</left_val>
- <right_val>0.0166283007711172</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 3 1 3 -1.</_>
- <_>
- 12 4 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0456880815327168e-003</threshold>
- <left_val>8.3615174517035484e-003</left_val>
- <right_val>-0.2696534991264343</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 9 9 -1.</_>
- <_>
- 7 0 3 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0344691611826420</threshold>
- <left_val>0.2158204019069672</left_val>
- <right_val>-0.0349247604608536</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 3 1 -1.</_>
- <_>
- 10 2 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.9153727458324283e-005</threshold>
- <left_val>-0.0510439388453960</left_val>
- <right_val>0.0346905216574669</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 1 3 -1.</_>
- <_>
- 8 2 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.6213719546794891e-003</threshold>
- <left_val>-0.4158585965633392</left_val>
- <right_val>0.0193911194801331</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 12 8 -1.</_>
- <_>
- 6 7 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1363825052976608</threshold>
- <left_val>-0.0445473901927471</left_val>
- <right_val>0.1760841012001038</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 2 3 -1.</_>
- <_>
- 8 1 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5193500332534313e-003</threshold>
- <left_val>-0.0905184969305992</left_val>
- <right_val>0.0875409692525864</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 14 6 -1.</_>
- <_>
- 2 6 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0783995389938354</threshold>
- <left_val>0.2648878097534180</left_val>
- <right_val>-0.0324346311390400</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 3 6 -1.</_>
- <_>
- 4 6 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1002319455146790e-003</threshold>
- <left_val>-0.1140376999974251</left_val>
- <right_val>0.1040271967649460</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 5 8 -1.</_>
- <_>
- 12 5 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0626892074942589</threshold>
- <left_val>-0.0568519681692123</left_val>
- <right_val>0.0147632304579020</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 5 8 -1.</_>
- <_>
- 1 5 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0698204934597015</threshold>
- <left_val>0.0167288593947887</left_val>
- <right_val>-0.5039923191070557</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 3 -1.</_>
- <_>
- 14 1 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0102383298799396</threshold>
- <left_val>-0.0286362692713737</left_val>
- <right_val>0.1852203011512756</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 3 3 -1.</_>
- <_>
- 4 1 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0149942804127932</threshold>
- <left_val>0.2242967933416367</left_val>
- <right_val>-0.0332668386399746</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 10 2 -1.</_>
- <_>
- 11 0 5 1 2.</_>
- <_>
- 6 1 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2933390252292156e-003</threshold>
- <left_val>0.0299122091382742</left_val>
- <right_val>-0.2173777073621750</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 16 2 -1.</_>
- <_>
- 1 0 8 1 2.</_>
- <_>
- 9 1 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0084912478923798e-003</threshold>
- <left_val>0.0341741293668747</left_val>
- <right_val>-0.2623764872550964</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 12 6 -1.</_>
- <_>
- 9 3 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1146114021539688</threshold>
- <left_val>-0.0244884397834539</left_val>
- <right_val>0.0970916673541069</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 6 3 -1.</_>
- <_>
- 8 7 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0521271787583828</threshold>
- <left_val>-0.6413993835449219</left_val>
- <right_val>0.0115570602938533</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 12 10 -1.</_>
- <_>
- 6 1 6 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0748131424188614</threshold>
- <left_val>-0.0502658300101757</left_val>
- <right_val>0.0502240210771561</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 13 6 2 -1.</_>
- <_>
- 4 13 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0191232096403837</threshold>
- <left_val>-0.3109129071235657</left_val>
- <right_val>0.0227278098464012</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 6 3 -1.</_>
- <_>
- 11 1 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0540968813002110</threshold>
- <left_val>-9.0643512085080147e-003</left_val>
- <right_val>0.2507429122924805</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 3 6 -1.</_>
- <_>
- 7 1 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0256583709269762</threshold>
- <left_val>0.2121652960777283</left_val>
- <right_val>-0.0351778715848923</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 10 4 -1.</_>
- <_>
- 8 4 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1509605050086975</threshold>
- <left_val>0.0186689905822277</left_val>
- <right_val>-0.2159824073314667</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 10 4 -1.</_>
- <_>
- 5 4 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1112224012613297</threshold>
- <left_val>0.0342452004551888</left_val>
- <right_val>-0.2157337963581085</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 9 2 4 -1.</_>
- <_>
- 16 10 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0547110479092225e-005</threshold>
- <left_val>-0.0372137017548084</left_val>
- <right_val>0.0372152701020241</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 16 2 -1.</_>
- <_>
- 1 14 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8619431219995022e-003</threshold>
- <left_val>-0.0773961320519447</left_val>
- <right_val>0.0930630415678024</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 13 14 2 -1.</_>
- <_>
- 2 14 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0341941900551319</threshold>
- <left_val>0.3447993993759155</left_val>
- <right_val>-0.0335593782365322</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 2 4 -1.</_>
- <_>
- 0 10 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2817560285329819e-003</threshold>
- <left_val>-0.2960028946399689</left_val>
- <right_val>0.0260884091258049</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 15 3 -1.</_>
- <_>
- 2 8 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0109525797888637</threshold>
- <left_val>-0.0587211996316910</left_val>
- <right_val>0.1384337991476059</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 12 8 -1.</_>
- <_>
- 3 3 12 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0810781270265579</threshold>
- <left_val>-0.0729383602738380</left_val>
- <right_val>0.0964554026722908</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 4 3 6 -1.</_>
- <_>
- 9 6 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1066536009311676</threshold>
- <left_val>-0.0128484796732664</left_val>
- <right_val>0.1897089034318924</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 6 3 -1.</_>
- <_>
- 9 6 2 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0685272365808487</threshold>
- <left_val>-0.3246979117393494</left_val>
- <right_val>0.0234368797391653</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 13 -1.</_>
- <_>
- 10 0 4 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0367356203496456</threshold>
- <left_val>-0.0583354011178017</left_val>
- <right_val>0.0843546465039253</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 12 7 -1.</_>
- <_>
- 5 0 4 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0846856981515884</threshold>
- <left_val>-0.0645033568143845</left_val>
- <right_val>0.1606536060571671</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 9 6 2 -1.</_>
- <_>
- 13 9 3 1 2.</_>
- <_>
- 10 10 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6365711130201817e-003</threshold>
- <left_val>-0.0495950989425182</left_val>
- <right_val>0.1717385947704315</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 3 -1.</_>
- <_>
- 3 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.8055797815322876e-003</threshold>
- <left_val>-0.2732417881488800</left_val>
- <right_val>0.0275324694812298</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 2 -1.</_>
- <_>
- 15 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.6100764349102974e-003</threshold>
- <left_val>-0.2327723056077957</left_val>
- <right_val>0.0202909894287586</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 10 4 -1.</_>
- <_>
- 5 2 10 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0781866833567619</threshold>
- <left_val>0.0119251701980829</left_val>
- <right_val>-0.5618839263916016</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 3 8 -1.</_>
- <_>
- 16 3 1 8 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0749451220035553</threshold>
- <left_val>2.2771470248699188e-003</left_val>
- <right_val>-0.6749752163887024</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 8 3 -1.</_>
- <_>
- 2 3 8 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0366185903549194</threshold>
- <left_val>0.1956354975700378</left_val>
- <right_val>-0.0443037599325180</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 2 -1.</_>
- <_>
- 15 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.5921240448951721e-003</threshold>
- <left_val>0.0411940589547157</left_val>
- <right_val>-0.1164683029055595</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 2 3 -1.</_>
- <_>
- 3 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.7376391962170601e-003</threshold>
- <left_val>0.0310751292854548</left_val>
- <right_val>-0.2554813921451569</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 5 2 4 -1.</_>
- <_>
- 16 5 1 2 2.</_>
- <_>
- 15 7 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8166980482637882e-003</threshold>
- <left_val>-0.0413872785866261</left_val>
- <right_val>0.2016701996326447</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 2 14 -1.</_>
- <_>
- 3 7 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0658822432160378</threshold>
- <left_val>0.0130075104534626</left_val>
- <right_val>-0.5545914173126221</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 6 2 3 -1.</_>
- <_>
- 16 7 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5577779849991202e-003</threshold>
- <left_val>-0.0237464196980000</left_val>
- <right_val>0.0413672998547554</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 2 3 -1.</_>
- <_>
- 0 7 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4769590497016907e-003</threshold>
- <left_val>-0.2681433856487274</left_val>
- <right_val>0.0244701895862818</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 5 2 4 -1.</_>
- <_>
- 16 5 1 2 2.</_>
- <_>
- 15 7 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5535528808832169e-003</threshold>
- <left_val>0.2032303065061569</left_val>
- <right_val>-0.0357219502329826</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 8 6 -1.</_>
- <_>
- 1 3 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0669888928532600</threshold>
- <left_val>-0.5183855295181274</left_val>
- <right_val>0.0108443703502417</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 6 -1.</_>
- <_>
- 16 3 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0414705388247967</threshold>
- <left_val>2.7333609759807587e-003</left_val>
- <right_val>-0.3563300967216492</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 6 -1.</_>
- <_>
- 0 3 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.4693330526351929e-003</threshold>
- <left_val>0.0982717424631119</left_val>
- <right_val>-0.0729679390788078</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 3 -1.</_>
- <_>
- 13 1 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.2196565344929695e-003</threshold>
- <left_val>0.1082827970385552</left_val>
- <right_val>-0.0472562387585640</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 4 -1.</_>
- <_>
- 5 1 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.9876541644334793e-003</threshold>
- <left_val>-0.0470379404723644</left_val>
- <right_val>0.1751355975866318</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 15 -1.</_>
- <_>
- 3 0 6 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2835718095302582</threshold>
- <left_val>0.1180493980646133</left_val>
- <right_val>-0.0566624216735363</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 4 7 -1.</_>
- <_>
- 8 1 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0311159901320934</threshold>
- <left_val>0.3807953000068665</left_val>
- <right_val>-0.0197968706488609</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 3 4 -1.</_>
- <_>
- 10 1 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0109928799793124</threshold>
- <left_val>0.0220177192240953</left_val>
- <right_val>-0.0803828462958336</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 3 -1.</_>
- <_>
- 8 1 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0165618509054184</threshold>
- <left_val>-0.4399909079074860</left_val>
- <right_val>0.0151666197925806</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 2 2 -1.</_>
- <_>
- 17 3 1 1 2.</_>
- <_>
- 16 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8488729838281870e-003</threshold>
- <left_val>-0.0196843091398478</left_val>
- <right_val>0.1602668017148972</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 2 2 -1.</_>
- <_>
- 1 2 1 1 2.</_>
- <_>
- 2 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8709079641848803e-005</threshold>
- <left_val>0.0893735587596893</left_val>
- <right_val>-0.0703077465295792</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 2 2 -1.</_>
- <_>
- 16 2 1 1 2.</_>
- <_>
- 15 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3440540796145797e-005</threshold>
- <left_val>0.1077063977718353</left_val>
- <right_val>-0.0792713835835457</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 2 2 -1.</_>
- <_>
- 1 2 1 1 2.</_>
- <_>
- 2 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1137150876456872e-005</threshold>
- <left_val>-0.0742689892649651</left_val>
- <right_val>0.0928685069084167</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 3 1 -1.</_>
- <_>
- 11 4 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0109409997239709</threshold>
- <left_val>-0.6095427870750427</left_val>
- <right_val>7.1117929182946682e-003</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 9 4 -1.</_>
- <_>
- 5 0 9 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1670096963644028</threshold>
- <left_val>0.0173986200243235</left_val>
- <right_val>-0.3483031988143921</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 3 7 -1.</_>
- <_>
- 11 3 1 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0536270104348660</threshold>
- <left_val>-0.2517541944980621</left_val>
- <right_val>3.0668680556118488e-003</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 7 3 -1.</_>
- <_>
- 7 3 7 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0168547891080379</threshold>
- <left_val>-0.2322666049003601</left_val>
- <right_val>0.0295417997986078</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 2 2 -1.</_>
- <_>
- 17 3 1 1 2.</_>
- <_>
- 16 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6016108030453324e-004</threshold>
- <left_val>0.0844743698835373</left_val>
- <right_val>-0.0292119607329369</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 2 2 -1.</_>
- <_>
- 6 6 1 1 2.</_>
- <_>
- 7 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8979410823667422e-005</threshold>
- <left_val>-0.0716504007577896</left_val>
- <right_val>0.0894464477896690</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 4 4 -1.</_>
- <_>
- 7 6 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0290991999208927</threshold>
- <left_val>0.1513338983058929</left_val>
- <right_val>-0.0443021915853024</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 10 6 -1.</_>
- <_>
- 0 3 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0603702887892723</threshold>
- <left_val>0.0239160899072886</left_val>
- <right_val>-0.2869639098644257</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 2 2 -1.</_>
- <_>
- 17 3 1 1 2.</_>
- <_>
- 16 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2198538469383493e-005</threshold>
- <left_val>-0.0552247799932957</left_val>
- <right_val>0.0630851984024048</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 2 -1.</_>
- <_>
- 0 3 1 1 2.</_>
- <_>
- 1 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3573388868244365e-005</threshold>
- <left_val>0.0917791575193405</left_val>
- <right_val>-0.0733837336301804</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 12 8 -1.</_>
- <_>
- 6 7 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0921942219138145</threshold>
- <left_val>0.0845907479524612</left_val>
- <right_val>-0.0435498803853989</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 3 3 -1.</_>
- <_>
- 6 7 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.8016350269317627e-003</threshold>
- <left_val>-0.0395293086767197</left_val>
- <right_val>0.1772428005933762</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 2 5 -1.</_>
- <_>
- 13 8 1 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0136591903865337</threshold>
- <left_val>-0.0314534008502960</left_val>
- <right_val>0.0921841263771057</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 4 4 -1.</_>
- <_>
- 7 7 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0202402602881193</threshold>
- <left_val>0.1293997019529343</left_val>
- <right_val>-0.0722166895866394</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 12 8 -1.</_>
- <_>
- 6 7 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3310942053794861</threshold>
- <left_val>-0.5684415102005005</left_val>
- <right_val>4.8965080641210079e-003</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 12 13 -1.</_>
- <_>
- 6 2 6 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3559010922908783</threshold>
- <left_val>-0.6088926196098328</left_val>
- <right_val>0.0121664199978113</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 18 6 -1.</_>
- <_>
- 0 11 18 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3267132937908173</threshold>
- <left_val>0.0114083802327514</left_val>
- <right_val>-0.5427042245864868</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 4 13 -1.</_>
- <_>
- 3 2 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0637968480587006</threshold>
- <left_val>-0.8073747158050537</left_val>
- <right_val>7.3937238194048405e-003</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 3 1 -1.</_>
- <_>
- 11 4 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.1656321845948696e-003</threshold>
- <left_val>0.0186478793621063</left_val>
- <right_val>-0.0633438527584076</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 12 9 -1.</_>
- <_>
- 7 5 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6281797885894775</threshold>
- <left_val>-0.0229623205959797</left_val>
- <right_val>0.2844201028347015</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 3 1 -1.</_>
- <_>
- 11 4 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.7043769629672170e-005</threshold>
- <left_val>-0.0583966001868248</left_val>
- <right_val>0.0271189305931330</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 1 3 -1.</_>
- <_>
- 7 4 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.2484260201454163e-003</threshold>
- <left_val>-0.3674455881118774</left_val>
- <right_val>0.0179638694971800</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 8 6 -1.</_>
- <_>
- 9 2 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2131956070661545</threshold>
- <left_val>4.8015988431870937e-003</left_val>
- <right_val>-0.2512898147106171</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 8 6 -1.</_>
- <_>
- 5 2 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0926481783390045</threshold>
- <left_val>0.4080882966518402</left_val>
- <right_val>-0.0169616807252169</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 2 1 -1.</_>
- <_>
- 12 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.7387576564215124e-005</threshold>
- <left_val>-0.1143013015389442</left_val>
- <right_val>0.0627095922827721</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 1 2 -1.</_>
- <_>
- 6 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.2264030091464520e-003</threshold>
- <left_val>-0.3810344934463501</left_val>
- <right_val>0.0188566204160452</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 4 2 -1.</_>
- <_>
- 10 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5156818814575672e-003</threshold>
- <left_val>-0.3234907984733582</left_val>
- <right_val>0.0157586503773928</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 8 2 -1.</_>
- <_>
- 4 0 4 1 2.</_>
- <_>
- 8 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1322699505835772e-003</threshold>
- <left_val>0.0371164008975029</left_val>
- <right_val>-0.1631309986114502</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 12 8 3 -1.</_>
- <_>
- 9 12 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0309491790831089</threshold>
- <left_val>-0.2248778045177460</left_val>
- <right_val>0.0159355606883764</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 16 1 -1.</_>
- <_>
- 5 13 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119997104629874</threshold>
- <left_val>0.1060421019792557</left_val>
- <right_val>-0.0560035184025764</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 13 10 1 -1.</_>
- <_>
- 7 13 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0336425602436066</threshold>
- <left_val>9.4332182779908180e-003</left_val>
- <right_val>-0.2461027950048447</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 10 1 -1.</_>
- <_>
- 6 13 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0119730802252889</threshold>
- <left_val>-0.0456926003098488</left_val>
- <right_val>0.1521279066801071</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 18 2 -1.</_>
- <_>
- 0 13 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1410526931285858</threshold>
- <left_val>-0.4025206863880158</left_val>
- <right_val>0.0161248706281185</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 3 2 -1.</_>
- <_>
- 5 7 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.8696339838206768e-003</threshold>
- <left_val>0.1223559975624085</left_val>
- <right_val>-0.0487510599195957</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 9 2 2 -1.</_>
- <_>
- 12 9 1 1 2.</_>
- <_>
- 11 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1555710118263960e-003</threshold>
- <left_val>-0.0184163097292185</left_val>
- <right_val>0.1451521962881088</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 13 2 -1.</_>
- <_>
- 1 13 13 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4534349795430899e-003</threshold>
- <left_val>-0.0905656665563583</left_val>
- <right_val>0.0633557364344597</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 9 3 6 -1.</_>
- <_>
- 11 11 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2382410503923893e-003</threshold>
- <left_val>-0.0410471595823765</left_val>
- <right_val>0.0727308094501495</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 4 2 -1.</_>
- <_>
- 9 8 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0143192103132606</threshold>
- <left_val>-0.1792961955070496</left_val>
- <right_val>0.0365735515952110</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 1 3 -1.</_>
- <_>
- 10 6 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0105856303125620</threshold>
- <left_val>-0.3884933888912201</left_val>
- <right_val>7.9265926033258438e-003</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 8 4 -1.</_>
- <_>
- 1 9 4 2 2.</_>
- <_>
- 5 11 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9276917278766632e-003</threshold>
- <left_val>-0.0575792603194714</left_val>
- <right_val>0.1015077978372574</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 8 10 -1.</_>
- <_>
- 14 5 4 5 2.</_>
- <_>
- 10 10 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0579179786145687</threshold>
- <left_val>0.0137350102886558</left_val>
- <right_val>-0.1917247027158737</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 10 3 2 -1.</_>
- <_>
- 3 11 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.2071853578090668e-003</threshold>
- <left_val>-0.2001218944787979</left_val>
- <right_val>0.0331920385360718</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 16 9 -1.</_>
- <_>
- 1 4 16 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0835009291768074</threshold>
- <left_val>0.2925198078155518</left_val>
- <right_val>-0.0229036696255207</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 4 2 -1.</_>
- <_>
- 8 5 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.5707109384238720e-003</threshold>
- <left_val>-0.1910977959632874</left_val>
- <right_val>0.0408679395914078</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 6 3 -1.</_>
- <_>
- 14 2 2 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0281076692044735</threshold>
- <left_val>-0.1395559012889862</left_val>
- <right_val>0.0228978395462036</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 6 3 -1.</_>
- <_>
- 3 12 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0228165406733751</threshold>
- <left_val>-0.2577002942562103</left_val>
- <right_val>0.0229892395436764</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 7 3 2 -1.</_>
- <_>
- 12 8 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.2285268902778625e-003</threshold>
- <left_val>-0.0617472901940346</left_val>
- <right_val>0.0377134010195732</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 4 4 -1.</_>
- <_>
- 4 8 2 2 2.</_>
- <_>
- 6 10 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0513508506119251e-003</threshold>
- <left_val>-0.0416271314024925</left_val>
- <right_val>0.1556749045848846</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 9 11 -1.</_>
- <_>
- 9 0 3 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0407820083200932</threshold>
- <left_val>0.2559697926044464</left_val>
- <right_val>-0.0251890700310469</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 6 1 -1.</_>
- <_>
- 10 2 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.2671699561178684e-003</threshold>
- <left_val>-0.0976725667715073</left_val>
- <right_val>0.0727524906396866</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 2 2 -1.</_>
- <_>
- 8 10 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1280509643256664e-003</threshold>
- <left_val>0.0736560374498367</left_val>
- <right_val>-0.1138757988810539</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 17 2 -1.</_>
- <_>
- 0 10 17 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8747308105230331e-003</threshold>
- <left_val>-0.0667891502380371</left_val>
- <right_val>0.1315107941627502</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 14 6 -1.</_>
- <_>
- 2 3 14 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0337627902626991</threshold>
- <left_val>-0.1893121004104614</left_val>
- <right_val>0.0347666181623936</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 2 2 -1.</_>
- <_>
- 0 13 1 1 2.</_>
- <_>
- 1 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1757418987108395e-005</threshold>
- <left_val>-0.0780986174941063</left_val>
- <right_val>0.0798301994800568</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 10 10 -1.</_>
- <_>
- 10 4 5 5 2.</_>
- <_>
- 5 9 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1017585024237633</threshold>
- <left_val>0.0175233595073223</left_val>
- <right_val>-0.2194790989160538</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 12 9 -1.</_>
- <_>
- 7 4 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1176455989480019</threshold>
- <left_val>0.1473899036645889</left_val>
- <right_val>-0.0428058393299580</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 4 5 6 -1.</_>
- <_>
- 12 4 5 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1903167963027954</threshold>
- <left_val>-0.3762378990650177</left_val>
- <right_val>3.8982050027698278e-003</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 6 5 -1.</_>
- <_>
- 6 4 3 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2182461023330689</threshold>
- <left_val>7.8864647075533867e-003</left_val>
- <right_val>-0.6451690196990967</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 2 2 -1.</_>
- <_>
- 9 1 1 1 2.</_>
- <_>
- 8 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1720587837044150e-005</threshold>
- <left_val>-0.0688135400414467</left_val>
- <right_val>0.0783134102821350</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 2 2 -1.</_>
- <_>
- 8 1 1 1 2.</_>
- <_>
- 9 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6815136708319187e-005</threshold>
- <left_val>-0.0691982433199883</left_val>
- <right_val>0.0981492102146149</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 2 2 -1.</_>
- <_>
- 8 8 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5573709970340133e-003</threshold>
- <left_val>0.0455104112625122</left_val>
- <right_val>-0.1185887008905411</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 18 3 -1.</_>
- <_>
- 0 9 18 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0153560703620315</threshold>
- <left_val>-0.0377323292195797</left_val>
- <right_val>0.1619653999805450</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 1 3 -1.</_>
- <_>
- 8 7 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.4422818832099438e-004</threshold>
- <left_val>-0.0492143407464027</left_val>
- <right_val>0.0385965816676617</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 2 3 -1.</_>
- <_>
- 6 1 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.0240670312196016e-003</threshold>
- <left_val>0.0198773108422756</left_val>
- <right_val>-0.2735247015953064</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 5 6 10 -1.</_>
- <_>
- 12 10 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2404906004667282</threshold>
- <left_val>-0.3223324120044708</left_val>
- <right_val>9.9804811179637909e-003</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 3 1 -1.</_>
- <_>
- 10 7 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.8453960120677948e-003</threshold>
- <left_val>-0.2682495117187500</left_val>
- <right_val>0.0200939793139696</right_val></_></_>
- <_>
- <!-- tree 181 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 12 4 -1.</_>
- <_>
- 3 5 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0982210710644722</threshold>
- <left_val>0.3673144876956940</left_val>
- <right_val>-0.0167514402419329</right_val></_></_>
- <_>
- <!-- tree 182 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 7 3 -1.</_>
- <_>
- 5 6 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0333984605967999</threshold>
- <left_val>-0.7586281895637512</left_val>
- <right_val>9.9286399781703949e-003</right_val></_></_>
- <_>
- <!-- tree 183 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 4 3 -1.</_>
- <_>
- 13 2 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0322372205555439</threshold>
- <left_val>0.2238357961177826</left_val>
- <right_val>-0.0126148099079728</right_val></_></_>
- <_>
- <!-- tree 184 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 3 4 -1.</_>
- <_>
- 5 2 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0332839600741863</threshold>
- <left_val>0.2973837852478027</left_val>
- <right_val>-0.0196489002555609</right_val></_></_>
- <_>
- <!-- tree 185 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 2 2 -1.</_>
- <_>
- 17 3 1 1 2.</_>
- <_>
- 16 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3496932853013277e-005</threshold>
- <left_val>0.0579334609210491</left_val>
- <right_val>-0.0438858605921268</right_val></_></_>
- <_>
- <!-- tree 186 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 2 -1.</_>
- <_>
- 0 3 1 1 2.</_>
- <_>
- 1 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6012212957721204e-005</threshold>
- <left_val>-0.0718164891004562</left_val>
- <right_val>0.0869365110993385</right_val></_></_>
- <_>
- <!-- tree 187 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 4 2 -1.</_>
- <_>
- 11 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0270447190850973</threshold>
- <left_val>7.5920550152659416e-003</left_val>
- <right_val>-0.5451955795288086</right_val></_></_>
- <_>
- <!-- tree 188 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 4 -1.</_>
- <_>
- 7 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.8314275965094566e-003</threshold>
- <left_val>0.0235845800489187</left_val>
- <right_val>-0.2437285035848618</right_val></_></_>
- <_>
- <!-- tree 189 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 3 4 3 -1.</_>
- <_>
- 13 4 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0142732895910740</threshold>
- <left_val>0.1202424988150597</left_val>
- <right_val>-0.0208050198853016</right_val></_></_>
- <_>
- <!-- tree 190 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 1 4 -1.</_>
- <_>
- 0 6 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4047421067953110e-003</threshold>
- <left_val>0.0242772400379181</left_val>
- <right_val>-0.2434611022472382</right_val></_></_>
- <_>
- <!-- tree 191 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 5 2 3 -1.</_>
- <_>
- 14 6 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.1703050006181002e-003</threshold>
- <left_val>0.0476825311779976</left_val>
- <right_val>-0.0285765398293734</right_val></_></_>
- <_>
- <!-- tree 192 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 18 6 -1.</_>
- <_>
- 0 6 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0646167024970055</threshold>
- <left_val>-0.0725622028112412</left_val>
- <right_val>0.0955711901187897</right_val></_></_>
- <_>
- <!-- tree 193 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 5 2 3 -1.</_>
- <_>
- 14 6 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0361361317336559</threshold>
- <left_val>-0.2291781008243561</left_val>
- <right_val>2.1050409413874149e-003</right_val></_></_>
- <_>
- <!-- tree 194 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 3 2 -1.</_>
- <_>
- 4 6 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0191675499081612</threshold>
- <left_val>0.3006345927715302</left_val>
- <right_val>-0.0226390194147825</right_val></_></_>
- <_>
- <!-- tree 195 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 1 4 -1.</_>
- <_>
- 10 7 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0103014996275306</threshold>
- <left_val>0.0199798997491598</left_val>
- <right_val>-0.1185344010591507</right_val></_></_>
- <_>
- <!-- tree 196 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 4 7 -1.</_>
- <_>
- 3 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0250420607626438</threshold>
- <left_val>0.0137328598648310</left_val>
- <right_val>-0.4401232004165649</right_val></_></_>
- <_>
- <!-- tree 197 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 9 4 -1.</_>
- <_>
- 9 0 9 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1180287972092629</threshold>
- <left_val>-0.0238245893269777</left_val>
- <right_val>0.0961270332336426</right_val></_></_>
- <_>
- <!-- tree 198 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 6 6 -1.</_>
- <_>
- 3 11 2 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2905329763889313e-003</threshold>
- <left_val>-0.0817760676145554</left_val>
- <right_val>0.0683934092521667</right_val></_></_>
- <_>
- <!-- tree 199 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 5 6 10 -1.</_>
- <_>
- 12 10 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0107107702642679</threshold>
- <left_val>0.0433344282209873</left_val>
- <right_val>-0.0750979110598564</right_val></_></_>
- <_>
- <!-- tree 200 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 15 14 -1.</_>
- <_>
- 5 0 5 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2691828906536102</threshold>
- <left_val>-0.0395036600530148</left_val>
- <right_val>0.1450473070144653</right_val></_></_>
- <_>
- <!-- tree 201 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 4 9 -1.</_>
- <_>
- 7 3 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0227638091892004</threshold>
- <left_val>0.0996726229786873</left_val>
- <right_val>-0.0775553807616234</right_val></_></_>
- <_>
- <!-- tree 202 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 9 -1.</_>
- <_>
- 9 0 2 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1211519017815590</threshold>
- <left_val>-0.3949747085571289</left_val>
- <right_val>0.0166401192545891</right_val></_></_>
- <_>
- <!-- tree 203 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 3 1 -1.</_>
- <_>
- 10 5 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1451293479185551e-005</threshold>
- <left_val>-0.0532115213572979</left_val>
- <right_val>0.0365702211856842</right_val></_></_>
- <_>
- <!-- tree 204 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 6 3 -1.</_>
- <_>
- 7 4 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8077360950410366e-003</threshold>
- <left_val>-0.0913413763046265</left_val>
- <right_val>0.0747274905443192</right_val></_></_>
- <_>
- <!-- tree 205 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 8 -1.</_>
- <_>
- 7 0 4 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0622831098735332</threshold>
- <left_val>0.4490456879138947</left_val>
- <right_val>-0.0142916804179549</right_val></_></_>
- <_>
- <!-- tree 206 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 3 3 -1.</_>
- <_>
- 4 5 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0165455099195242</threshold>
- <left_val>0.2153764069080353</left_val>
- <right_val>-0.0266895107924938</right_val></_></_>
- <_>
- <!-- tree 207 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 3 2 -1.</_>
- <_>
- 10 3 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.5320530235767365e-003</threshold>
- <left_val>-0.1502870023250580</left_val>
- <right_val>8.1632016226649284e-003</right_val></_></_>
- <_>
- <!-- tree 208 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 14 2 1 -1.</_>
- <_>
- 4 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1539638661779463e-005</threshold>
- <left_val>0.0777021870017052</left_val>
- <right_val>-0.0744352191686630</right_val></_></_>
- <_>
- <!-- tree 209 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 3 2 -1.</_>
- <_>
- 10 3 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.1616528332233429e-003</threshold>
- <left_val>0.0125406999140978</left_val>
- <right_val>-0.0472638383507729</right_val></_></_>
- <_>
- <!-- tree 210 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 2 3 -1.</_>
- <_>
- 8 3 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0160646103322506</threshold>
- <left_val>-0.6305596828460693</left_val>
- <right_val>8.5211051627993584e-003</right_val></_></_>
- <_>
- <!-- tree 211 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 16 6 -1.</_>
- <_>
- 1 7 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0944218188524246</threshold>
- <left_val>0.1380808949470520</left_val>
- <right_val>-0.0399546995759010</right_val></_></_>
- <_>
- <!-- tree 212 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 4 9 -1.</_>
- <_>
- 0 6 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0701284334063530</threshold>
- <left_val>-0.2750720083713532</left_val>
- <right_val>0.0264193192124367</right_val></_></_>
- <_>
- <!-- tree 213 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 6 4 -1.</_>
- <_>
- 13 8 3 2 2.</_>
- <_>
- 10 10 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0142810000106692</threshold>
- <left_val>0.0840907394886017</left_val>
- <right_val>-0.0420290790498257</right_val></_></_>
- <_>
- <!-- tree 214 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 6 4 -1.</_>
- <_>
- 2 8 3 2 2.</_>
- <_>
- 5 10 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0205234792083502</threshold>
- <left_val>0.1520801037549973</left_val>
- <right_val>-0.0386744514107704</right_val></_></_>
- <_>
- <!-- tree 215 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 16 6 -1.</_>
- <_>
- 5 4 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3157497048377991</threshold>
- <left_val>8.8831735774874687e-003</left_val>
- <right_val>-0.6855131983757019</right_val></_></_>
- <_>
- <!-- tree 216 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 2 1 -1.</_>
- <_>
- 7 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9291431680321693e-003</threshold>
- <left_val>6.9111599586904049e-003</left_val>
- <right_val>-0.6073105931282044</right_val></_></_>
- <_>
- <!-- tree 217 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 2 2 -1.</_>
- <_>
- 9 1 1 1 2.</_>
- <_>
- 8 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0803038650192320e-005</threshold>
- <left_val>-0.0669746771454811</left_val>
- <right_val>0.0759973376989365</right_val></_></_>
- <_>
- <!-- tree 218 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 6 4 -1.</_>
- <_>
- 2 8 3 2 2.</_>
- <_>
- 5 10 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9074257994070649e-004</threshold>
- <left_val>-0.0574223808944225</left_val>
- <right_val>0.0896140709519386</right_val></_></_>
- <_>
- <!-- tree 219 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 2 10 -1.</_>
- <_>
- 15 3 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0755855664610863</threshold>
- <left_val>5.4939449764788151e-003</left_val>
- <right_val>-0.5068221092224121</right_val></_></_>
- <_>
- <!-- tree 220 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 10 2 -1.</_>
- <_>
- 3 3 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0170325208455324</threshold>
- <left_val>-0.0700998529791832</left_val>
- <right_val>0.0843230485916138</right_val></_></_>
- <_>
- <!-- tree 221 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 18 2 -1.</_>
- <_>
- 9 12 9 1 2.</_>
- <_>
- 0 13 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0122383302077651</threshold>
- <left_val>0.0335065089166164</left_val>
- <right_val>-0.1545374989509583</right_val></_></_>
- <_>
- <!-- tree 222 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 6 4 -1.</_>
- <_>
- 5 9 3 2 2.</_>
- <_>
- 8 11 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0126505699008703</threshold>
- <left_val>-0.0344986617565155</left_val>
- <right_val>0.1735837012529373</right_val></_></_>
- <_>
- <!-- tree 223 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 2 -1.</_>
- <_>
- 16 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.9281910285353661e-003</threshold>
- <left_val>0.0331528484821320</left_val>
- <right_val>-0.1206599026918411</right_val></_></_>
- <_>
- <!-- tree 224 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 7 8 -1.</_>
- <_>
- 0 11 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1848583966493607</threshold>
- <left_val>-0.4430884122848511</left_val>
- <right_val>0.0122470501810312</right_val></_></_>
- <_>
- <!-- tree 225 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.5704691223800182e-003</threshold>
- <left_val>-0.2837153971195221</left_val>
- <right_val>0.0119533604010940</right_val></_></_>
- <_>
- <!-- tree 226 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 2 2 -1.</_>
- <_>
- 2 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.8720408560475335e-005</threshold>
- <left_val>0.0606255605816841</left_val>
- <right_val>-0.0905942320823669</right_val></_></_>
- <_>
- <!-- tree 227 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 15 -1.</_>
- <_>
- 15 0 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1587649825960398e-003</threshold>
- <left_val>0.0718974173069000</left_val>
- <right_val>-0.0716387107968330</right_val></_></_>
- <_>
- <!-- tree 228 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 3 15 -1.</_>
- <_>
- 2 0 1 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0426199585199356</threshold>
- <left_val>-0.6301267743110657</left_val>
- <right_val>9.0704262256622314e-003</right_val></_></_>
- <_>
- <!-- tree 229 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 1 4 -1.</_>
- <_>
- 17 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1494319662451744e-003</threshold>
- <left_val>0.0701255127787590</left_val>
- <right_val>-0.0302376300096512</right_val></_></_>
- <_>
- <!-- tree 230 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 14 8 1 -1.</_>
- <_>
- 5 14 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0273208916187286e-003</threshold>
- <left_val>-0.2084393054246903</left_val>
- <right_val>0.0256627295166254</right_val></_></_>
- <_>
- <!-- tree 231 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 1 8 -1.</_>
- <_>
- 17 7 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0193650294095278</threshold>
- <left_val>-0.2186844944953919</left_val>
- <right_val>0.0394974797964096</right_val></_></_>
- <_>
- <!-- tree 232 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 6 -1.</_>
- <_>
- 0 11 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1413332968950272</threshold>
- <left_val>0.1758708953857422</left_val>
- <right_val>-0.0300297401845455</right_val></_></_>
- <_>
- <!-- tree 233 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 2 4 -1.</_>
- <_>
- 8 5 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0533920079469681e-003</threshold>
- <left_val>0.1257833987474442</left_val>
- <right_val>-0.0422852896153927</right_val></_></_>
- <_>
- <!-- tree 234 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 10 8 -1.</_>
- <_>
- 1 0 5 4 2.</_>
- <_>
- 6 4 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1119036369491369e-005</threshold>
- <left_val>-0.0801948532462120</left_val>
- <right_val>0.0698323473334312</right_val></_></_>
- <_>
- <!-- tree 235 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 12 -1.</_>
- <_>
- 16 6 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0569412186741829</threshold>
- <left_val>0.0166890900582075</left_val>
- <right_val>-0.5283920764923096</right_val></_></_>
- <_>
- <!-- tree 236 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 12 -1.</_>
- <_>
- 0 6 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0546842515468597</threshold>
- <left_val>-0.2039314955472946</left_val>
- <right_val>0.0286209303885698</right_val></_></_>
- <_>
- <!-- tree 237 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 6 1 2 -1.</_>
- <_>
- 17 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8811619965126738e-005</threshold>
- <left_val>0.0418041013181210</left_val>
- <right_val>-0.0470252297818661</right_val></_></_>
- <_>
- <!-- tree 238 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 2 2 -1.</_>
- <_>
- 9 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.7949440516531467e-003</threshold>
- <left_val>-0.0756849274039268</left_val>
- <right_val>0.0691110491752625</right_val></_></_>
- <_>
- <!-- tree 239 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 4 1 -1.</_>
- <_>
- 7 2 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9679369181394577e-003</threshold>
- <left_val>-0.0375063605606556</left_val>
- <right_val>0.1656157970428467</right_val></_></_>
- <_>
- <!-- tree 240 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 10 8 -1.</_>
- <_>
- 3 4 10 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0288094598799944</threshold>
- <left_val>-0.1236065030097961</left_val>
- <right_val>0.0496754795312881</right_val></_></_>
- <_>
- <!-- tree 241 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 16 2 -1.</_>
- <_>
- 1 8 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0495251305401325e-003</threshold>
- <left_val>-0.0319622196257114</left_val>
- <right_val>0.1952590048313141</right_val></_></_>
- <_>
- <!-- tree 242 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 2 12 -1.</_>
- <_>
- 3 4 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0620033591985703</threshold>
- <left_val>-0.3827818930149078</left_val>
- <right_val>0.0150613198056817</right_val></_></_>
- <_>
- <!-- tree 243 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 2 2 -1.</_>
- <_>
- 16 3 1 1 2.</_>
- <_>
- 15 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1115748647134751e-005</threshold>
- <left_val>0.0677575394511223</left_val>
- <right_val>-0.0526314005255699</right_val></_></_>
- <_>
- <!-- tree 244 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 2 2 -1.</_>
- <_>
- 1 3 1 1 2.</_>
- <_>
- 2 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5218940512277186e-005</threshold>
- <left_val>0.0864468365907669</left_val>
- <right_val>-0.0672251731157303</right_val></_></_>
- <_>
- <!-- tree 245 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 2 4 -1.</_>
- <_>
- 16 3 1 2 2.</_>
- <_>
- 15 5 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5194161832332611e-003</threshold>
- <left_val>-0.0172452796250582</left_val>
- <right_val>0.1654276996850967</right_val></_></_>
- <_>
- <!-- tree 246 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 18 2 -1.</_>
- <_>
- 0 1 9 1 2.</_>
- <_>
- 9 2 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103026004508138</threshold>
- <left_val>-0.2367701977491379</left_val>
- <right_val>0.0223297607153654</right_val></_></_>
- <_>
- <!-- tree 247 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 5 3 3 -1.</_>
- <_>
- 15 5 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1106292046606541e-003</threshold>
- <left_val>-0.0202375706285238</left_val>
- <right_val>0.0889737829566002</right_val></_></_>
- <_>
- <!-- tree 248 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 3 3 -1.</_>
- <_>
- 2 5 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2337420377880335e-003</threshold>
- <left_val>-0.0461580082774162</left_val>
- <right_val>0.1101254001259804</right_val></_></_>
- <_>
- <!-- tree 249 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 4 7 -1.</_>
- <_>
- 13 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0754150971770287</threshold>
- <left_val>-0.4367196857929230</left_val>
- <right_val>7.0562111213803291e-003</right_val></_></_>
- <_>
- <!-- tree 250 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 2 1 -1.</_>
- <_>
- 1 12 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.5641689319163561e-003</threshold>
- <left_val>-0.2036014944314957</left_val>
- <right_val>0.0260564293712378</right_val></_></_>
- <_>
- <!-- tree 251 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 2 10 -1.</_>
- <_>
- 17 4 1 5 2.</_>
- <_>
- 16 9 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5477738864719868e-003</threshold>
- <left_val>0.0682261064648628</left_val>
- <right_val>-0.0227576401084661</right_val></_></_>
- <_>
- <!-- tree 252 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 2 10 -1.</_>
- <_>
- 0 4 1 5 2.</_>
- <_>
- 1 9 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1273330096155405e-003</threshold>
- <left_val>-0.0515966191887856</left_val>
- <right_val>0.1104556024074554</right_val></_></_>
- <_>
- <!-- tree 253 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 10 2 1 -1.</_>
- <_>
- 16 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2469911538064480e-003</threshold>
- <left_val>-0.2812859117984772</left_val>
- <right_val>3.2531570177525282e-003</right_val></_></_>
- <_>
- <!-- tree 254 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 2 1 -1.</_>
- <_>
- 1 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2346920710988343e-005</threshold>
- <left_val>0.0701061934232712</left_val>
- <right_val>-0.0941527709364891</right_val></_></_>
- <_>
- <!-- tree 255 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 6 2 1 -1.</_>
- <_>
- 16 6 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0246129799634218</threshold>
- <left_val>-0.8730425238609314</left_val>
- <right_val>1.3450640253722668e-003</right_val></_></_>
- <_>
- <!-- tree 256 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 6 1 2 -1.</_>
- <_>
- 2 6 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.5978900268673897e-003</threshold>
- <left_val>-0.1704172044992447</left_val>
- <right_val>0.0319982208311558</right_val></_></_>
- <_>
- <!-- tree 257 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 4 7 -1.</_>
- <_>
- 13 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0729575231671333</threshold>
- <left_val>5.0021768547594547e-003</left_val>
- <right_val>-0.4682140052318573</right_val></_></_>
- <_>
- <!-- tree 258 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 4 7 -1.</_>
- <_>
- 3 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0829254165291786</threshold>
- <left_val>-0.6825491189956665</left_val>
- <right_val>6.8542738445103168e-003</right_val></_></_>
- <_>
- <!-- tree 259 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 4 -1.</_>
- <_>
- 9 9 9 2 2.</_>
- <_>
- 0 11 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1458497941493988</threshold>
- <left_val>4.4581899419426918e-003</left_val>
- <right_val>-0.9136692881584168</right_val></_></_>
- <_>
- <!-- tree 260 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 3 2 -1.</_>
- <_>
- 9 7 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0121017899364233</threshold>
- <left_val>0.0244141705334187</left_val>
- <right_val>-0.1811750978231430</right_val></_></_>
- <_>
- <!-- tree 261 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 8 4 -1.</_>
- <_>
- 12 7 4 2 2.</_>
- <_>
- 8 9 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0606673695147038</threshold>
- <left_val>0.2293484061956406</left_val>
- <right_val>-0.0143234599381685</right_val></_></_>
- <_>
- <!-- tree 262 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 9 3 -1.</_>
- <_>
- 1 13 9 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0207455400377512</threshold>
- <left_val>-0.0269107203930616</left_val>
- <right_val>0.1933422982692719</right_val></_></_>
- <_>
- <!-- tree 263 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 13 1 2 -1.</_>
- <_>
- 13 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7412481186911464e-004</threshold>
- <left_val>-0.0299135297536850</left_val>
- <right_val>0.0458732806146145</right_val></_></_>
- <_>
- <!-- tree 264 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 18 2 -1.</_>
- <_>
- 0 13 9 1 2.</_>
- <_>
- 9 14 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0135493697598577</threshold>
- <left_val>0.0344336815178394</left_val>
- <right_val>-0.1811697930097580</right_val></_></_>
- <_>
- <!-- tree 265 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 11 8 4 -1.</_>
- <_>
- 7 13 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1226418018341065</threshold>
- <left_val>8.5802376270294189e-003</left_val>
- <right_val>-0.3556774854660034</right_val></_></_>
- <_>
- <!-- tree 266 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 18 4 -1.</_>
- <_>
- 0 7 9 2 2.</_>
- <_>
- 9 9 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0671608373522758</threshold>
- <left_val>0.0152594400569797</left_val>
- <right_val>-0.3348085880279541</right_val></_></_>
- <_>
- <!-- tree 267 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 9 6 -1.</_>
- <_>
- 5 4 9 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0246475301682949</threshold>
- <left_val>0.1960427016019821</left_val>
- <right_val>-0.0251305196434259</right_val></_></_>
- <_>
- <!-- tree 268 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 6 4 -1.</_>
- <_>
- 6 5 3 2 2.</_>
- <_>
- 9 7 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0161939505487680</threshold>
- <left_val>0.0255086906254292</left_val>
- <right_val>-0.2101009041070938</right_val></_></_>
- <_>
- <!-- tree 269 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 9 9 -1.</_>
- <_>
- 9 3 3 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4493438005447388</threshold>
- <left_val>-0.0108507098630071</left_val>
- <right_val>0.2636126875877380</right_val></_></_>
- <_>
- <!-- tree 270 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 4 -1.</_>
- <_>
- 7 0 2 2 2.</_>
- <_>
- 9 2 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100060002878308</threshold>
- <left_val>0.0162830203771591</left_val>
- <right_val>-0.3397836983203888</right_val></_></_>
- <_>
- <!-- tree 271 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 10 2 2 -1.</_>
- <_>
- 10 10 1 1 2.</_>
- <_>
- 9 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.3295390312559903e-004</threshold>
- <left_val>0.0482161790132523</left_val>
- <right_val>-0.0331645794212818</right_val></_></_>
- <_>
- <!-- tree 272 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 3 6 -1.</_>
- <_>
- 4 2 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0285563599318266</threshold>
- <left_val>-0.1401145011186600</left_val>
- <right_val>0.0359319001436234</right_val></_></_>
- <_>
- <!-- tree 273 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 1 3 -1.</_>
- <_>
- 16 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.8772169761359692e-003</threshold>
- <left_val>-0.0123321795836091</left_val>
- <right_val>0.1552557051181793</right_val></_></_>
- <_>
- <!-- tree 274 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 3 1 -1.</_>
- <_>
- 2 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.6129318866878748e-003</threshold>
- <left_val>-0.0435581207275391</left_val>
- <right_val>0.1222198009490967</right_val></_></_>
- <_>
- <!-- tree 275 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 15 -1.</_>
- <_>
- 11 5 1 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3278479874134064</threshold>
- <left_val>1.3112389715388417e-003</left_val>
- <right_val>-0.8163402080535889</right_val></_></_>
- <_>
- <!-- tree 276 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 3 15 -1.</_>
- <_>
- 6 5 1 5 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1535089015960693</threshold>
- <left_val>0.0153489299118519</left_val>
- <right_val>-0.3360393047332764</right_val></_></_>
- <_>
- <!-- tree 277 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 1 4 -1.</_>
- <_>
- 16 1 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0102507965639234e-004</threshold>
- <left_val>-0.0325689390301704</left_val>
- <right_val>0.0637555792927742</right_val></_></_>
- <_>
- <!-- tree 278 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 1 2 -1.</_>
- <_>
- 1 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4206269346177578e-005</threshold>
- <left_val>0.0817376524209976</left_val>
- <right_val>-0.0669129565358162</right_val></_></_>
- <_>
- <!-- tree 279 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.3565158955752850e-003</threshold>
- <left_val>-0.1260069012641907</left_val>
- <right_val>0.0223339106887579</right_val></_></_>
- <_>
- <!-- tree 280 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 17 10 -1.</_>
- <_>
- 0 5 17 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0652299970388412</threshold>
- <left_val>-0.0320342108607292</left_val>
- <right_val>0.1782056987285614</right_val></_></_>
- <_>
- <!-- tree 281 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 3 10 -1.</_>
- <_>
- 12 5 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0175189711153507e-003</threshold>
- <left_val>0.0244843903928995</left_val>
- <right_val>-0.0572246313095093</right_val></_></_>
- <_>
- <!-- tree 282 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.0746080018579960e-003</threshold>
- <left_val>9.8791662603616714e-003</left_val>
- <right_val>-0.5422024726867676</right_val></_></_>
- <_>
- <!-- tree 283 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 2 2 -1.</_>
- <_>
- 16 2 1 1 2.</_>
- <_>
- 15 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5917898609768599e-005</threshold>
- <left_val>-0.0516582205891609</left_val>
- <right_val>0.0567629300057888</right_val></_></_>
- <_>
- <!-- tree 284 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 9 6 -1.</_>
- <_>
- 6 5 3 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3082883059978485</threshold>
- <left_val>-9.5853386446833611e-003</left_val>
- <right_val>0.5343317985534668</right_val></_></_>
- <_>
- <!-- tree 285 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 11 2 -1.</_>
- <_>
- 6 4 11 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0102557903155684</threshold>
- <left_val>0.0248383395373821</left_val>
- <right_val>-0.1651663035154343</right_val></_></_>
- <_>
- <!-- tree 286 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 2 2 -1.</_>
- <_>
- 1 2 1 1 2.</_>
- <_>
- 2 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3460840717889369e-005</threshold>
- <left_val>0.0798209980130196</left_val>
- <right_val>-0.0650218427181244</right_val></_></_>
- <_>
- <!-- tree 287 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 4 2 -1.</_>
- <_>
- 14 1 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.3789680562913418e-003</threshold>
- <left_val>0.0478302501142025</left_val>
- <right_val>-0.0529914908111095</right_val></_></_>
- <_>
- <!-- tree 288 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 2 4 -1.</_>
- <_>
- 4 1 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.6755929253995419e-003</threshold>
- <left_val>0.1244622021913528</left_val>
- <right_val>-0.0447519905865192</right_val></_></_></trees>
- <stage_threshold>-1.2427099943161011</stage_threshold>
- <parent>14</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 16 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 4 6 -1.</_>
- <_>
- 6 6 4 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1075673997402191</threshold>
- <left_val>0.3405114114284515</left_val>
- <right_val>-0.1520918011665344</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 4 -1.</_>
- <_>
- 13 1 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0435164310038090</threshold>
- <left_val>-0.0135334003716707</left_val>
- <right_val>0.2857075035572052</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 8 4 -1.</_>
- <_>
- 0 9 4 2 2.</_>
- <_>
- 4 11 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1509097069501877</threshold>
- <left_val>5.0420017214491963e-004</left_val>
- <right_val>-560.7666015625000000</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 8 3 3 -1.</_>
- <_>
- 16 9 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.1543149426579475e-003</threshold>
- <left_val>-0.0573937706649303</left_val>
- <right_val>0.1638182997703552</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 14 4 -1.</_>
- <_>
- 2 9 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1034078970551491</threshold>
- <left_val>0.2298991978168488</left_val>
- <right_val>-0.1285800039768219</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 1 -1.</_>
- <_>
- 9 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.5287488289177418e-003</threshold>
- <left_val>0.0714707821607590</left_val>
- <right_val>-0.0257890298962593</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 1 4 -1.</_>
- <_>
- 9 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.6443499848246574e-003</threshold>
- <left_val>-0.2222723066806793</left_val>
- <right_val>0.1241116970777512</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 14 15 -1.</_>
- <_>
- 2 0 7 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5374997854232788</threshold>
- <left_val>0.0139470295980573</left_val>
- <right_val>0.5212510824203491</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 14 4 -1.</_>
- <_>
- 1 9 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2701308131217957</threshold>
- <left_val>-0.0199047792702913</left_val>
- <right_val>-630.8125000000000000</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 8 7 -1.</_>
- <_>
- 11 8 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103687699884176</threshold>
- <left_val>0.1052728965878487</left_val>
- <right_val>-0.1294572055339813</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 4 4 -1.</_>
- <_>
- 5 1 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0156045500189066</threshold>
- <left_val>0.2159546017646790</left_val>
- <right_val>-0.0988422036170959</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 9 8 -1.</_>
- <_>
- 11 6 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2028758972883225</threshold>
- <left_val>-0.2773951888084412</left_val>
- <right_val>3.4634380135685205e-003</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 9 8 -1.</_>
- <_>
- 4 6 3 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0271604191511869</threshold>
- <left_val>0.1002269983291626</left_val>
- <right_val>-0.2054217010736466</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 4 2 -1.</_>
- <_>
- 7 7 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2366848103702068e-003</threshold>
- <left_val>0.1270543932914734</left_val>
- <right_val>-0.1254777014255524</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 3 -1.</_>
- <_>
- 7 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.6215238980948925e-003</threshold>
- <left_val>0.0448268912732601</left_val>
- <right_val>-0.2724570035934448</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 6 3 2 -1.</_>
- <_>
- 11 7 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.7956638522446156e-003</threshold>
- <left_val>-0.1338658928871155</left_val>
- <right_val>0.0271778404712677</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 18 14 -1.</_>
- <_>
- 0 1 9 7 2.</_>
- <_>
- 9 8 9 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2197666019201279</threshold>
- <left_val>-0.2527695000171661</left_val>
- <right_val>0.0464650392532349</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 2 2 -1.</_>
- <_>
- 11 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6517988666892052e-003</threshold>
- <left_val>0.0109347002580762</left_val>
- <right_val>-0.3559803962707520</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 2 2 -1.</_>
- <_>
- 5 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5317969955503941e-003</threshold>
- <left_val>-0.2499942928552628</left_val>
- <right_val>0.0443512909114361</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.6969428658485413e-003</threshold>
- <left_val>0.0218366198241711</left_val>
- <right_val>-0.2871651947498322</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 10 6 -1.</_>
- <_>
- 4 4 5 3 2.</_>
- <_>
- 9 7 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0481894090771675</threshold>
- <left_val>0.0288693699985743</left_val>
- <right_val>-0.3616079092025757</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 6 2 -1.</_>
- <_>
- 11 9 3 1 2.</_>
- <_>
- 8 10 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6267770491540432e-003</threshold>
- <left_val>0.1311608999967575</left_val>
- <right_val>-0.0371875613927841</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.5027391024632379e-005</threshold>
- <left_val>0.0719915106892586</left_val>
- <right_val>-0.1249687001109123</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 1 2 -1.</_>
- <_>
- 16 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3772819228470325e-005</threshold>
- <left_val>0.0795105397701263</left_val>
- <right_val>-0.0796041265130043</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 3 2 -1.</_>
- <_>
- 3 4 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.2382878065109253e-003</threshold>
- <left_val>-0.0459494404494762</left_val>
- <right_val>0.2055145949125290</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 2 10 -1.</_>
- <_>
- 16 8 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0336009599268436</threshold>
- <left_val>0.0239669401198626</left_val>
- <right_val>-0.2274771928787231</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 10 -1.</_>
- <_>
- 0 8 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0418576300144196</threshold>
- <left_val>-0.2567035853862763</left_val>
- <right_val>0.0433881990611553</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 6 2 -1.</_>
- <_>
- 11 9 3 1 2.</_>
- <_>
- 8 10 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3434980325400829e-003</threshold>
- <left_val>-0.0360659398138523</left_val>
- <right_val>0.1335407048463821</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 10 2 -1.</_>
- <_>
- 1 7 5 1 2.</_>
- <_>
- 6 8 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7262392044067383e-003</threshold>
- <left_val>-0.0280333999544382</left_val>
- <right_val>0.2965970933437347</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 8 -1.</_>
- <_>
- 9 0 9 4 2.</_>
- <_>
- 0 4 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0725063979625702</threshold>
- <left_val>0.0339310988783836</left_val>
- <right_val>-0.2645680010318756</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 4 -1.</_>
- <_>
- 3 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.9837369956076145e-003</threshold>
- <left_val>0.0230753999203444</left_val>
- <right_val>-0.3671954870223999</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 4 4 4 -1.</_>
- <_>
- 11 5 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0939587205648422</threshold>
- <left_val>5.1443470874801278e-004</left_val>
- <right_val>-0.6915786862373352</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 4 4 -1.</_>
- <_>
- 7 5 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0546111688017845</threshold>
- <left_val>0.3563387095928192</left_val>
- <right_val>-0.0255911909043789</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 2 10 -1.</_>
- <_>
- 16 1 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.3599044010043144e-003</threshold>
- <left_val>-0.1183891966938973</left_val>
- <right_val>0.0540960207581520</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 9 -1.</_>
- <_>
- 7 0 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5311960428953171e-003</threshold>
- <left_val>0.2580164074897766</left_val>
- <right_val>-0.0432965084910393</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 2 10 -1.</_>
- <_>
- 16 1 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0530957616865635</threshold>
- <left_val>0.0134461699053645</left_val>
- <right_val>-0.2001762986183167</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 10 2 -1.</_>
- <_>
- 2 1 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.1099922060966492e-003</threshold>
- <left_val>-0.1717357933521271</left_val>
- <right_val>0.0664152875542641</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 3 2 -1.</_>
- <_>
- 14 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0121456598863006</threshold>
- <left_val>-0.3498241901397705</left_val>
- <right_val>0.0152532299980521</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 6 -1.</_>
- <_>
- 6 0 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0491840504109859</threshold>
- <left_val>-0.1462731063365936</left_val>
- <right_val>0.0766353383660316</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 12 4 -1.</_>
- <_>
- 9 0 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0642079263925552</threshold>
- <left_val>-0.0426980294287205</left_val>
- <right_val>0.0898953378200531</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 6 6 -1.</_>
- <_>
- 6 6 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0505671091377735</threshold>
- <left_val>-0.0342714004218578</left_val>
- <right_val>0.3211781084537506</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 12 7 -1.</_>
- <_>
- 6 3 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3818750083446503</threshold>
- <left_val>5.9737069532275200e-003</left_val>
- <right_val>-0.4150918126106262</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 12 7 -1.</_>
- <_>
- 6 3 6 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2414198964834213</threshold>
- <left_val>0.0428920909762383</left_val>
- <right_val>-0.2574456036090851</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 3 2 -1.</_>
- <_>
- 14 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.7335016578435898e-003</threshold>
- <left_val>0.0215238109230995</left_val>
- <right_val>-0.2581614851951599</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 2 3 -1.</_>
- <_>
- 4 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.5905920453369617e-003</threshold>
- <left_val>0.0368825495243073</left_val>
- <right_val>-0.2680523991584778</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 4 -1.</_>
- <_>
- 0 11 18 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145109295845032</threshold>
- <left_val>-0.1092017963528633</left_val>
- <right_val>0.0991731509566307</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 1 8 -1.</_>
- <_>
- 9 6 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0274284295737743</threshold>
- <left_val>-0.2504880130290985</left_val>
- <right_val>0.0452128499746323</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 14 6 -1.</_>
- <_>
- 2 7 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1233676970005035</threshold>
- <left_val>0.2255768030881882</left_val>
- <right_val>-0.0428952686488628</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 5 8 -1.</_>
- <_>
- 2 4 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0616077184677124</threshold>
- <left_val>-0.2777282893657684</left_val>
- <right_val>0.0325213186442852</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 10 4 -1.</_>
- <_>
- 4 5 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0762168914079666</threshold>
- <left_val>0.3657267093658447</left_val>
- <right_val>-0.0255184806883335</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 3 -1.</_>
- <_>
- 9 0 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3231542222201824e-003</threshold>
- <left_val>-0.0599518194794655</left_val>
- <right_val>0.1285364925861359</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 6 1 3 -1.</_>
- <_>
- 14 7 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.2015187470242381e-005</threshold>
- <left_val>0.0668459609150887</left_val>
- <right_val>-0.0653621777892113</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 3 4 -1.</_>
- <_>
- 3 7 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8772630505263805e-003</threshold>
- <left_val>-0.0746818333864212</left_val>
- <right_val>0.1490433961153030</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 8 10 -1.</_>
- <_>
- 13 4 4 5 2.</_>
- <_>
- 9 9 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0308424606919289</threshold>
- <left_val>0.0467762798070908</left_val>
- <right_val>-0.0792699083685875</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 8 3 3 -1.</_>
- <_>
- 4 9 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9754610732197762e-003</threshold>
- <left_val>-0.0631382465362549</left_val>
- <right_val>0.1299404948949814</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 9 1 2 -1.</_>
- <_>
- 13 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3571940623223782e-003</threshold>
- <left_val>0.1760174036026001</left_val>
- <right_val>-0.0209502801299095</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 1 2 -1.</_>
- <_>
- 4 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5649809686001390e-005</threshold>
- <left_val>-0.0934598371386528</left_val>
- <right_val>0.1056388020515442</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 2 10 -1.</_>
- <_>
- 8 9 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0190466307103634</threshold>
- <left_val>0.0378969013690948</left_val>
- <right_val>-0.2042724043130875</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 4 4 -1.</_>
- <_>
- 7 9 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0590843781828880</threshold>
- <left_val>-0.2602826952934265</left_val>
- <right_val>0.0318774096667767</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 2 10 -1.</_>
- <_>
- 14 0 1 10 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0399503409862518</threshold>
- <left_val>-0.3506382107734680</left_val>
- <right_val>9.2909233644604683e-003</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 10 2 -1.</_>
- <_>
- 4 0 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0508347414433956</threshold>
- <left_val>0.0219123102724552</left_val>
- <right_val>-0.3803296983242035</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 2 3 -1.</_>
- <_>
- 15 5 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0136031899601221</threshold>
- <left_val>0.2038068026304245</left_val>
- <right_val>-0.0212994609028101</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 12 9 3 -1.</_>
- <_>
- 7 12 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0674393326044083</threshold>
- <left_val>-0.4756908118724823</left_val>
- <right_val>0.0163150597363710</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 4 2 3 -1.</_>
- <_>
- 15 5 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0177440494298935</threshold>
- <left_val>-0.0262153502553701</left_val>
- <right_val>0.1731224954128265</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 14 4 -1.</_>
- <_>
- 2 3 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0408229492604733</threshold>
- <left_val>0.0269718896597624</left_val>
- <right_val>-0.2531566023826599</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 2 -1.</_>
- <_>
- 9 2 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5472789313644171e-003</threshold>
- <left_val>-0.1938990056514740</left_val>
- <right_val>0.0151813402771950</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 12 4 -1.</_>
- <_>
- 1 3 6 2 2.</_>
- <_>
- 7 5 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0134509503841400</threshold>
- <left_val>-0.0560166388750076</left_val>
- <right_val>0.1336188018321991</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 8 2 -1.</_>
- <_>
- 9 3 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0702156871557236</threshold>
- <left_val>0.0121993301436305</left_val>
- <right_val>-0.2975654006004334</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 8 2 -1.</_>
- <_>
- 5 3 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158290397375822</threshold>
- <left_val>-0.0871118977665901</left_val>
- <right_val>0.0889551267027855</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 8 3 4 -1.</_>
- <_>
- 16 9 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0203911308199167</threshold>
- <left_val>0.1782993972301483</left_val>
- <right_val>-0.0371981598436832</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 8 4 3 -1.</_>
- <_>
- 2 9 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.6189330276101828e-003</threshold>
- <left_val>-0.0762976333498955</left_val>
- <right_val>0.0969681292772293</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 12 2 3 -1.</_>
- <_>
- 15 13 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0060019558295608e-003</threshold>
- <left_val>-0.0498901791870594</left_val>
- <right_val>0.0658943429589272</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 1 4 -1.</_>
- <_>
- 0 8 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9275720007717609e-003</threshold>
- <left_val>0.0298173800110817</left_val>
- <right_val>-0.2424031049013138</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 12 2 3 -1.</_>
- <_>
- 15 13 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0122589897364378</threshold>
- <left_val>0.1903184950351715</left_val>
- <right_val>-7.5331269763410091e-003</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 2 3 -1.</_>
- <_>
- 1 13 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3739310563541949e-005</threshold>
- <left_val>-0.0887768194079399</left_val>
- <right_val>0.0806454271078110</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 8 -1.</_>
- <_>
- 8 2 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0128609901294112</threshold>
- <left_val>0.0695679932832718</left_val>
- <right_val>-0.0297688208520412</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 8 -1.</_>
- <_>
- 9 0 6 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0491925515234470</threshold>
- <left_val>0.1511365026235580</left_val>
- <right_val>-0.0546999201178551</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 14 12 1 -1.</_>
- <_>
- 8 14 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0194404404610395</threshold>
- <left_val>-0.1785937994718552</left_val>
- <right_val>0.0176323205232620</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 4 -1.</_>
- <_>
- 8 1 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5363420136272907e-003</threshold>
- <left_val>0.0300990603864193</left_val>
- <right_val>-0.2170494049787521</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 4 3 -1.</_>
- <_>
- 8 0 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0209271106868982</threshold>
- <left_val>0.1529344022274017</left_val>
- <right_val>-0.0265916306525469</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 2 -1.</_>
- <_>
- 8 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1768060978502035e-003</threshold>
- <left_val>-0.0801318064332008</left_val>
- <right_val>0.0870366171002388</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 13 8 2 -1.</_>
- <_>
- 8 14 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2644919119775295e-003</threshold>
- <left_val>-0.0506618581712246</left_val>
- <right_val>0.0504105202853680</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 18 4 -1.</_>
- <_>
- 0 11 9 2 2.</_>
- <_>
- 9 13 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0531350895762444</threshold>
- <left_val>0.0313573814928532</left_val>
- <right_val>-0.2432748973369598</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 9 8 2 -1.</_>
- <_>
- 13 9 4 1 2.</_>
- <_>
- 9 10 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5658721141517162e-003</threshold>
- <left_val>-0.0314484387636185</left_val>
- <right_val>0.1314239054918289</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 2 2 -1.</_>
- <_>
- 8 10 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6994590405374765e-003</threshold>
- <left_val>0.0787288174033165</left_val>
- <right_val>-0.0930547267198563</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 9 8 2 -1.</_>
- <_>
- 13 9 4 1 2.</_>
- <_>
- 9 10 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0231965091079474</threshold>
- <left_val>0.2017091065645218</left_val>
- <right_val>-0.0152339404448867</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 8 2 -1.</_>
- <_>
- 1 9 4 1 2.</_>
- <_>
- 5 10 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1990801952779293e-003</threshold>
- <left_val>-0.0436348989605904</left_val>
- <right_val>0.2130060940980911</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 7 1 3 -1.</_>
- <_>
- 10 8 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.9829211570322514e-003</threshold>
- <left_val>0.0317675210535526</left_val>
- <right_val>-0.2128593027591705</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 3 1 -1.</_>
- <_>
- 8 8 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.4900798238813877e-003</threshold>
- <left_val>-0.1751292943954468</left_val>
- <right_val>0.0440214611589909</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 8 -1.</_>
- <_>
- 8 2 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1209999993443489</threshold>
- <left_val>-0.3690679967403412</left_val>
- <right_val>4.4225710444152355e-003</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 3 -1.</_>
- <_>
- 10 2 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0380082689225674</threshold>
- <left_val>0.5277379751205444</left_val>
- <right_val>-0.0147407604381442</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 8 2 -1.</_>
- <_>
- 5 8 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0111320000141859</threshold>
- <left_val>0.0634055435657501</left_val>
- <right_val>-0.1106311976909638</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 9 9 -1.</_>
- <_>
- 7 4 3 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1212562024593353</threshold>
- <left_val>0.1124370023608208</left_val>
- <right_val>-0.0671258494257927</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 3 7 -1.</_>
- <_>
- 11 4 1 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0588735602796078</threshold>
- <left_val>0.1949198991060257</left_val>
- <right_val>-7.9787842696532607e-004</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 7 3 -1.</_>
- <_>
- 7 4 7 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0123289301991463</threshold>
- <left_val>-0.1880646944046021</left_val>
- <right_val>0.0393505804240704</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 4 2 -1.</_>
- <_>
- 7 6 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4250390492379665e-003</threshold>
- <left_val>0.1126734018325806</left_val>
- <right_val>-0.0681002363562584</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 6 -1.</_>
- <_>
- 7 3 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0966828130185604e-003</threshold>
- <left_val>-0.1794558018445969</left_val>
- <right_val>0.0475732088088989</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 3 6 -1.</_>
- <_>
- 9 2 1 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0403452403843403</threshold>
- <left_val>-0.5704476833343506</left_val>
- <right_val>5.5092480033636093e-003</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 6 3 -1.</_>
- <_>
- 11 5 2 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1125494018197060</threshold>
- <left_val>-0.0269452705979347</left_val>
- <right_val>0.2580899000167847</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 14 12 1 -1.</_>
- <_>
- 8 14 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0699782967567444</threshold>
- <left_val>-1.1665009660646319e-003</left_val>
- <right_val>0.8676825165748596</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 14 12 1 -1.</_>
- <_>
- 4 14 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0165449008345604</threshold>
- <left_val>0.0243071895092726</left_val>
- <right_val>-0.2559692859649658</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 16 6 -1.</_>
- <_>
- 1 9 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0822774171829224</threshold>
- <left_val>-0.0268739499151707</left_val>
- <right_val>0.2409840971231461</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 3 4 -1.</_>
- <_>
- 0 11 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6195117756724358e-003</threshold>
- <left_val>-0.1658201962709427</left_val>
- <right_val>0.0400424189865589</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 7 4 1 -1.</_>
- <_>
- 15 7 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4694160092622042e-003</threshold>
- <left_val>0.0927710607647896</left_val>
- <right_val>-0.0273753199726343</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 1 4 -1.</_>
- <_>
- 8 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.0857389861484990e-004</threshold>
- <left_val>-0.1348482966423035</left_val>
- <right_val>0.0436066016554832</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 4 3 -1.</_>
- <_>
- 15 2 2 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0164907705038786</threshold>
- <left_val>-0.1666806042194367</left_val>
- <right_val>0.0177498105913401</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 6 2 4 -1.</_>
- <_>
- 2 6 1 2 2.</_>
- <_>
- 3 8 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7164629213511944e-003</threshold>
- <left_val>0.1780464947223663</left_val>
- <right_val>-0.0365630798041821</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 5 3 10 -1.</_>
- <_>
- 15 10 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0906244590878487</threshold>
- <left_val>0.0174008794128895</left_val>
- <right_val>-0.4898025989532471</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 9 6 4 -1.</_>
- <_>
- 3 9 3 2 2.</_>
- <_>
- 6 11 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7714879252016544e-003</threshold>
- <left_val>-0.0659386664628983</left_val>
- <right_val>0.0964076220989227</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 3 7 -1.</_>
- <_>
- 14 4 1 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0434898696839809</threshold>
- <left_val>0.0139165297150612</left_val>
- <right_val>-0.2709555923938751</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 7 4 -1.</_>
- <_>
- 5 3 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.3884491100907326e-003</threshold>
- <left_val>-0.0581430904567242</left_val>
- <right_val>0.1046271026134491</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 3 -1.</_>
- <_>
- 14 2 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0142638003453612</threshold>
- <left_val>0.1401764005422592</left_val>
- <right_val>-0.0269160307943821</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 8 3 -1.</_>
- <_>
- 0 5 8 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6627448648214340e-003</threshold>
- <left_val>-0.1896232962608337</left_val>
- <right_val>0.0316337496042252</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 4 3 5 -1.</_>
- <_>
- 15 5 1 5 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.5204060412943363e-003</threshold>
- <left_val>-0.0435900315642357</left_val>
- <right_val>0.1000792011618614</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 5 2 -1.</_>
- <_>
- 5 4 5 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0110979797318578</threshold>
- <left_val>0.3084025979042053</left_val>
- <right_val>-0.0212082397192717</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 7 1 6 -1.</_>
- <_>
- 8 9 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0618321411311626</threshold>
- <left_val>0.1831555068492889</left_val>
- <right_val>-7.7433600090444088e-003</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 6 1 -1.</_>
- <_>
- 10 9 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.4768159966915846e-003</threshold>
- <left_val>0.0506381392478943</left_val>
- <right_val>-0.1340041011571884</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 4 6 10 -1.</_>
- <_>
- 13 4 3 5 2.</_>
- <_>
- 10 9 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0977838635444641</threshold>
- <left_val>2.0544449798762798e-003</left_val>
- <right_val>-0.6877961754798889</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 6 10 -1.</_>
- <_>
- 2 4 3 5 2.</_>
- <_>
- 5 9 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0918209478259087</threshold>
- <left_val>-0.2558689117431641</left_val>
- <right_val>0.0251086503267288</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 10 2 -1.</_>
- <_>
- 9 5 5 1 2.</_>
- <_>
- 4 6 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0140088303014636</threshold>
- <left_val>-0.3638179898262024</left_val>
- <right_val>0.0155368996784091</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 3 6 -1.</_>
- <_>
- 7 3 1 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0470989495515823</threshold>
- <left_val>0.4120045006275177</left_val>
- <right_val>-0.0147856995463371</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 4 -1.</_>
- <_>
- 16 2 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0240776594728231</threshold>
- <left_val>-0.2649717926979065</left_val>
- <right_val>4.3284958228468895e-003</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 4 -1.</_>
- <_>
- 0 2 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0720019713044167e-003</threshold>
- <left_val>0.1134819984436035</left_val>
- <right_val>-0.0527238808572292</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 10 4 -1.</_>
- <_>
- 8 2 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0232353191822767</threshold>
- <left_val>-0.1618241071701050</left_val>
- <right_val>0.0139071401208639</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 4 -1.</_>
- <_>
- 0 0 9 2 2.</_>
- <_>
- 9 2 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0217532292008400</threshold>
- <left_val>0.0320463292300701</left_val>
- <right_val>-0.1815026998519898</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 12 2 -1.</_>
- <_>
- 9 0 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0284193791449070</threshold>
- <left_val>0.0735991299152374</left_val>
- <right_val>-0.0121852997690439</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 12 2 -1.</_>
- <_>
- 3 0 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0990353375673294</threshold>
- <left_val>-0.8003916144371033</left_val>
- <right_val>7.5543550774455070e-003</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 1 3 -1.</_>
- <_>
- 16 4 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.6745260003954172e-003</threshold>
- <left_val>-0.0425384715199471</left_val>
- <right_val>0.1313553005456924</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 12 6 -1.</_>
- <_>
- 3 4 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2490209937095642</threshold>
- <left_val>0.5709738135337830</left_val>
- <right_val>-0.0100652799010277</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 1 3 -1.</_>
- <_>
- 16 4 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.5670630857348442e-003</threshold>
- <left_val>0.1004543974995613</left_val>
- <right_val>-0.0438447706401348</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 3 1 -1.</_>
- <_>
- 9 8 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.2725669704377651e-003</threshold>
- <left_val>0.0282882191240788</left_val>
- <right_val>-0.1991124004125595</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 1 3 -1.</_>
- <_>
- 16 4 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0121860196813941</threshold>
- <left_val>-8.9298561215400696e-003</left_val>
- <right_val>0.1723618954420090</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 3 1 -1.</_>
- <_>
- 2 4 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.4080873057246208e-003</threshold>
- <left_val>0.2205967009067535</left_val>
- <right_val>-0.0254241600632668</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 3 1 -1.</_>
- <_>
- 16 3 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.6226810924708843e-003</threshold>
- <left_val>0.0226176194846630</left_val>
- <right_val>-0.3504024147987366</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 1 3 -1.</_>
- <_>
- 2 3 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.5278380382806063e-003</threshold>
- <left_val>-0.2129029035568237</left_val>
- <right_val>0.0337668098509312</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 14 6 -1.</_>
- <_>
- 2 5 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0487591288983822</threshold>
- <left_val>0.2639946937561035</left_val>
- <right_val>-0.0227282308042049</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 3 8 -1.</_>
- <_>
- 4 6 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0421630106866360</threshold>
- <left_val>0.0164839699864388</left_val>
- <right_val>-0.3725509941577911</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 4 3 -1.</_>
- <_>
- 13 3 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0412516593933105</threshold>
- <left_val>-5.6340959854424000e-003</left_val>
- <right_val>0.1074742004275322</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 3 4 -1.</_>
- <_>
- 5 3 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0335065908730030</threshold>
- <left_val>0.3244982957839966</left_val>
- <right_val>-0.0198305491358042</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 2 4 13 -1.</_>
- <_>
- 13 2 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0785958990454674e-003</threshold>
- <left_val>0.0712641105055809</left_val>
- <right_val>-0.0864052474498749</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 4 13 -1.</_>
- <_>
- 3 2 2 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0396881289780140</threshold>
- <left_val>-0.3553381860256195</left_val>
- <right_val>0.0168110895901918</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 8 3 -1.</_>
- <_>
- 9 4 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2625074088573456</threshold>
- <left_val>3.3027199096977711e-003</left_val>
- <right_val>-0.3045256137847900</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 3 8 -1.</_>
- <_>
- 9 4 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1033687964081764</threshold>
- <left_val>-0.4427754878997803</left_val>
- <right_val>0.0152687802910805</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 10 1 2 -1.</_>
- <_>
- 17 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5352418888360262e-003</threshold>
- <left_val>0.0226268991827965</left_val>
- <right_val>-0.1935666948556900</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 1 -1.</_>
- <_>
- 9 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3277910184115171e-003</threshold>
- <left_val>-0.0842633768916130</left_val>
- <right_val>0.0657716765999794</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 9 13 -1.</_>
- <_>
- 9 0 3 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0692616030573845</threshold>
- <left_val>0.1914274990558624</left_val>
- <right_val>-0.0148142697289586</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 1 10 -1.</_>
- <_>
- 0 6 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0319452695548534</threshold>
- <left_val>-0.3099650144577026</left_val>
- <right_val>0.0180993191897869</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 18 2 -1.</_>
- <_>
- 0 12 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.1500530466437340e-003</threshold>
- <left_val>-0.0755150690674782</left_val>
- <right_val>0.0713425576686859</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 3 6 -1.</_>
- <_>
- 5 9 1 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4518880527466536e-003</threshold>
- <left_val>-0.0526761785149574</left_val>
- <right_val>0.1191487014293671</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 2 5 -1.</_>
- <_>
- 12 7 1 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0254793707281351</threshold>
- <left_val>-0.0215268898755312</left_val>
- <right_val>0.1125423014163971</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 2 1 -1.</_>
- <_>
- 7 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3662307588383555e-005</threshold>
- <left_val>-0.1237241029739380</left_val>
- <right_val>0.0447584912180901</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 6 2 -1.</_>
- <_>
- 11 2 3 1 2.</_>
- <_>
- 8 3 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2631269209086895e-003</threshold>
- <left_val>0.0166446994990110</left_val>
- <right_val>-0.2792761921882629</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 3 1 -1.</_>
- <_>
- 5 6 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9906251408392563e-005</threshold>
- <left_val>-0.0590216182172298</left_val>
- <right_val>0.0907072424888611</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 18 14 -1.</_>
- <_>
- 9 1 9 7 2.</_>
- <_>
- 0 8 9 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4049279987812042</threshold>
- <left_val>9.8951030522584915e-003</left_val>
- <right_val>-0.5390074849128723</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 6 6 -1.</_>
- <_>
- 0 9 3 3 2.</_>
- <_>
- 3 12 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5421868562698364e-003</threshold>
- <left_val>-0.0830420330166817</left_val>
- <right_val>0.0579336211085320</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 10 6 -1.</_>
- <_>
- 13 9 5 3 2.</_>
- <_>
- 8 12 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0286024697124958</threshold>
- <left_val>0.0987989678978920</left_val>
- <right_val>-0.0411834083497524</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 15 3 -1.</_>
- <_>
- 1 11 15 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0981088317930698e-003</threshold>
- <left_val>-0.0496008917689323</left_val>
- <right_val>0.1082315966486931</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 1 2 -1.</_>
- <_>
- 16 11 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.4081019219011068e-003</threshold>
- <left_val>0.0317933000624180</left_val>
- <right_val>-0.0897006466984749</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 9 2 -1.</_>
- <_>
- 7 7 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1049328967928886</threshold>
- <left_val>-0.1838400065898895</left_val>
- <right_val>0.0292720291763544</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 4 2 -1.</_>
- <_>
- 7 8 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2810851270332932e-004</threshold>
- <left_val>0.0346079505980015</left_val>
- <right_val>-0.1805756986141205</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 4 2 -1.</_>
- <_>
- 2 7 2 1 2.</_>
- <_>
- 4 8 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3983051069080830e-003</threshold>
- <left_val>-0.0366495698690414</left_val>
- <right_val>0.1469368040561676</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 5 2 -1.</_>
- <_>
- 8 1 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.4842050410807133e-003</threshold>
- <left_val>0.0254560094326735</left_val>
- <right_val>-0.1706009060144424</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 4 11 -1.</_>
- <_>
- 7 2 2 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0559289082884789</threshold>
- <left_val>6.9079152308404446e-003</left_val>
- <right_val>-0.7426319122314453</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0113146202638745</threshold>
- <left_val>-0.6569160223007202</left_val>
- <right_val>3.0682450160384178e-003</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.2855871617794037e-003</threshold>
- <left_val>0.0122091500088573</left_val>
- <right_val>-0.4113836884498596</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 9 2 2 -1.</_>
- <_>
- 12 9 1 1 2.</_>
- <_>
- 11 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5499120131134987e-003</threshold>
- <left_val>0.1567400991916657</left_val>
- <right_val>-0.0136733297258615</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 4 4 -1.</_>
- <_>
- 8 8 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0162009894847870</threshold>
- <left_val>-0.4511883854866028</left_val>
- <right_val>0.0105137201026082</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 1 -1.</_>
- <_>
- 7 0 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3212178647518158e-003</threshold>
- <left_val>0.2467146962881088</left_val>
- <right_val>-0.0221792291849852</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 6 8 -1.</_>
- <_>
- 4 0 3 4 2.</_>
- <_>
- 7 4 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0678062811493874</threshold>
- <left_val>0.0141928596422076</left_val>
- <right_val>-0.4557569921016693</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 9 9 -1.</_>
- <_>
- 8 4 3 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4499514997005463</threshold>
- <left_val>-0.0205099303275347</left_val>
- <right_val>0.2384169995784760</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 4 10 -1.</_>
- <_>
- 0 9 4 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1606801003217697</threshold>
- <left_val>-0.7912417054176331</left_val>
- <right_val>5.4184817709028721e-003</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 1 2 -1.</_>
- <_>
- 16 11 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.4610815867781639e-003</threshold>
- <left_val>-0.2421163022518158</left_val>
- <right_val>9.1182524338364601e-003</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 16 4 -1.</_>
- <_>
- 1 8 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0147587396204472</threshold>
- <left_val>-0.0416104607284069</left_val>
- <right_val>0.1353428959846497</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 1 2 -1.</_>
- <_>
- 16 11 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.5756370313465595e-003</threshold>
- <left_val>9.3746017664670944e-003</left_val>
- <right_val>-0.0832142680883408</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 11 2 1 -1.</_>
- <_>
- 2 11 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.7711522094905376e-003</threshold>
- <left_val>0.0266925692558289</left_val>
- <right_val>-0.1980333030223846</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 13 14 2 -1.</_>
- <_>
- 2 14 14 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0509134791791439</threshold>
- <left_val>0.3214649856090546</left_val>
- <right_val>-0.0169861502945423</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 4 2 -1.</_>
- <_>
- 0 13 2 1 2.</_>
- <_>
- 2 14 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3694868003949523e-005</threshold>
- <left_val>-0.0845351293683052</left_val>
- <right_val>0.0685012266039848</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 2 -1.</_>
- <_>
- 15 1 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.1522149909287691e-003</threshold>
- <left_val>0.0548588298261166</left_val>
- <right_val>-0.0481257401406765</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 2 2 -1.</_>
- <_>
- 5 9 1 1 2.</_>
- <_>
- 6 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0621249936521053e-003</threshold>
- <left_val>0.3157261908054352</left_val>
- <right_val>-0.0174344405531883</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 6 2 -1.</_>
- <_>
- 6 10 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0351190604269505</threshold>
- <left_val>-0.4585689902305603</left_val>
- <right_val>0.0149546898901463</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 18 2 -1.</_>
- <_>
- 0 6 9 1 2.</_>
- <_>
- 9 7 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0127988802269101</threshold>
- <left_val>-0.1521113961935043</left_val>
- <right_val>0.0345015898346901</right_val></_></_>
- <_>
- <!-- tree 181 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 13 2 2 -1.</_>
- <_>
- 15 13 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3432481363415718e-003</threshold>
- <left_val>-0.2026983946561813</left_val>
- <right_val>0.0139673100784421</right_val></_></_>
- <_>
- <!-- tree 182 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 2 2 -1.</_>
- <_>
- 7 9 1 1 2.</_>
- <_>
- 8 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0109770596027374e-003</threshold>
- <left_val>0.2396494001150131</left_val>
- <right_val>-0.0214331708848476</right_val></_></_>
- <_>
- <!-- tree 183 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 18 4 -1.</_>
- <_>
- 9 8 9 2 2.</_>
- <_>
- 0 10 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0795640870928764</threshold>
- <left_val>0.0169675108045340</left_val>
- <right_val>-0.3126080930233002</right_val></_></_>
- <_>
- <!-- tree 184 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 2 4 -1.</_>
- <_>
- 8 6 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168946702033281</threshold>
- <left_val>0.1459030061960220</left_val>
- <right_val>-0.0348196700215340</right_val></_></_>
- <_>
- <!-- tree 185 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 12 9 -1.</_>
- <_>
- 7 7 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6578676104545593</threshold>
- <left_val>-0.0130230896174908</left_val>
- <right_val>0.4104476869106293</right_val></_></_>
- <_>
- <!-- tree 186 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 7 -1.</_>
- <_>
- 9 1 2 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1127222031354904</threshold>
- <left_val>-0.3777270913124085</left_val>
- <right_val>0.0159226898103952</right_val></_></_>
- <_>
- <!-- tree 187 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 4 2 -1.</_>
- <_>
- 12 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0177928805351257</threshold>
- <left_val>0.0118195097893476</left_val>
- <right_val>-0.2466803938150406</right_val></_></_>
- <_>
- <!-- tree 188 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 4 -1.</_>
- <_>
- 6 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.3843109849840403e-003</threshold>
- <left_val>0.0420966595411301</left_val>
- <right_val>-0.1362892985343933</right_val></_></_>
- <_>
- <!-- tree 189 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 2 2 -1.</_>
- <_>
- 12 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0129303801804781</threshold>
- <left_val>0.0156342405825853</left_val>
- <right_val>-0.3155972063541412</right_val></_></_>
- <_>
- <!-- tree 190 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 3 3 -1.</_>
- <_>
- 4 2 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0198661200702190</threshold>
- <left_val>-0.0198671799153090</left_val>
- <right_val>0.2729283869266510</right_val></_></_>
- <_>
- <!-- tree 191 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 3 2 -1.</_>
- <_>
- 13 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0202569793909788</threshold>
- <left_val>-0.7507926821708679</left_val>
- <right_val>3.6987708881497383e-003</right_val></_></_>
- <_>
- <!-- tree 192 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 2 3 -1.</_>
- <_>
- 5 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.8132500164210796e-003</threshold>
- <left_val>-0.1871719062328339</left_val>
- <right_val>0.0291250105947256</right_val></_></_>
- <_>
- <!-- tree 193 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 4 4 -1.</_>
- <_>
- 15 1 2 2 2.</_>
- <_>
- 13 3 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0134505499154329</threshold>
- <left_val>0.2419849932193756</left_val>
- <right_val>-0.0111368801444769</right_val></_></_>
- <_>
- <!-- tree 194 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 2 1 -1.</_>
- <_>
- 3 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3866169764660299e-005</threshold>
- <left_val>0.0751902163028717</left_val>
- <right_val>-0.0758378133177757</right_val></_></_>
- <_>
- <!-- tree 195 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 2 2 -1.</_>
- <_>
- 15 0 1 1 2.</_>
- <_>
- 14 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0485909014241770e-005</threshold>
- <left_val>-0.0479880385100842</left_val>
- <right_val>0.0507909804582596</right_val></_></_>
- <_>
- <!-- tree 196 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 2 2 -1.</_>
- <_>
- 2 0 1 1 2.</_>
- <_>
- 3 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4496016420889646e-005</threshold>
- <left_val>0.0863163173198700</left_val>
- <right_val>-0.0676591396331787</right_val></_></_>
- <_>
- <!-- tree 197 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 2 2 -1.</_>
- <_>
- 15 0 1 1 2.</_>
- <_>
- 14 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8561800213064998e-005</threshold>
- <left_val>0.0952962711453438</left_val>
- <right_val>-0.0720320492982864</right_val></_></_>
- <_>
- <!-- tree 198 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 2 2 -1.</_>
- <_>
- 2 0 1 1 2.</_>
- <_>
- 3 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0147060392191634e-005</threshold>
- <left_val>-0.0706219524145126</left_val>
- <right_val>0.0916848704218864</right_val></_></_>
- <_>
- <!-- tree 199 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 1 4 -1.</_>
- <_>
- 16 1 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7007611980661750e-004</threshold>
- <left_val>-0.0312023907899857</left_val>
- <right_val>0.0549915507435799</right_val></_></_>
- <_>
- <!-- tree 200 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 6 2 -1.</_>
- <_>
- 3 3 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.6719879657030106e-003</threshold>
- <left_val>-0.0433308891952038</left_val>
- <right_val>0.1151764988899231</right_val></_></_>
- <_>
- <!-- tree 201 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 2 6 -1.</_>
- <_>
- 17 1 1 3 2.</_>
- <_>
- 16 4 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5680748559534550e-003</threshold>
- <left_val>-0.0232947506010532</left_val>
- <right_val>0.2060377001762390</right_val></_></_>
- <_>
- <!-- tree 202 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 2 2 -1.</_>
- <_>
- 2 13 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0460308557376266e-004</threshold>
- <left_val>0.0510324798524380</left_val>
- <right_val>-0.1127713993191719</right_val></_></_>
- <_>
- <!-- tree 203 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 2 6 -1.</_>
- <_>
- 17 1 1 3 2.</_>
- <_>
- 16 4 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7291790358722210e-003</threshold>
- <left_val>0.0791396573185921</left_val>
- <right_val>-0.0201081596314907</right_val></_></_>
- <_>
- <!-- tree 204 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 3 4 -1.</_>
- <_>
- 5 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0155905103310943</threshold>
- <left_val>0.0178762990981340</left_val>
- <right_val>-0.3296821117401123</right_val></_></_>
- <_>
- <!-- tree 205 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 3 -1.</_>
- <_>
- 15 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0543143115937710</threshold>
- <left_val>-0.5602126121520996</left_val>
- <right_val>1.0424769716337323e-003</right_val></_></_>
- <_>
- <!-- tree 206 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 3 2 -1.</_>
- <_>
- 3 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.8423749655485153e-003</threshold>
- <left_val>-0.0343349911272526</left_val>
- <right_val>0.1776601970195770</right_val></_></_>
- <_>
- <!-- tree 207 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 3 3 -1.</_>
- <_>
- 11 3 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9496310316026211e-003</threshold>
- <left_val>0.0119108697399497</left_val>
- <right_val>-0.2833696901798248</right_val></_></_>
- <_>
- <!-- tree 208 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 3 3 -1.</_>
- <_>
- 4 3 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2853900231420994e-003</threshold>
- <left_val>-0.2330842018127441</left_val>
- <right_val>0.0223415307700634</right_val></_></_>
- <_>
- <!-- tree 209 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 1 2 -1.</_>
- <_>
- 10 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8665860958863050e-005</threshold>
- <left_val>-0.0438981205224991</left_val>
- <right_val>0.0437583401799202</right_val></_></_>
- <_>
- <!-- tree 210 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 2 2 -1.</_>
- <_>
- 7 3 1 1 2.</_>
- <_>
- 8 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6118220527423546e-005</threshold>
- <left_val>0.0808287113904953</left_val>
- <right_val>-0.0694800913333893</right_val></_></_>
- <_>
- <!-- tree 211 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 6 2 -1.</_>
- <_>
- 6 9 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0484328605234623</threshold>
- <left_val>-0.7912955284118652</left_val>
- <right_val>6.5139750950038433e-003</right_val></_></_>
- <_>
- <!-- tree 212 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 9 3 -1.</_>
- <_>
- 3 10 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0152241997420788</threshold>
- <left_val>-0.0400892198085785</left_val>
- <right_val>0.1345576941967011</right_val></_></_>
- <_>
- <!-- tree 213 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 12 10 1 -1.</_>
- <_>
- 6 12 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0128723401576281</threshold>
- <left_val>0.0560490600764751</left_val>
- <right_val>-0.0245438907295465</right_val></_></_>
- <_>
- <!-- tree 214 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 8 3 -1.</_>
- <_>
- 6 12 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0282472502440214</threshold>
- <left_val>-0.0394716411828995</left_val>
- <right_val>0.1513788998126984</right_val></_></_>
- <_>
- <!-- tree 215 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 12 4 2 -1.</_>
- <_>
- 14 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4682589620351791e-003</threshold>
- <left_val>0.0130424499511719</left_val>
- <right_val>-0.2048127055168152</right_val></_></_>
- <_>
- <!-- tree 216 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 11 3 4 -1.</_>
- <_>
- 4 12 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0469749011099339</threshold>
- <left_val>0.8017169833183289</left_val>
- <right_val>-7.1750162169337273e-003</right_val></_></_>
- <_>
- <!-- tree 217 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 10 2 2 -1.</_>
- <_>
- 13 10 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0132254697382450</threshold>
- <left_val>-0.0139600699767470</left_val>
- <right_val>0.1729875057935715</right_val></_></_>
- <_>
- <!-- tree 218 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 2 2 -1.</_>
- <_>
- 5 10 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.1193178836256266e-003</threshold>
- <left_val>0.0469035208225250</left_val>
- <right_val>-0.1572621017694473</right_val></_></_>
- <_>
- <!-- tree 219 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 6 9 -1.</_>
- <_>
- 13 2 2 9 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2148717045783997</threshold>
- <left_val>3.7922300398349762e-003</left_val>
- <right_val>-0.3814384043216705</right_val></_></_>
- <_>
- <!-- tree 220 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 8 3 -1.</_>
- <_>
- 8 4 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1509134024381638</threshold>
- <left_val>-0.0139226997271180</left_val>
- <right_val>0.4097478985786438</right_val></_></_>
- <_>
- <!-- tree 221 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 6 9 -1.</_>
- <_>
- 13 2 2 9 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.2302934974431992</threshold>
- <left_val>-0.5820657014846802</left_val>
- <right_val>1.1216839775443077e-003</right_val></_></_>
- <_>
- <!-- tree 222 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 9 6 -1.</_>
- <_>
- 5 2 9 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1403041034936905</threshold>
- <left_val>0.0169044900685549</left_val>
- <right_val>-0.3682535886764526</right_val></_></_>
- <_>
- <!-- tree 223 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 2 2 -1.</_>
- <_>
- 10 3 1 1 2.</_>
- <_>
- 9 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0036112447269261e-005</threshold>
- <left_val>-0.0551543496549129</left_val>
- <right_val>0.0726215615868568</right_val></_></_>
- <_>
- <!-- tree 224 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 10 13 -1.</_>
- <_>
- 8 2 5 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4960846900939941</threshold>
- <left_val>7.3583098128437996e-003</left_val>
- <right_val>-0.7018330097198486</right_val></_></_>
- <_>
- <!-- tree 225 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 2 -1.</_>
- <_>
- 5 1 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3255969863384962e-003</threshold>
- <left_val>-0.1482249945402145</left_val>
- <right_val>0.0326147899031639</right_val></_></_>
- <_>
- <!-- tree 226 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 7 8 -1.</_>
- <_>
- 5 2 7 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0138854403048754</threshold>
- <left_val>0.1609764993190765</left_val>
- <right_val>-0.0331473685801029</right_val></_></_>
- <_>
- <!-- tree 227 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 1 3 -1.</_>
- <_>
- 9 7 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6077110134065151e-003</threshold>
- <left_val>-0.5095651745796204</left_val>
- <right_val>5.0284918397665024e-003</right_val></_></_>
- <_>
- <!-- tree 228 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 1 3 -1.</_>
- <_>
- 8 7 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9671129304915667e-003</threshold>
- <left_val>0.0319776199758053</left_val>
- <right_val>-0.1969588994979858</right_val></_></_>
- <_>
- <!-- tree 229 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 2 -1.</_>
- <_>
- 0 10 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5358321405947208e-003</threshold>
- <left_val>-0.0565205812454224</left_val>
- <right_val>0.1075361967086792</right_val></_></_>
- <_>
- <!-- tree 230 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 17 4 -1.</_>
- <_>
- 0 9 17 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0710219964385033</threshold>
- <left_val>0.0791943371295929</left_val>
- <right_val>-0.0813843309879303</right_val></_></_>
- <_>
- <!-- tree 231 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 6 9 -1.</_>
- <_>
- 12 9 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0458000712096691</threshold>
- <left_val>-0.0307503994554281</left_val>
- <right_val>0.1565207988023758</right_val></_></_>
- <_>
- <!-- tree 232 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 3 3 -1.</_>
- <_>
- 2 0 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7807468585669994e-003</threshold>
- <left_val>0.0189444404095411</left_val>
- <right_val>-0.3011228144168854</right_val></_></_>
- <_>
- <!-- tree 233 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 2 2 -1.</_>
- <_>
- 12 8 1 1 2.</_>
- <_>
- 11 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9455070141702890e-003</threshold>
- <left_val>0.1272296011447907</left_val>
- <right_val>-0.0254848394542933</right_val></_></_>
- <_>
- <!-- tree 234 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 18 4 -1.</_>
- <_>
- 0 10 18 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1861845999956131</threshold>
- <left_val>9.0244021266698837e-003</left_val>
- <right_val>-0.5448626279830933</right_val></_></_>
- <_>
- <!-- tree 235 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 1 3 -1.</_>
- <_>
- 9 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9605968999676406e-005</threshold>
- <left_val>0.0626633614301682</left_val>
- <right_val>-0.0534323900938034</right_val></_></_>
- <_>
- <!-- tree 236 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 18 2 -1.</_>
- <_>
- 0 4 9 1 2.</_>
- <_>
- 9 5 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0237148292362690</threshold>
- <left_val>-0.6018021106719971</left_val>
- <right_val>7.9368790611624718e-003</right_val></_></_>
- <_>
- <!-- tree 237 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 12 4 -1.</_>
- <_>
- 11 2 6 2 2.</_>
- <_>
- 5 4 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0313583016395569</threshold>
- <left_val>-0.1772198975086212</left_val>
- <right_val>9.2706838622689247e-003</right_val></_></_>
- <_>
- <!-- tree 238 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 12 4 -1.</_>
- <_>
- 1 2 6 2 2.</_>
- <_>
- 7 4 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0349689982831478</threshold>
- <left_val>0.3794535100460053</left_val>
- <right_val>-0.0169909205287695</right_val></_></_>
- <_>
- <!-- tree 239 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 4 1 8 -1.</_>
- <_>
- 13 6 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0624166503548622</threshold>
- <left_val>-0.4159173965454102</left_val>
- <right_val>4.8467209562659264e-003</right_val></_></_>
- <_>
- <!-- tree 240 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 8 1 -1.</_>
- <_>
- 5 6 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0422837510704994</threshold>
- <left_val>9.8220221698284149e-003</left_val>
- <right_val>-0.4765555858612061</right_val></_></_>
- <_>
- <!-- tree 241 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 8 2 -1.</_>
- <_>
- 13 8 4 1 2.</_>
- <_>
- 9 9 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1127527840435505e-003</threshold>
- <left_val>-0.0367820709943771</left_val>
- <right_val>0.1647402048110962</right_val></_></_>
- <_>
- <!-- tree 242 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 6 2 -1.</_>
- <_>
- 4 8 3 1 2.</_>
- <_>
- 7 9 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0112114502117038</threshold>
- <left_val>0.1880359053611755</left_val>
- <right_val>-0.0276528596878052</right_val></_></_>
- <_>
- <!-- tree 243 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 12 2 -1.</_>
- <_>
- 9 3 6 1 2.</_>
- <_>
- 3 4 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2367132157087326e-003</threshold>
- <left_val>0.0286790002137423</left_val>
- <right_val>-0.1775102019309998</right_val></_></_>
- <_>
- <!-- tree 244 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 1 4 -1.</_>
- <_>
- 4 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3686140745412558e-005</threshold>
- <left_val>0.0753717795014381</left_val>
- <right_val>-0.0666650682687759</right_val></_></_>
- <_>
- <!-- tree 245 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 3 3 -1.</_>
- <_>
- 10 6 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0128402002155781</threshold>
- <left_val>0.0218078903853893</left_val>
- <right_val>-0.1272031962871552</right_val></_></_>
- <_>
- <!-- tree 246 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 3 14 -1.</_>
- <_>
- 1 1 1 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0427928082644939</threshold>
- <left_val>7.5381440110504627e-003</left_val>
- <right_val>-0.7186136245727539</right_val></_></_>
- <_>
- <!-- tree 247 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 6 2 3 -1.</_>
- <_>
- 15 7 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.2706589922308922e-003</threshold>
- <left_val>0.0988220199942589</left_val>
- <right_val>-0.0448588803410530</right_val></_></_>
- <_>
- <!-- tree 248 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 3 2 -1.</_>
- <_>
- 4 2 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2180468598380685e-004</threshold>
- <left_val>-0.1059567034244537</left_val>
- <right_val>0.0440276414155960</right_val></_></_>
- <_>
- <!-- tree 249 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 2 6 -1.</_>
- <_>
- 17 1 1 3 2.</_>
- <_>
- 16 4 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0192952807992697</threshold>
- <left_val>-0.4121721982955933</left_val>
- <right_val>2.9048579744994640e-003</right_val></_></_>
- <_>
- <!-- tree 250 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 2 6 -1.</_>
- <_>
- 0 1 1 3 2.</_>
- <_>
- 1 4 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0072490442544222e-003</threshold>
- <left_val>0.1149147972464562</left_val>
- <right_val>-0.0455907806754112</right_val></_></_>
- <_>
- <!-- tree 251 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 9 7 -1.</_>
- <_>
- 9 0 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0550463087856770</threshold>
- <left_val>0.1894032955169678</left_val>
- <right_val>-0.0119002396240830</right_val></_></_>
- <_>
- <!-- tree 252 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 9 7 -1.</_>
- <_>
- 6 0 3 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1124947965145111</threshold>
- <left_val>0.2426909953355789</left_val>
- <right_val>-0.0220534801483154</right_val></_></_>
- <_>
- <!-- tree 253 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 1 6 -1.</_>
- <_>
- 9 0 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.5265945419669151e-003</threshold>
- <left_val>-0.0385538190603256</left_val>
- <right_val>0.0301385801285505</right_val></_></_>
- <_>
- <!-- tree 254 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 6 1 -1.</_>
- <_>
- 9 0 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.8573405519127846e-003</threshold>
- <left_val>-0.0646601468324661</left_val>
- <right_val>0.0850300714373589</right_val></_></_>
- <_>
- <!-- tree 255 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 5 4 -1.</_>
- <_>
- 11 5 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3099901415407658e-003</threshold>
- <left_val>-0.0779245272278786</left_val>
- <right_val>0.0518223904073238</right_val></_></_>
- <_>
- <!-- tree 256 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 9 6 -1.</_>
- <_>
- 7 2 9 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1524796932935715</threshold>
- <left_val>0.0170198101550341</left_val>
- <right_val>-0.2801989912986755</right_val></_></_>
- <_>
- <!-- tree 257 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 4 3 -1.</_>
- <_>
- 9 6 2 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0514544583857059</threshold>
- <left_val>-0.2223165035247803</left_val>
- <right_val>8.8541666045784950e-003</right_val></_></_>
- <_>
- <!-- tree 258 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 4 7 -1.</_>
- <_>
- 9 3 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0254663806408644</threshold>
- <left_val>-0.0549487285315990</left_val>
- <right_val>0.0890722572803497</right_val></_></_>
- <_>
- <!-- tree 259 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 4 6 -1.</_>
- <_>
- 10 3 4 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2543771862983704</threshold>
- <left_val>2.0636660046875477e-003</left_val>
- <right_val>-0.8708871006965637</right_val></_></_>
- <_>
- <!-- tree 260 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 4 14 -1.</_>
- <_>
- 4 8 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2286273986101151</threshold>
- <left_val>0.2003466039896011</left_val>
- <right_val>-0.0253187809139490</right_val></_></_>
- <_>
- <!-- tree 261 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 16 3 -1.</_>
- <_>
- 1 7 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0118133397772908</threshold>
- <left_val>0.1338717043399811</left_val>
- <right_val>-0.0365035310387611</right_val></_></_>
- <_>
- <!-- tree 262 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 6 3 -1.</_>
- <_>
- 7 7 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0201183203607798</threshold>
- <left_val>-0.2012384980916977</left_val>
- <right_val>0.0280736796557903</right_val></_></_>
- <_>
- <!-- tree 263 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 8 2 -1.</_>
- <_>
- 13 8 4 1 2.</_>
- <_>
- 9 9 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0217740796506405</threshold>
- <left_val>-6.5130768343806267e-003</left_val>
- <right_val>0.2802217006683350</right_val></_></_>
- <_>
- <!-- tree 264 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 8 2 -1.</_>
- <_>
- 1 8 4 1 2.</_>
- <_>
- 5 9 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8404871486127377e-003</threshold>
- <left_val>-0.0298142507672310</left_val>
- <right_val>0.1597764939069748</right_val></_></_>
- <_>
- <!-- tree 265 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 4 2 -1.</_>
- <_>
- 7 9 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1922290286747739e-004</threshold>
- <left_val>0.0340446382761002</left_val>
- <right_val>-0.1605768054723740</right_val></_></_>
- <_>
- <!-- tree 266 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 1 4 -1.</_>
- <_>
- 0 10 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.2792158462107182e-003</threshold>
- <left_val>-0.4833438098430634</left_val>
- <right_val>9.9527724087238312e-003</right_val></_></_>
- <_>
- <!-- tree 267 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 2 2 -1.</_>
- <_>
- 11 8 1 1 2.</_>
- <_>
- 10 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5904899302986450e-005</threshold>
- <left_val>-0.0381436906754971</left_val>
- <right_val>0.0470281802117825</right_val></_></_>
- <_>
- <!-- tree 268 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 5 8 -1.</_>
- <_>
- 6 6 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0909861028194427</threshold>
- <left_val>0.2697112858295441</left_val>
- <right_val>-0.0179479792714119</right_val></_></_>
- <_>
- <!-- tree 269 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 16 6 -1.</_>
- <_>
- 1 10 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2087876945734024</threshold>
- <left_val>0.2300664037466049</left_val>
- <right_val>-0.0216091796755791</right_val></_></_>
- <_>
- <!-- tree 270 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 3 1 -1.</_>
- <_>
- 7 6 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.0507721975445747e-003</threshold>
- <left_val>-0.2504821121692658</left_val>
- <right_val>0.0200520195066929</right_val></_></_>
- <_>
- <!-- tree 271 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 6 2 -1.</_>
- <_>
- 6 8 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9825186878442764e-003</threshold>
- <left_val>-0.0180237293243408</left_val>
- <right_val>0.2951684892177582</right_val></_></_>
- <_>
- <!-- tree 272 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 6 1 -1.</_>
- <_>
- 10 5 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0597062110900879</threshold>
- <left_val>-0.0128449099138379</left_val>
- <right_val>0.3559386134147644</right_val></_></_>
- <_>
- <!-- tree 273 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 18 2 -1.</_>
- <_>
- 9 4 9 1 2.</_>
- <_>
- 0 5 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103647699579597</threshold>
- <left_val>-0.2009311020374298</left_val>
- <right_val>0.0278272200375795</right_val></_></_>
- <_>
- <!-- tree 274 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 2 5 -1.</_>
- <_>
- 1 9 1 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0194542594254017</threshold>
- <left_val>-0.5303530097007752</left_val>
- <right_val>9.0706236660480499e-003</right_val></_></_>
- <_>
- <!-- tree 275 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 5 1 3 -1.</_>
- <_>
- 16 6 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.1027070470154285e-003</threshold>
- <left_val>0.0885996073484421</left_val>
- <right_val>-0.0361577197909355</right_val></_></_>
- <_>
- <!-- tree 276 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 3 1 -1.</_>
- <_>
- 2 6 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.5333649292588234e-003</threshold>
- <left_val>-0.0244578700512648</left_val>
- <right_val>0.1936513036489487</right_val></_></_>
- <_>
- <!-- tree 277 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 6 1 4 -1.</_>
- <_>
- 17 7 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1182601600885391e-003</threshold>
- <left_val>0.0174081493169069</left_val>
- <right_val>-0.2255457043647766</right_val></_></_>
- <_>
- <!-- tree 278 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 1 4 -1.</_>
- <_>
- 0 7 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1947720088064671e-003</threshold>
- <left_val>0.0296904593706131</left_val>
- <right_val>-0.1958502978086472</right_val></_></_>
- <_>
- <!-- tree 279 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 3 4 6 -1.</_>
- <_>
- 14 5 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0412029810249805</threshold>
- <left_val>-0.0132970996201038</left_val>
- <right_val>0.1000028029084206</right_val></_></_>
- <_>
- <!-- tree 280 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 4 6 -1.</_>
- <_>
- 0 5 4 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0161616802215576</threshold>
- <left_val>0.0401702187955379</left_val>
- <right_val>-0.1321049034595490</right_val></_></_>
- <_>
- <!-- tree 281 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 6 6 -1.</_>
- <_>
- 9 9 2 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1274060010910034</threshold>
- <left_val>9.2737795785069466e-003</left_val>
- <right_val>-0.2394157946109772</right_val></_></_>
- <_>
- <!-- tree 282 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 2 2 -1.</_>
- <_>
- 7 10 1 1 2.</_>
- <_>
- 8 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6743640191853046e-003</threshold>
- <left_val>0.2325102984905243</left_val>
- <right_val>-0.0232730191200972</right_val></_></_>
- <_>
- <!-- tree 283 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 16 3 -1.</_>
- <_>
- 6 9 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1170528009533882</threshold>
- <left_val>-0.2183447033166885</left_val>
- <right_val>0.0135161597281694</right_val></_></_>
- <_>
- <!-- tree 284 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 3 2 -1.</_>
- <_>
- 4 5 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.6700777970254421e-003</threshold>
- <left_val>-0.0436670817434788</left_val>
- <right_val>0.1079972982406616</right_val></_></_>
- <_>
- <!-- tree 285 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 5 3 3 -1.</_>
- <_>
- 14 6 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0400560796260834</threshold>
- <left_val>-6.8564810790121555e-003</left_val>
- <right_val>0.2937721014022827</right_val></_></_>
- <_>
- <!-- tree 286 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 3 3 -1.</_>
- <_>
- 4 6 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.5556342229247093e-003</threshold>
- <left_val>0.1104653999209404</left_val>
- <right_val>-0.0465722493827343</right_val></_></_>
- <_>
- <!-- tree 287 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 3 10 -1.</_>
- <_>
- 11 2 1 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0315735116600990</threshold>
- <left_val>9.8816202953457832e-003</left_val>
- <right_val>-0.4157396852970123</right_val></_></_>
- <_>
- <!-- tree 288 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 4 5 -1.</_>
- <_>
- 4 2 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0248094201087952</threshold>
- <left_val>-0.3319647908210754</left_val>
- <right_val>0.0140330903232098</right_val></_></_>
- <_>
- <!-- tree 289 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 4 2 2 -1.</_>
- <_>
- 13 4 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.8404951444827020e-004</threshold>
- <left_val>-0.0977882891893387</left_val>
- <right_val>0.0236715003848076</right_val></_></_>
- <_>
- <!-- tree 290 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 2 2 -1.</_>
- <_>
- 5 4 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.0798787958920002e-003</threshold>
- <left_val>0.0679533332586288</left_val>
- <right_val>-0.0907793864607811</right_val></_></_>
- <_>
- <!-- tree 291 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 1 6 -1.</_>
- <_>
- 9 4 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0226807501167059</threshold>
- <left_val>-0.8081390261650085</left_val>
- <right_val>3.1646140851080418e-003</right_val></_></_>
- <_>
- <!-- tree 292 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 13 3 1 -1.</_>
- <_>
- 7 13 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6572299646213651e-003</threshold>
- <left_val>0.1429641991853714</left_val>
- <right_val>-0.0321753397583961</right_val></_></_>
- <_>
- <!-- tree 293 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 2 6 -1.</_>
- <_>
- 10 8 1 3 2.</_>
- <_>
- 9 11 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0209627896547318</threshold>
- <left_val>-0.7540594935417175</left_val>
- <right_val>3.1872680410742760e-003</right_val></_></_>
- <_>
- <!-- tree 294 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 12 4 2 -1.</_>
- <_>
- 8 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0227429447695613e-003</threshold>
- <left_val>0.0832900702953339</left_val>
- <right_val>-0.0552086904644966</right_val></_></_>
- <_>
- <!-- tree 295 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 3 7 -1.</_>
- <_>
- 10 1 1 7 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.0178760644048452e-003</threshold>
- <left_val>-0.0410230606794357</left_val>
- <right_val>0.0196295809000731</right_val></_></_>
- <_>
- <!-- tree 296 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 6 6 -1.</_>
- <_>
- 6 3 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1914006024599075</threshold>
- <left_val>0.0175436791032553</left_val>
- <right_val>-0.2556655108928680</right_val></_></_>
- <_>
- <!-- tree 297 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 10 3 2 -1.</_>
- <_>
- 15 11 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0189527608454227</threshold>
- <left_val>0.3286316096782684</left_val>
- <right_val>-4.8918230459094048e-003</right_val></_></_>
- <_>
- <!-- tree 298 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 3 3 -1.</_>
- <_>
- 0 9 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5249331742525101e-003</threshold>
- <left_val>-0.1561917066574097</left_val>
- <right_val>0.0295387599617243</right_val></_></_>
- <_>
- <!-- tree 299 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 1 3 -1.</_>
- <_>
- 8 3 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.9335299991071224e-003</threshold>
- <left_val>-0.1536104977130890</left_val>
- <right_val>0.0127125997096300</right_val></_></_>
- <_>
- <!-- tree 300 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 16 3 -1.</_>
- <_>
- 1 7 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0189859308302403</threshold>
- <left_val>-0.0395853891968727</left_val>
- <right_val>0.1203117966651917</right_val></_></_>
- <_>
- <!-- tree 301 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 9 1 2 -1.</_>
- <_>
- 9 9 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.5369809698313475e-003</threshold>
- <left_val>0.0511838011443615</left_val>
- <right_val>-0.0198078006505966</right_val></_></_>
- <_>
- <!-- tree 302 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 3 3 -1.</_>
- <_>
- 8 10 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0313022881746292</threshold>
- <left_val>7.9048639163374901e-003</left_val>
- <right_val>-0.5422518253326416</right_val></_></_>
- <_>
- <!-- tree 303 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 1 3 -1.</_>
- <_>
- 17 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.9099438153207302e-004</threshold>
- <left_val>0.0733341798186302</left_val>
- <right_val>-0.0247610397636890</right_val></_></_>
- <_>
- <!-- tree 304 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 3 -1.</_>
- <_>
- 0 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5027391024632379e-005</threshold>
- <left_val>-0.0677618235349655</left_val>
- <right_val>0.0672639682888985</right_val></_></_>
- <_>
- <!-- tree 305 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 1 2 -1.</_>
- <_>
- 17 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1923059800174087e-005</threshold>
- <left_val>-0.0342731587588787</left_val>
- <right_val>0.0385947003960609</right_val></_></_>
- <_>
- <!-- tree 306 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 2 -1.</_>
- <_>
- 0 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7095869124168530e-005</threshold>
- <left_val>0.0838238298892975</left_val>
- <right_val>-0.0660852268338203</right_val></_></_>
- <_>
- <!-- tree 307 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 4 6 -1.</_>
- <_>
- 13 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1215929016470909</threshold>
- <left_val>-0.7001026272773743</left_val>
- <right_val>1.8631670391187072e-003</right_val></_></_>
- <_>
- <!-- tree 308 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 4 6 -1.</_>
- <_>
- 1 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0174945406615734</threshold>
- <left_val>0.0259598605334759</left_val>
- <right_val>-0.1810075044631958</right_val></_></_>
- <_>
- <!-- tree 309 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 12 11 -1.</_>
- <_>
- 8 0 4 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0633600726723671</threshold>
- <left_val>0.1302110999822617</left_val>
- <right_val>-8.8773788884282112e-003</right_val></_></_>
- <_>
- <!-- tree 310 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 12 14 -1.</_>
- <_>
- 6 1 6 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3935186862945557</threshold>
- <left_val>-0.6352580785751343</left_val>
- <right_val>8.2348221912980080e-003</right_val></_></_>
- <_>
- <!-- tree 311 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 8 9 -1.</_>
- <_>
- 12 5 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0147491302341223</threshold>
- <left_val>0.0573673695325851</left_val>
- <right_val>-0.0774541124701500</right_val></_></_>
- <_>
- <!-- tree 312 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 18 2 -1.</_>
- <_>
- 9 12 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.4586831033229828e-003</threshold>
- <left_val>-0.0738315135240555</left_val>
- <right_val>0.0729713514447212</right_val></_></_>
- <_>
- <!-- tree 313 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 14 2 1 -1.</_>
- <_>
- 8 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0465059505077079e-005</threshold>
- <left_val>-0.0687413066625595</left_val>
- <right_val>0.0833826810121536</right_val></_></_>
- <_>
- <!-- tree 314 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 13 2 2 -1.</_>
- <_>
- 8 13 1 1 2.</_>
- <_>
- 9 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.3182349549606442e-005</threshold>
- <left_val>-0.0648377612233162</left_val>
- <right_val>0.0794876664876938</right_val></_></_>
- <_>
- <!-- tree 315 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 11 4 4 -1.</_>
- <_>
- 10 11 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0179907493293285</threshold>
- <left_val>-0.3418853878974915</left_val>
- <right_val>8.2358242943882942e-003</right_val></_></_>
- <_>
- <!-- tree 316 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 11 4 4 -1.</_>
- <_>
- 6 11 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7810800345614552e-003</threshold>
- <left_val>0.0831420794129372</left_val>
- <right_val>-0.0662932470440865</right_val></_></_></trees>
- <stage_threshold>-1.1628010272979736</stage_threshold>
- <parent>15</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 17 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 12 9 -1.</_>
- <_>
- 7 5 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5282195806503296</threshold>
- <left_val>-0.1120738014578819</left_val>
- <right_val>0.4649200141429901</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 6 3 -1.</_>
- <_>
- 11 8 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.3934608846902847e-003</threshold>
- <left_val>0.1242000982165337</left_val>
- <right_val>-0.0984233617782593</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 8 4 -1.</_>
- <_>
- 4 7 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0125337103381753</threshold>
- <left_val>0.1294067054986954</left_val>
- <right_val>-0.2182607054710388</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 4 2 -1.</_>
- <_>
- 14 2 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6514590717852116e-003</threshold>
- <left_val>0.1074666976928711</left_val>
- <right_val>-0.0652235969901085</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 2 2 -1.</_>
- <_>
- 8 7 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.2469879584386945e-003</threshold>
- <left_val>0.0948277264833450</left_val>
- <right_val>-0.1972541064023972</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 4 2 -1.</_>
- <_>
- 10 6 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0105062201619148</threshold>
- <left_val>-0.1786229014396668</left_val>
- <right_val>0.0707185864448547</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 4 2 -1.</_>
- <_>
- 2 2 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.4628679491579533e-003</threshold>
- <left_val>0.0773052126169205</left_val>
- <right_val>-0.1588167995214462</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 6 3 2 -1.</_>
- <_>
- 11 7 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0117471702396870</threshold>
- <left_val>0.0412793383002281</left_val>
- <right_val>-0.1657488942146301</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 2 3 -1.</_>
- <_>
- 7 7 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.1636099554598331e-003</threshold>
- <left_val>-0.0817365422844887</left_val>
- <right_val>0.1844726949930191</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 2 2 -1.</_>
- <_>
- 11 8 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0156048499047756</threshold>
- <left_val>0.1840981990098953</left_val>
- <right_val>9.1587323695421219e-003</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 2 2 -1.</_>
- <_>
- 7 8 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.7909010685980320e-003</threshold>
- <left_val>0.1927130073308945</left_val>
- <right_val>-0.0610056594014168</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 2 4 -1.</_>
- <_>
- 8 10 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6382728032767773e-003</threshold>
- <left_val>0.0721243992447853</left_val>
- <right_val>-0.1547524929046631</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 8 6 -1.</_>
- <_>
- 5 6 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1059508025646210</threshold>
- <left_val>0.1698832064867020</left_val>
- <right_val>-0.0774008184671402</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 2 4 -1.</_>
- <_>
- 13 0 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0222781002521515</threshold>
- <left_val>0.0300818495452404</left_val>
- <right_val>-0.3189120888710022</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 10 4 -1.</_>
- <_>
- 4 7 10 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0383511297404766</threshold>
- <left_val>-0.0293571297079325</left_val>
- <right_val>0.3784500956535339</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 14 6 1 -1.</_>
- <_>
- 12 14 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0127405496314168</threshold>
- <left_val>0.0121086901053786</left_val>
- <right_val>-0.2898040115833283</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 3 6 -1.</_>
- <_>
- 5 3 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0119678396731615</threshold>
- <left_val>-0.2752982974052429</left_val>
- <right_val>0.0334202796220779</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 6 2 -1.</_>
- <_>
- 7 1 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2382412143051624e-003</threshold>
- <left_val>0.0232270695269108</left_val>
- <right_val>-0.2876886129379273</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 18 2 -1.</_>
- <_>
- 0 11 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2571290135383606e-003</threshold>
- <left_val>-0.1228341981768608</left_val>
- <right_val>0.0775459334254265</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 3 4 12 -1.</_>
- <_>
- 14 9 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0977464169263840</threshold>
- <left_val>0.0120771396905184</left_val>
- <right_val>-0.3209269940853119</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 3 -1.</_>
- <_>
- 3 1 12 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.9180860407650471e-003</threshold>
- <left_val>-0.2275620996952057</left_val>
- <right_val>0.0447532683610916</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 1 2 -1.</_>
- <_>
- 9 7 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.4139030873775482e-003</threshold>
- <left_val>0.0401469282805920</left_val>
- <right_val>-0.0504605211317539</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 14 6 1 -1.</_>
- <_>
- 4 14 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.2285759747028351e-003</threshold>
- <left_val>0.0234754905104637</left_val>
- <right_val>-0.3772892057895660</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 1 -1.</_>
- <_>
- 9 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.6009760331362486e-003</threshold>
- <left_val>0.0580360703170300</left_val>
- <right_val>-0.0397480018436909</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 1 -1.</_>
- <_>
- 6 0 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.5100939460098743e-003</threshold>
- <left_val>-0.1500709950923920</left_val>
- <right_val>0.0647656172513962</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 10 15 -1.</_>
- <_>
- 8 0 5 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3092997968196869</threshold>
- <left_val>-0.3616220951080322</left_val>
- <right_val>5.2778669632971287e-003</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 10 15 -1.</_>
- <_>
- 5 0 5 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1664361059665680</threshold>
- <left_val>0.0580257400870323</left_val>
- <right_val>-0.1667063981294632</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 1 14 -1.</_>
- <_>
- 15 7 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0292491707950830</threshold>
- <left_val>-0.1041812002658844</left_val>
- <right_val>0.0473819412291050</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 9 2 -1.</_>
- <_>
- 12 4 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0578976906836033</threshold>
- <left_val>-0.0827134624123573</left_val>
- <right_val>0.1230174973607063</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 1 14 -1.</_>
- <_>
- 15 7 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0439998507499695</threshold>
- <left_val>3.1090460252016783e-003</left_val>
- <right_val>-0.3888421058654785</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 12 10 -1.</_>
- <_>
- 3 5 6 5 2.</_>
- <_>
- 9 10 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1334455013275147</threshold>
- <left_val>-0.2756403982639313</left_val>
- <right_val>0.0307342596352100</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 16 2 -1.</_>
- <_>
- 9 0 8 1 2.</_>
- <_>
- 1 1 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4765329957008362e-003</threshold>
- <left_val>0.0265623796731234</left_val>
- <right_val>-0.2864835858345032</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 2 3 -1.</_>
- <_>
- 0 7 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2942858785390854e-003</threshold>
- <left_val>0.0198616907000542</left_val>
- <right_val>-0.3646562099456787</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 4 3 -1.</_>
- <_>
- 13 2 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0118541996926069</threshold>
- <left_val>-0.0481690689921379</left_val>
- <right_val>0.1577796936035156</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 10 -1.</_>
- <_>
- 0 0 9 5 2.</_>
- <_>
- 9 5 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1097894981503487</threshold>
- <left_val>-0.2161000967025757</left_val>
- <right_val>0.0352399796247482</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 2 2 -1.</_>
- <_>
- 10 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2859810376539826e-003</threshold>
- <left_val>-0.0768053531646729</left_val>
- <right_val>0.0990003198385239</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 10 8 -1.</_>
- <_>
- 9 0 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1088009998202324</threshold>
- <left_val>-0.0982203707098961</left_val>
- <right_val>0.1162839010357857</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 4 1 -1.</_>
- <_>
- 8 3 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0142060602083802</threshold>
- <left_val>4.8896879889070988e-003</left_val>
- <right_val>-0.3838334977626801</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 4 1 -1.</_>
- <_>
- 8 3 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0132633903995156</threshold>
- <left_val>0.0221766997128725</left_val>
- <right_val>-0.3880636096000671</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 12 15 2 -1.</_>
- <_>
- 3 13 15 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9566845670342445e-003</threshold>
- <left_val>-0.0713148191571236</left_val>
- <right_val>0.0741146504878998</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 18 8 -1.</_>
- <_>
- 0 9 18 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0769576579332352</threshold>
- <left_val>-0.0361662209033966</left_val>
- <right_val>0.2575767934322357</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 4 3 6 -1.</_>
- <_>
- 11 6 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0100203501060605</threshold>
- <left_val>-0.0785313323140144</left_val>
- <right_val>0.0633838027715683</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 2 3 -1.</_>
- <_>
- 2 4 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.2017520219087601e-003</threshold>
- <left_val>0.0293919891119003</left_val>
- <right_val>-0.2573288083076477</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 3 3 -1.</_>
- <_>
- 14 4 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0307231806218624</threshold>
- <left_val>-0.0187381394207478</left_val>
- <right_val>0.2283234000205994</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 3 3 -1.</_>
- <_>
- 4 4 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0110199600458145</threshold>
- <left_val>-0.0532967299222946</left_val>
- <right_val>0.1749452054500580</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 3 3 -1.</_>
- <_>
- 14 3 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0274540707468987</threshold>
- <left_val>0.1702467948198319</left_val>
- <right_val>-8.2028387114405632e-003</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 3 -1.</_>
- <_>
- 4 3 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0136898197233677</threshold>
- <left_val>0.2001978009939194</left_val>
- <right_val>-0.0419919602572918</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 3 2 -1.</_>
- <_>
- 10 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.1678535789251328e-003</threshold>
- <left_val>-0.2626230120658875</left_val>
- <right_val>0.0103546399623156</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 4 -1.</_>
- <_>
- 5 1 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0100999800488353</threshold>
- <left_val>-0.0449482612311840</left_val>
- <right_val>0.1852373033761978</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 12 10 -1.</_>
- <_>
- 3 5 6 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2002492994070053</threshold>
- <left_val>-0.0368244796991348</left_val>
- <right_val>0.2407283037900925</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 1 4 -1.</_>
- <_>
- 9 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.7789789494127035e-003</threshold>
- <left_val>-0.1391090005636215</left_val>
- <right_val>0.0761268436908722</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 5 -1.</_>
- <_>
- 8 0 2 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0111010000109673</threshold>
- <left_val>0.2399149984121323</left_val>
- <right_val>-0.0364109985530376</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 18 6 -1.</_>
- <_>
- 0 1 9 3 2.</_>
- <_>
- 9 4 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0620720200240612</threshold>
- <left_val>0.0276025105267763</left_val>
- <right_val>-0.2976244091987610</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 7 1 2 -1.</_>
- <_>
- 10 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9415021203458309e-004</threshold>
- <left_val>0.0430329516530037</left_val>
- <right_val>-0.1610901951789856</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 6 2 -1.</_>
- <_>
- 6 7 3 1 2.</_>
- <_>
- 9 8 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5258450079709291e-003</threshold>
- <left_val>-0.1741313040256500</left_val>
- <right_val>0.0575136989355087</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 1 6 -1.</_>
- <_>
- 12 8 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6127668358385563e-003</threshold>
- <left_val>-0.0242344699800015</left_val>
- <right_val>0.0987889915704727</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 4 2 -1.</_>
- <_>
- 5 9 2 1 2.</_>
- <_>
- 7 10 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7660789676010609e-003</threshold>
- <left_val>-0.0366232991218567</left_val>
- <right_val>0.2009083032608032</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 3 2 -1.</_>
- <_>
- 10 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0154594099149108</threshold>
- <left_val>7.6649021357297897e-003</left_val>
- <right_val>-0.2016355991363525</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 3 -1.</_>
- <_>
- 8 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0103579899296165</threshold>
- <left_val>-0.4239524006843567</left_val>
- <right_val>0.0170050095766783</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 2 -1.</_>
- <_>
- 15 1 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0131801199167967</threshold>
- <left_val>-0.2812205851078033</left_val>
- <right_val>0.0253022592514753</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 9 6 -1.</_>
- <_>
- 8 0 9 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.3639352023601532</threshold>
- <left_val>0.0106940995901823</left_val>
- <right_val>-0.6518303751945496</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 8 2 -1.</_>
- <_>
- 10 9 4 1 2.</_>
- <_>
- 6 10 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0457970909774303</threshold>
- <left_val>-1.0829409584403038e-003</left_val>
- <right_val>-0.6091793775558472</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 8 2 -1.</_>
- <_>
- 4 9 4 1 2.</_>
- <_>
- 8 10 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0168178994208574</threshold>
- <left_val>0.2406727969646454</left_val>
- <right_val>-0.0288416408002377</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 1 14 -1.</_>
- <_>
- 15 7 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0699327737092972</threshold>
- <left_val>-0.2456905990839005</left_val>
- <right_val>1.4374910097103566e-004</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 14 -1.</_>
- <_>
- 2 7 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0370729491114616</threshold>
- <left_val>0.0120472796261311</left_val>
- <right_val>-0.6182494759559631</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 9 1 3 -1.</_>
- <_>
- 17 10 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2509139962494373e-003</threshold>
- <left_val>-0.1386857032775879</left_val>
- <right_val>0.0234417803585529</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 6 2 -1.</_>
- <_>
- 6 8 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0411305986344814</threshold>
- <left_val>-0.4958019852638245</left_val>
- <right_val>0.0126163000240922</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 10 1 4 -1.</_>
- <_>
- 17 11 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3879110813140869e-005</threshold>
- <left_val>-0.0702746585011482</left_val>
- <right_val>0.0652459263801575</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 1 3 -1.</_>
- <_>
- 2 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.2828738912940025e-003</threshold>
- <left_val>-0.2180141061544418</left_val>
- <right_val>0.0284525100141764</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 4 8 -1.</_>
- <_>
- 14 6 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0589578114449978</threshold>
- <left_val>-0.1131016984581947</left_val>
- <right_val>0.0356478206813335</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 16 2 -1.</_>
- <_>
- 1 10 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2863670639926568e-005</threshold>
- <left_val>-0.0697758123278618</left_val>
- <right_val>0.0949401631951332</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 8 6 -1.</_>
- <_>
- 5 10 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0730367004871368</threshold>
- <left_val>0.1069146022200584</left_val>
- <right_val>-0.0896811932325363</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 16 8 -1.</_>
- <_>
- 0 2 8 4 2.</_>
- <_>
- 8 6 8 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1058195978403091</threshold>
- <left_val>0.1823062002658844</left_val>
- <right_val>-0.0388196706771851</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 10 4 4 -1.</_>
- <_>
- 16 10 2 2 2.</_>
- <_>
- 14 12 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6694820048287511e-004</threshold>
- <left_val>-0.1007533967494965</left_val>
- <right_val>0.0651198998093605</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 1 3 -1.</_>
- <_>
- 0 10 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5920490734279156e-003</threshold>
- <left_val>-0.2544820904731751</left_val>
- <right_val>0.0231018606573343</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0104395002126694</threshold>
- <left_val>4.0941308252513409e-003</left_val>
- <right_val>-0.5827335715293884</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.3739310563541949e-005</threshold>
- <left_val>0.0606367290019989</left_val>
- <right_val>-0.1001473963260651</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 1 4 -1.</_>
- <_>
- 16 1 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2808990906924009e-003</threshold>
- <left_val>0.1851990967988968</left_val>
- <right_val>-0.0254341196268797</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 1 4 -1.</_>
- <_>
- 0 11 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0937379449605942e-003</threshold>
- <left_val>-0.1919911056756973</left_val>
- <right_val>0.0333683788776398</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 6 -1.</_>
- <_>
- 0 11 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2182179987430573</threshold>
- <left_val>0.3065988123416901</left_val>
- <right_val>-0.0218403805047274</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 8 2 -1.</_>
- <_>
- 3 0 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0115180201828480</threshold>
- <left_val>-0.1070621013641357</left_val>
- <right_val>0.0582328587770462</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 10 6 -1.</_>
- <_>
- 13 9 5 3 2.</_>
- <_>
- 8 12 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0315043888986111</threshold>
- <left_val>0.1176773980259895</left_val>
- <right_val>-0.0459064915776253</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 12 12 1 -1.</_>
- <_>
- 5 12 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0294614192098379</threshold>
- <left_val>-0.2296009957790375</left_val>
- <right_val>0.0288945809006691</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 2 8 -1.</_>
- <_>
- 11 2 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.9243192449212074e-003</threshold>
- <left_val>0.1419624984264374</left_val>
- <right_val>-0.0125654498115182</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 4 2 -1.</_>
- <_>
- 1 8 2 1 2.</_>
- <_>
- 3 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.1360300965607166e-003</threshold>
- <left_val>-0.0285923406481743</left_val>
- <right_val>0.2037373036146164</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 4 2 6 -1.</_>
- <_>
- 12 6 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0104305995628238</threshold>
- <left_val>-0.0423329882323742</left_val>
- <right_val>0.0525090992450714</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 10 8 -1.</_>
- <_>
- 9 0 5 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2438413947820664</threshold>
- <left_val>0.3361566960811615</left_val>
- <right_val>-0.0189900696277618</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 1 -1.</_>
- <_>
- 9 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.5686741620302200e-003</threshold>
- <left_val>6.4027151092886925e-003</left_val>
- <right_val>-0.3058831095695496</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 1 2 -1.</_>
- <_>
- 9 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.2688450515270233e-003</threshold>
- <left_val>-0.0901417508721352</left_val>
- <right_val>0.0729410126805305</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 11 3 4 -1.</_>
- <_>
- 13 12 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0308157093822956</threshold>
- <left_val>2.9594700317829847e-003</left_val>
- <right_val>-0.2435165941715241</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 11 3 4 -1.</_>
- <_>
- 2 12 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1978209260851145e-003</threshold>
- <left_val>-0.0633767321705818</left_val>
- <right_val>0.1006520017981529</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 13 7 2 -1.</_>
- <_>
- 8 14 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.1282119713723660e-003</threshold>
- <left_val>-0.0383862592279911</left_val>
- <right_val>0.0665621683001518</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 1 3 -1.</_>
- <_>
- 2 2 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.8037100564688444e-003</threshold>
- <left_val>0.0357193090021610</left_val>
- <right_val>-0.1542093008756638</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 3 -1.</_>
- <_>
- 15 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.9568650536239147e-003</threshold>
- <left_val>0.0709167122840881</left_val>
- <right_val>-0.0399580597877502</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 3 2 -1.</_>
- <_>
- 3 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0139292301610112</threshold>
- <left_val>-0.0233923103660345</left_val>
- <right_val>0.2814770042896271</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 4 3 -1.</_>
- <_>
- 14 0 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0101550603285432</threshold>
- <left_val>-0.1404235959053040</left_val>
- <right_val>0.0185156203806400</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 4 3 -1.</_>
- <_>
- 2 0 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0146013703197241</threshold>
- <left_val>0.0123592196032405</left_val>
- <right_val>-0.5497545003890991</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 1 4 -1.</_>
- <_>
- 16 1 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3091858717380092e-005</threshold>
- <left_val>-0.0439675599336624</left_val>
- <right_val>0.0347095616161823</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 1 4 -1.</_>
- <_>
- 1 1 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1016378886997700e-003</threshold>
- <left_val>0.2275288999080658</left_val>
- <right_val>-0.0287020802497864</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 1 -1.</_>
- <_>
- 15 1 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.4648198895156384e-003</threshold>
- <left_val>0.0181927904486656</left_val>
- <right_val>-0.2227513045072556</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 4 -1.</_>
- <_>
- 3 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.6089660823345184e-003</threshold>
- <left_val>-0.1483312994241715</left_val>
- <right_val>0.0421623699367046</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 18 6 -1.</_>
- <_>
- 0 6 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0491728708148003</threshold>
- <left_val>0.1821604967117310</left_val>
- <right_val>-0.0349443815648556</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 4 2 -1.</_>
- <_>
- 7 9 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7964000580832362e-003</threshold>
- <left_val>0.0488241016864777</left_val>
- <right_val>-0.1821431964635849</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 16 2 -1.</_>
- <_>
- 1 9 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3850047774612904e-003</threshold>
- <left_val>-0.0418660007417202</left_val>
- <right_val>0.1861997991800308</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 8 2 -1.</_>
- <_>
- 3 4 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0205026101320982</threshold>
- <left_val>-0.0581343583762646</left_val>
- <right_val>0.1378950029611588</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 9 11 -1.</_>
- <_>
- 9 0 3 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1163681969046593</threshold>
- <left_val>-0.0551596693694592</left_val>
- <right_val>0.0670195221900940</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 1 -1.</_>
- <_>
- 9 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8732312172651291e-003</threshold>
- <left_val>0.2340030074119568</left_val>
- <right_val>-0.0273893792182207</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 12 11 -1.</_>
- <_>
- 7 0 6 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2888160049915314</threshold>
- <left_val>0.0193629097193480</left_val>
- <right_val>-0.1619012057781220</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 12 11 -1.</_>
- <_>
- 5 0 6 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1196641996502876</threshold>
- <left_val>0.2455915063619614</left_val>
- <right_val>-0.0259939599782228</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 6 4 -1.</_>
- <_>
- 11 2 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8372459821403027e-003</threshold>
- <left_val>-0.1389679014682770</left_val>
- <right_val>0.0567790493369102</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 2 2 -1.</_>
- <_>
- 5 2 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1065569706261158e-003</threshold>
- <left_val>-0.1620949953794479</left_val>
- <right_val>0.0360417217016220</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 2 6 -1.</_>
- <_>
- 8 5 2 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0863595679402351</threshold>
- <left_val>-0.0102093601599336</left_val>
- <right_val>0.2500715851783752</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 8 4 -1.</_>
- <_>
- 4 3 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0359533615410328</threshold>
- <left_val>-0.7569807171821594</left_val>
- <right_val>8.1533808261156082e-003</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 2 8 -1.</_>
- <_>
- 9 3 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0827576965093613</threshold>
- <left_val>-0.0119722299277782</left_val>
- <right_val>0.1315149962902069</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 18 14 -1.</_>
- <_>
- 0 1 9 7 2.</_>
- <_>
- 9 8 9 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1455516070127487</threshold>
- <left_val>0.0256695207208395</left_val>
- <right_val>-0.2337771952152252</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 5 5 10 -1.</_>
- <_>
- 13 10 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0666986927390099</threshold>
- <left_val>0.0182299092411995</left_val>
- <right_val>-0.1238626986742020</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 6 2 -1.</_>
- <_>
- 11 5 2 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0987812727689743</threshold>
- <left_val>-0.0197382606565952</left_val>
- <right_val>0.3210687935352325</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 7 8 -1.</_>
- <_>
- 7 2 7 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.2824327945709229</threshold>
- <left_val>-0.5469413995742798</left_val>
- <right_val>2.3887760471552610e-003</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 8 7 -1.</_>
- <_>
- 11 2 4 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2101342976093292</threshold>
- <left_val>0.0181991197168827</left_val>
- <right_val>-0.3624803125858307</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 2 4 3 -1.</_>
- <_>
- 12 3 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.5322709269821644e-004</threshold>
- <left_val>0.0552163012325764</left_val>
- <right_val>-0.0308924391865730</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 3 4 -1.</_>
- <_>
- 6 3 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0345937386155128</threshold>
- <left_val>0.3355734944343567</left_val>
- <right_val>-0.0155041199177504</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 3 -1.</_>
- <_>
- 10 1 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2095651626586914e-003</threshold>
- <left_val>-0.2595745027065277</left_val>
- <right_val>0.0123718800023198</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 13 6 -1.</_>
- <_>
- 2 5 13 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0672681182622910</threshold>
- <left_val>-0.0627519264817238</left_val>
- <right_val>0.0915589928627014</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 2 3 -1.</_>
- <_>
- 8 6 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.0582818910479546e-003</threshold>
- <left_val>0.0410736314952374</left_val>
- <right_val>-0.1567548066377640</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 4 6 -1.</_>
- <_>
- 0 6 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0444693900644779</threshold>
- <left_val>-0.1934425979852676</left_val>
- <right_val>0.0311934594064951</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 16 2 -1.</_>
- <_>
- 1 10 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8536471072584391e-003</threshold>
- <left_val>-0.0742046609520912</left_val>
- <right_val>0.0826525837182999</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 6 4 -1.</_>
- <_>
- 5 5 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1215196028351784</threshold>
- <left_val>-0.0172205492854118</left_val>
- <right_val>0.3772569000720978</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 2 8 -1.</_>
- <_>
- 13 4 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0527439787983894</threshold>
- <left_val>7.3638479225337505e-003</left_val>
- <right_val>-0.3958064913749695</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 2 8 -1.</_>
- <_>
- 3 4 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0133668296039104</threshold>
- <left_val>0.0302810091525316</left_val>
- <right_val>-0.1715900003910065</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 2 3 -1.</_>
- <_>
- 15 2 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.8486632555723190e-003</threshold>
- <left_val>-0.0223950203508139</left_val>
- <right_val>0.1505244970321655</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 3 1 -1.</_>
- <_>
- 2 4 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.8255099207162857e-003</threshold>
- <left_val>0.1378811001777649</left_val>
- <right_val>-0.0390050299465656</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 4 5 10 -1.</_>
- <_>
- 13 9 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1473706960678101</threshold>
- <left_val>0.0984983816742897</left_val>
- <right_val>-0.0175660997629166</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 5 10 -1.</_>
- <_>
- 0 9 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0714110434055328</threshold>
- <left_val>0.0232200995087624</left_val>
- <right_val>-0.2675958871841431</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 5 2 3 -1.</_>
- <_>
- 15 6 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0166891291737556</threshold>
- <left_val>-0.0217618402093649</left_val>
- <right_val>0.1461742073297501</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 3 2 -1.</_>
- <_>
- 3 6 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.2251640222966671e-003</threshold>
- <left_val>0.1193147972226143</left_val>
- <right_val>-0.0540297999978065</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 8 4 -1.</_>
- <_>
- 14 10 4 2 2.</_>
- <_>
- 10 12 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9702045768499374e-003</threshold>
- <left_val>-0.0543896183371544</left_val>
- <right_val>0.0729502886533737</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 4 9 -1.</_>
- <_>
- 3 5 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0116266896948218</threshold>
- <left_val>0.0324149206280708</left_val>
- <right_val>-0.1705735027790070</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 8 9 -1.</_>
- <_>
- 10 1 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0332335010170937</threshold>
- <left_val>-0.1532150954008102</left_val>
- <right_val>0.0276584308594465</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 8 9 -1.</_>
- <_>
- 4 1 4 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0162025205790997</threshold>
- <left_val>-0.0798396766185761</left_val>
- <right_val>0.0804151371121407</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 10 8 4 -1.</_>
- <_>
- 14 10 4 2 2.</_>
- <_>
- 10 12 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0169930998235941</threshold>
- <left_val>0.1070884987711906</left_val>
- <right_val>-0.0270955804735422</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 8 4 -1.</_>
- <_>
- 0 9 4 2 2.</_>
- <_>
- 4 11 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2699539810419083e-003</threshold>
- <left_val>-0.0776714086532593</left_val>
- <right_val>0.0904784426093102</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 14 2 -1.</_>
- <_>
- 10 0 7 1 2.</_>
- <_>
- 3 1 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0112306997179985</threshold>
- <left_val>-0.3688867092132568</left_val>
- <right_val>0.0147642102092505</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 18 2 -1.</_>
- <_>
- 0 13 9 1 2.</_>
- <_>
- 9 14 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0216833408921957</threshold>
- <left_val>0.0211919397115707</left_val>
- <right_val>-0.2431215047836304</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 1 2 -1.</_>
- <_>
- 11 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.7136749122291803e-003</threshold>
- <left_val>0.1293199062347412</left_val>
- <right_val>-0.0180541593581438</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 13 8 2 -1.</_>
- <_>
- 3 14 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8232649676501751e-003</threshold>
- <left_val>-0.0677571818232536</left_val>
- <right_val>0.0790435373783112</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 13 10 2 -1.</_>
- <_>
- 9 13 5 1 2.</_>
- <_>
- 4 14 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0129264900460839</threshold>
- <left_val>0.0228535197675228</left_val>
- <right_val>-0.2579326927661896</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 13 1 2 -1.</_>
- <_>
- 6 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6950810570269823e-003</threshold>
- <left_val>0.2166609019041061</left_val>
- <right_val>-0.0270976908504963</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 9 -1.</_>
- <_>
- 14 0 2 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2159149050712585</threshold>
- <left_val>4.6611670404672623e-003</left_val>
- <right_val>-0.8688737154006958</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 9 4 -1.</_>
- <_>
- 4 0 9 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1681632995605469</threshold>
- <left_val>0.0141299199312925</left_val>
- <right_val>-0.3501074910163879</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 6 3 -1.</_>
- <_>
- 8 6 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0491994395852089</threshold>
- <left_val>-0.7729945778846741</left_val>
- <right_val>6.0964501462876797e-003</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 3 2 -1.</_>
- <_>
- 3 10 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0261047407984734</threshold>
- <left_val>6.1850231140851974e-003</left_val>
- <right_val>-0.6686937212944031</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 7 2 -1.</_>
- <_>
- 6 1 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0145413503050804</threshold>
- <left_val>5.0752838142216206e-003</left_val>
- <right_val>-0.7429249882698059</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 1 2 -1.</_>
- <_>
- 4 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1107119498774409e-003</threshold>
- <left_val>-0.0341122597455978</left_val>
- <right_val>0.1507174968719482</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 4 3 -1.</_>
- <_>
- 10 5 2 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0107706598937511</threshold>
- <left_val>-0.0934311375021935</left_val>
- <right_val>0.0101868798956275</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 15 6 -1.</_>
- <_>
- 5 0 5 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0942776203155518</threshold>
- <left_val>-0.0600805804133415</left_val>
- <right_val>0.0837868973612785</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 9 14 -1.</_>
- <_>
- 10 0 3 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1235508024692535</threshold>
- <left_val>-0.0419926010072231</left_val>
- <right_val>0.0931324735283852</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 15 -1.</_>
- <_>
- 6 0 6 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.8364567756652832</threshold>
- <left_val>0.0113448603078723</left_val>
- <right_val>-0.5479543209075928</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 4 3 -1.</_>
- <_>
- 10 5 2 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0352501794695854</threshold>
- <left_val>-0.0108188204467297</left_val>
- <right_val>0.0904011875391006</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 2 2 -1.</_>
- <_>
- 7 4 1 1 2.</_>
- <_>
- 8 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1221748435636982e-005</threshold>
- <left_val>0.0795160531997681</left_val>
- <right_val>-0.0667194202542305</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 2 2 -1.</_>
- <_>
- 10 4 1 1 2.</_>
- <_>
- 9 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7162756749894470e-005</threshold>
- <left_val>-0.0442888401448727</left_val>
- <right_val>0.0536684095859528</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 8 4 -1.</_>
- <_>
- 0 11 4 2 2.</_>
- <_>
- 4 13 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6395221725106239e-003</threshold>
- <left_val>-0.0847273468971252</left_val>
- <right_val>0.0621006116271019</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 2 3 -1.</_>
- <_>
- 16 13 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3368109939619899e-003</threshold>
- <left_val>-0.0803513526916504</left_val>
- <right_val>0.0279868002980947</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 8 4 -1.</_>
- <_>
- 0 10 4 2 2.</_>
- <_>
- 4 12 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0337816514074802</threshold>
- <left_val>0.3246152102947235</left_val>
- <right_val>-0.0163126401603222</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 2 2 -1.</_>
- <_>
- 12 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7830280121415854e-003</threshold>
- <left_val>-0.1649041026830673</left_val>
- <right_val>0.0217570792883635</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 2 2 -1.</_>
- <_>
- 4 1 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0984211005270481e-003</threshold>
- <left_val>0.0295347701758146</left_val>
- <right_val>-0.1795125007629395</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 2 -1.</_>
- <_>
- 10 0 1 1 2.</_>
- <_>
- 9 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3364270570455119e-005</threshold>
- <left_val>0.0443317405879498</left_val>
- <right_val>-0.0367653109133244</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 11 4 -1.</_>
- <_>
- 0 13 11 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1226925998926163</threshold>
- <left_val>0.0124071799218655</left_val>
- <right_val>-0.4055337905883789</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 4 3 -1.</_>
- <_>
- 10 5 2 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0949875265359879</threshold>
- <left_val>-3.5644270246848464e-004</left_val>
- <right_val>-0.9999405145645142</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 3 4 -1.</_>
- <_>
- 8 5 3 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0637726783752441</threshold>
- <left_val>0.7416344881057739</left_val>
- <right_val>-6.8990588188171387e-003</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 4 3 -1.</_>
- <_>
- 10 4 2 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0555911287665367</threshold>
- <left_val>-3.5102190449833870e-003</left_val>
- <right_val>0.2164891064167023</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 6 4 -1.</_>
- <_>
- 6 4 3 2 2.</_>
- <_>
- 9 6 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0157034005969763</threshold>
- <left_val>-0.2336577028036118</left_val>
- <right_val>0.0235169809311628</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 3 9 -1.</_>
- <_>
- 10 4 1 9 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1162799000740051</threshold>
- <left_val>-1.</left_val>
- <right_val>5.0003651995211840e-004</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 9 3 -1.</_>
- <_>
- 8 4 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0639397129416466</threshold>
- <left_val>8.5324635729193687e-003</left_val>
- <right_val>-0.5650091767311096</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 2 3 -1.</_>
- <_>
- 16 13 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8591650296002626e-003</threshold>
- <left_val>-0.0215167496353388</left_val>
- <right_val>0.0431870110332966</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 10 2 -1.</_>
- <_>
- 3 0 5 1 2.</_>
- <_>
- 8 1 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3360128980129957e-003</threshold>
- <left_val>0.0451245903968811</left_val>
- <right_val>-0.1088766977190971</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 3 13 -1.</_>
- <_>
- 14 1 1 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0587388910353184</threshold>
- <left_val>-0.5649691224098206</left_val>
- <right_val>5.2059069275856018e-003</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 1 2 -1.</_>
- <_>
- 1 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.7132750730961561e-003</threshold>
- <left_val>-0.0134631600230932</left_val>
- <right_val>0.3763531148433685</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.0255730487406254e-003</threshold>
- <left_val>0.0314449593424797</left_val>
- <right_val>-0.1232260987162590</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 1 2 -1.</_>
- <_>
- 3 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3382161897607148e-005</threshold>
- <left_val>0.0770330131053925</left_val>
- <right_val>-0.0667390972375870</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 6 4 8 -1.</_>
- <_>
- 14 10 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1296906024217606</threshold>
- <left_val>3.6417250521481037e-003</left_val>
- <right_val>-0.4113129973411560</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 4 8 -1.</_>
- <_>
- 0 10 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1191373988986015</threshold>
- <left_val>-0.6026347875595093</left_val>
- <right_val>7.9903472214937210e-003</right_val></_></_>
- <_>
- <!-- tree 181 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 1 -1.</_>
- <_>
- 16 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0128018800169230</threshold>
- <left_val>-0.5977100133895874</left_val>
- <right_val>1.0519300121814013e-003</right_val></_></_>
- <_>
- <!-- tree 182 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 13 -1.</_>
- <_>
- 2 0 2 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1910737007856369</threshold>
- <left_val>-0.8129808902740479</left_val>
- <right_val>5.7100728154182434e-003</right_val></_></_>
- <_>
- <!-- tree 183 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 14 12 1 -1.</_>
- <_>
- 9 14 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0228933207690716</threshold>
- <left_val>0.0194525197148323</left_val>
- <right_val>-0.1632170975208283</right_val></_></_>
- <_>
- <!-- tree 184 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 9 2 -1.</_>
- <_>
- 10 5 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1703315973281860</threshold>
- <left_val>-0.0198107101023197</left_val>
- <right_val>0.2434374988079071</right_val></_></_>
- <_>
- <!-- tree 185 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 6 12 -1.</_>
- <_>
- 6 5 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3816856145858765</threshold>
- <left_val>7.4787861667573452e-003</left_val>
- <right_val>-0.8387240767478943</right_val></_></_>
- <_>
- <!-- tree 186 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 2 4 -1.</_>
- <_>
- 9 5 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.2416237778961658e-003</threshold>
- <left_val>-0.1422827988862991</left_val>
- <right_val>0.0332785397768021</right_val></_></_>
- <_>
- <!-- tree 187 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 4 4 -1.</_>
- <_>
- 11 5 4 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0845880135893822</threshold>
- <left_val>0.0167654994875193</left_val>
- <right_val>-0.0928579717874527</right_val></_></_>
- <_>
- <!-- tree 188 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 12 1 -1.</_>
- <_>
- 4 0 6 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0225149597972631</threshold>
- <left_val>0.0879255905747414</left_val>
- <right_val>-0.0715503692626953</right_val></_></_>
- <_>
- <!-- tree 189 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 5 10 -1.</_>
- <_>
- 10 7 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1966812014579773</threshold>
- <left_val>0.0833218693733215</left_val>
- <right_val>-0.0203528292477131</right_val></_></_>
- <_>
- <!-- tree 190 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 5 10 -1.</_>
- <_>
- 3 7 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2161691039800644</threshold>
- <left_val>0.2964927852153778</left_val>
- <right_val>-0.0161115303635597</right_val></_></_>
- <_>
- <!-- tree 191 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 14 6 -1.</_>
- <_>
- 2 4 14 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.8920090347528458e-003</threshold>
- <left_val>0.1377834975719452</left_val>
- <right_val>-0.0358431711792946</right_val></_></_>
- <_>
- <!-- tree 192 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 5 3 -1.</_>
- <_>
- 4 5 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120847998186946</threshold>
- <left_val>-0.4384394884109497</left_val>
- <right_val>0.0123654901981354</right_val></_></_>
- <_>
- <!-- tree 193 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 15 3 -1.</_>
- <_>
- 7 2 5 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2580629885196686</threshold>
- <left_val>-5.2921390160918236e-003</left_val>
- <right_val>0.3777414858341217</right_val></_></_>
- <_>
- <!-- tree 194 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 2 3 -1.</_>
- <_>
- 6 2 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0148832304403186</threshold>
- <left_val>9.0738674625754356e-003</left_val>
- <right_val>-0.5520840287208557</right_val></_></_>
- <_>
- <!-- tree 195 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 12 9 -1.</_>
- <_>
- 8 5 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6691424250602722</threshold>
- <left_val>-0.0149384997785091</left_val>
- <right_val>0.1785112023353577</right_val></_></_>
- <_>
- <!-- tree 196 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.9930079840123653e-003</threshold>
- <left_val>-0.2314859032630920</left_val>
- <right_val>0.0234815701842308</right_val></_></_>
- <_>
- <!-- tree 197 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 6 11 -1.</_>
- <_>
- 10 0 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2031546980142593</threshold>
- <left_val>2.1833679638803005e-003</left_val>
- <right_val>-0.4934430122375488</right_val></_></_>
- <_>
- <!-- tree 198 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 1 3 1 -1.</_>
- <_>
- 2 2 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.6780078448355198e-003</threshold>
- <left_val>0.1934317052364349</left_val>
- <right_val>-0.0277863405644894</right_val></_></_>
- <_>
- <!-- tree 199 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 1 6 -1.</_>
- <_>
- 16 2 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9304530732333660e-003</threshold>
- <left_val>-0.0200895592570305</left_val>
- <right_val>0.1090969964861870</right_val></_></_>
- <_>
- <!-- tree 200 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 1 2 -1.</_>
- <_>
- 0 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3739310563541949e-005</threshold>
- <left_val>0.0694196820259094</left_val>
- <right_val>-0.0834254324436188</right_val></_></_>
- <_>
- <!-- tree 201 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 6 3 2 -1.</_>
- <_>
- 15 6 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.2176208011806011e-003</threshold>
- <left_val>0.0786899477243423</left_val>
- <right_val>-0.0139514803886414</right_val></_></_>
- <_>
- <!-- tree 202 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 2 3 -1.</_>
- <_>
- 3 6 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.5320560932159424e-003</threshold>
- <left_val>-0.0663150474429131</left_val>
- <right_val>0.0798476189374924</right_val></_></_>
- <_>
- <!-- tree 203 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 4 -1.</_>
- <_>
- 9 0 9 2 2.</_>
- <_>
- 0 2 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0369591601192951</threshold>
- <left_val>-0.2938030958175659</left_val>
- <right_val>0.0157649908214808</right_val></_></_>
- <_>
- <!-- tree 204 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 3 4 -1.</_>
- <_>
- 5 6 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0163652505725622</threshold>
- <left_val>-0.0322352685034275</left_val>
- <right_val>0.1461254954338074</right_val></_></_>
- <_>
- <!-- tree 205 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 4 12 -1.</_>
- <_>
- 15 1 2 6 2.</_>
- <_>
- 13 7 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0785978734493256</threshold>
- <left_val>-0.1932214051485062</left_val>
- <right_val>9.7729396075010300e-003</right_val></_></_>
- <_>
- <!-- tree 206 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 2 14 -1.</_>
- <_>
- 3 8 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0371479801833630</threshold>
- <left_val>-0.0805545896291733</left_val>
- <right_val>0.0657810792326927</right_val></_></_>
- <_>
- <!-- tree 207 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 5 3 -1.</_>
- <_>
- 7 7 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0117284599691629</threshold>
- <left_val>0.0272431094199419</left_val>
- <right_val>-0.1464972943067551</right_val></_></_>
- <_>
- <!-- tree 208 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 6 2 -1.</_>
- <_>
- 6 8 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0103350402787328</threshold>
- <left_val>0.0627673566341400</left_val>
- <right_val>-0.0815778523683548</right_val></_></_>
- <_>
- <!-- tree 209 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 9 3 -1.</_>
- <_>
- 10 9 3 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0225539691746235</threshold>
- <left_val>-0.0534550100564957</left_val>
- <right_val>0.0260324496775866</right_val></_></_>
- <_>
- <!-- tree 210 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 8 9 3 -1.</_>
- <_>
- 5 9 3 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0209841597825289</threshold>
- <left_val>-0.0704301372170448</left_val>
- <right_val>0.0790670588612556</right_val></_></_>
- <_>
- <!-- tree 211 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 4 4 7 -1.</_>
- <_>
- 11 4 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0778899826109409e-003</threshold>
- <left_val>0.0680953115224838</left_val>
- <right_val>-0.0216820295900106</right_val></_></_>
- <_>
- <!-- tree 212 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 4 7 -1.</_>
- <_>
- 5 4 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9395829876884818e-003</threshold>
- <left_val>0.0617897398769856</left_val>
- <right_val>-0.1004408970475197</right_val></_></_>
- <_>
- <!-- tree 213 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 14 3 1 -1.</_>
- <_>
- 11 14 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5511269448325038e-003</threshold>
- <left_val>-0.0237703006714582</left_val>
- <right_val>0.1048393994569778</right_val></_></_>
- <_>
- <!-- tree 214 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 14 3 1 -1.</_>
- <_>
- 6 14 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.7477812485303730e-005</threshold>
- <left_val>0.0735548809170723</left_val>
- <right_val>-0.0689330399036407</right_val></_></_>
- <_>
- <!-- tree 215 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 14 12 1 -1.</_>
- <_>
- 9 14 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8028680612333119e-004</threshold>
- <left_val>0.0447285212576389</left_val>
- <right_val>-0.0435139797627926</right_val></_></_>
- <_>
- <!-- tree 216 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 18 8 -1.</_>
- <_>
- 0 1 9 4 2.</_>
- <_>
- 9 5 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1720701009035111</threshold>
- <left_val>-0.5927919149398804</left_val>
- <right_val>8.8808601722121239e-003</right_val></_></_>
- <_>
- <!-- tree 217 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 6 4 -1.</_>
- <_>
- 9 1 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1584734022617340</threshold>
- <left_val>3.0388650484383106e-003</left_val>
- <right_val>-0.2743625938892365</right_val></_></_>
- <_>
- <!-- tree 218 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 6 -1.</_>
- <_>
- 9 1 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1497168987989426</threshold>
- <left_val>-0.7600219845771790</left_val>
- <right_val>6.4801289699971676e-003</right_val></_></_>
- <_>
- <!-- tree 219 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 2 2 -1.</_>
- <_>
- 12 8 1 1 2.</_>
- <_>
- 11 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0640289876610041e-003</threshold>
- <left_val>0.1553120017051697</left_val>
- <right_val>-0.0304844807833433</right_val></_></_>
- <_>
- <!-- tree 220 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 11 -1.</_>
- <_>
- 7 0 4 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0771084874868393</threshold>
- <left_val>0.4302985966205597</left_val>
- <right_val>-0.0116477198898792</right_val></_></_>
- <_>
- <!-- tree 221 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 6 3 -1.</_>
- <_>
- 9 8 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0343285612761974</threshold>
- <left_val>-0.2315476983785629</left_val>
- <right_val>0.0161607693880796</right_val></_></_>
- <_>
- <!-- tree 222 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 6 9 -1.</_>
- <_>
- 6 0 2 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0435740090906620</threshold>
- <left_val>-0.0281460192054510</left_val>
- <right_val>0.1697372943162918</right_val></_></_>
- <_>
- <!-- tree 223 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 2 -1.</_>
- <_>
- 11 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.4282230343669653e-005</threshold>
- <left_val>-0.0652616396546364</left_val>
- <right_val>0.0352620482444763</right_val></_></_>
- <_>
- <!-- tree 224 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 3 -1.</_>
- <_>
- 7 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.1579340100288391e-003</threshold>
- <left_val>0.0431658513844013</left_val>
- <right_val>-0.1101099997758865</right_val></_></_>
- <_>
- <!-- tree 225 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 1 -1.</_>
- <_>
- 11 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.0436691120266914e-003</threshold>
- <left_val>0.0295867193490267</left_val>
- <right_val>-0.0619979798793793</right_val></_></_>
- <_>
- <!-- tree 226 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 6 11 -1.</_>
- <_>
- 8 4 2 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1842591017484665</threshold>
- <left_val>5.3550167940557003e-003</left_val>
- <right_val>-0.9289578795433044</right_val></_></_>
- <_>
- <!-- tree 227 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 3 3 -1.</_>
- <_>
- 11 8 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0191197507083416</threshold>
- <left_val>5.3580361418426037e-003</left_val>
- <right_val>-0.6534789204597473</right_val></_></_>
- <_>
- <!-- tree 228 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 9 2 -1.</_>
- <_>
- 8 1 9 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0641443729400635</threshold>
- <left_val>-0.0103305000811815</left_val>
- <right_val>0.4671950936317444</right_val></_></_>
- <_>
- <!-- tree 229 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 1 -1.</_>
- <_>
- 11 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.3394681997597218e-003</threshold>
- <left_val>-0.1537874042987824</left_val>
- <right_val>0.0111428704112768</right_val></_></_>
- <_>
- <!-- tree 230 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 6 -1.</_>
- <_>
- 0 9 9 3 2.</_>
- <_>
- 9 12 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2232117950916290</threshold>
- <left_val>-0.9469724893569946</left_val>
- <right_val>4.8918798565864563e-003</right_val></_></_>
- <_>
- <!-- tree 231 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 2 2 -1.</_>
- <_>
- 9 8 1 1 2.</_>
- <_>
- 8 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6038159527815878e-005</threshold>
- <left_val>0.0709768906235695</left_val>
- <right_val>-0.0623531192541122</right_val></_></_>
- <_>
- <!-- tree 232 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 2 2 -1.</_>
- <_>
- 4 7 1 1 2.</_>
- <_>
- 5 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3452749699354172e-003</threshold>
- <left_val>-0.0286097601056099</left_val>
- <right_val>0.1554924994707108</right_val></_></_>
- <_>
- <!-- tree 233 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 3 3 -1.</_>
- <_>
- 11 8 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3946880353614688e-003</threshold>
- <left_val>-0.0402705408632755</left_val>
- <right_val>0.0586122795939446</right_val></_></_>
- <_>
- <!-- tree 234 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 3 3 -1.</_>
- <_>
- 6 8 1 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0156203303486109</threshold>
- <left_val>7.3195630684494972e-003</left_val>
- <right_val>-0.6321095824241638</right_val></_></_>
- <_>
- <!-- tree 235 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 1 -1.</_>
- <_>
- 11 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.5555468861712143e-005</threshold>
- <left_val>0.0450235009193420</left_val>
- <right_val>-0.0287142004817724</right_val></_></_>
- <_>
- <!-- tree 236 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 1 6 -1.</_>
- <_>
- 0 8 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0111428601667285</threshold>
- <left_val>0.0157248601317406</left_val>
- <right_val>-0.2853612005710602</right_val></_></_>
- <_>
- <!-- tree 237 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 5 6 -1.</_>
- <_>
- 11 10 5 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0131013197824359</threshold>
- <left_val>-0.0355839505791664</left_val>
- <right_val>0.1051271036267281</right_val></_></_>
- <_>
- <!-- tree 238 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 1 6 -1.</_>
- <_>
- 0 10 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7957009673118591e-003</threshold>
- <left_val>0.0244174394756556</left_val>
- <right_val>-0.1893509030342102</right_val></_></_>
- <_>
- <!-- tree 239 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 6 6 -1.</_>
- <_>
- 11 10 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0499279797077179</threshold>
- <left_val>0.0787372216582298</left_val>
- <right_val>-0.0277854092419147</right_val></_></_>
- <_>
- <!-- tree 240 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 6 6 -1.</_>
- <_>
- 1 10 6 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0398713387548923</threshold>
- <left_val>-0.0298023894429207</left_val>
- <right_val>0.1944461017847061</right_val></_></_>
- <_>
- <!-- tree 241 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 1 -1.</_>
- <_>
- 11 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0157816000282764</threshold>
- <left_val>-0.7665395736694336</left_val>
- <right_val>9.5044961199164391e-004</right_val></_></_>
- <_>
- <!-- tree 242 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 1 3 -1.</_>
- <_>
- 7 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.1174961738288403e-003</threshold>
- <left_val>-0.2676964104175568</left_val>
- <right_val>0.0171274207532406</right_val></_></_>
- <_>
- <!-- tree 243 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 9 9 -1.</_>
- <_>
- 8 6 3 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4499483108520508</threshold>
- <left_val>-0.0190667398273945</left_val>
- <right_val>0.2348536998033524</right_val></_></_>
- <_>
- <!-- tree 244 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 8 2 -1.</_>
- <_>
- 7 0 8 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0433428809046745</threshold>
- <left_val>-0.7188379168510437</left_val>
- <right_val>6.2806149944663048e-003</right_val></_></_>
- <_>
- <!-- tree 245 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 9 3 6 -1.</_>
- <_>
- 12 9 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0301288608461618</threshold>
- <left_val>-0.6576640009880066</left_val>
- <right_val>4.9726511351764202e-003</right_val></_></_>
- <_>
- <!-- tree 246 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 14 12 1 -1.</_>
- <_>
- 5 14 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0227169692516327</threshold>
- <left_val>-0.1927156001329422</left_val>
- <right_val>0.0224213097244501</right_val></_></_>
- <_>
- <!-- tree 247 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 14 4 1 -1.</_>
- <_>
- 9 14 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0098509956151247e-003</threshold>
- <left_val>0.0785590186715126</left_val>
- <right_val>-0.0356715284287930</right_val></_></_>
- <_>
- <!-- tree 248 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 14 4 1 -1.</_>
- <_>
- 7 14 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0692490031942725e-003</threshold>
- <left_val>0.1281787008047104</left_val>
- <right_val>-0.0513950809836388</right_val></_></_>
- <_>
- <!-- tree 249 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 14 2 1 -1.</_>
- <_>
- 14 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7365992106497288e-003</threshold>
- <left_val>-0.4571113884449005</left_val>
- <right_val>4.0395711548626423e-003</right_val></_></_>
- <_>
- <!-- tree 250 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 14 2 1 -1.</_>
- <_>
- 3 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0038979679811746e-005</threshold>
- <left_val>0.0696846470236778</left_val>
- <right_val>-0.0743912681937218</right_val></_></_>
- <_>
- <!-- tree 251 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 9 3 6 -1.</_>
- <_>
- 12 9 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0336750186979771</threshold>
- <left_val>3.2588799949735403e-003</left_val>
- <right_val>-0.8050068020820618</right_val></_></_>
- <_>
- <!-- tree 252 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 3 6 -1.</_>
- <_>
- 5 9 1 6 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0159147903323174</threshold>
- <left_val>0.0107761099934578</left_val>
- <right_val>-0.4024600088596344</right_val></_></_>
- <_>
- <!-- tree 253 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 12 12 2 -1.</_>
- <_>
- 5 13 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.2607940849848092e-004</threshold>
- <left_val>-0.0471980608999729</left_val>
- <right_val>0.0233493093401194</right_val></_></_>
- <_>
- <!-- tree 254 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 15 15 -1.</_>
- <_>
- 5 0 5 15 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2248571068048477</threshold>
- <left_val>-0.0398878902196884</left_val>
- <right_val>0.1068518981337547</right_val></_></_>
- <_>
- <!-- tree 255 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 2 4 -1.</_>
- <_>
- 8 1 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9953860212117434e-003</threshold>
- <left_val>0.0916093885898590</left_val>
- <right_val>-0.0748484134674072</right_val></_></_>
- <_>
- <!-- tree 256 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 8 -1.</_>
- <_>
- 0 3 1 4 2.</_>
- <_>
- 1 7 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1523170657455921e-003</threshold>
- <left_val>0.1153976023197174</left_val>
- <right_val>-0.0425119213759899</right_val></_></_>
- <_>
- <!-- tree 257 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 3 -1.</_>
- <_>
- 14 2 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0498369298875332</threshold>
- <left_val>-3.9297798648476601e-003</left_val>
- <right_val>0.5181720256805420</right_val></_></_>
- <_>
- <!-- tree 258 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 3 3 -1.</_>
- <_>
- 4 2 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0200233291834593</threshold>
- <left_val>0.1912897974252701</left_val>
- <right_val>-0.0231510493904352</right_val></_></_>
- <_>
- <!-- tree 259 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 6 -1.</_>
- <_>
- 16 0 2 3 2.</_>
- <_>
- 14 3 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2091718427836895e-003</threshold>
- <left_val>0.1013979017734528</left_val>
- <right_val>-0.0324465110898018</right_val></_></_>
- <_>
- <!-- tree 260 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 12 2 -1.</_>
- <_>
- 3 3 6 1 2.</_>
- <_>
- 9 4 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2683670073747635e-003</threshold>
- <left_val>-0.1818909049034119</left_val>
- <right_val>0.0307422205805779</right_val></_></_>
- <_>
- <!-- tree 261 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 10 2 1 -1.</_>
- <_>
- 16 10 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.5454410351812840e-003</threshold>
- <left_val>0.0155313396826386</left_val>
- <right_val>-0.0760350972414017</right_val></_></_>
- <_>
- <!-- tree 262 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 10 1 2 -1.</_>
- <_>
- 2 10 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.3172550611197948e-003</threshold>
- <left_val>-0.1350935995578766</left_val>
- <right_val>0.0359591096639633</right_val></_></_>
- <_>
- <!-- tree 263 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 7 6 4 -1.</_>
- <_>
- 13 7 3 2 2.</_>
- <_>
- 10 9 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0261108204722404</threshold>
- <left_val>0.0872836336493492</left_val>
- <right_val>-0.0217705499380827</right_val></_></_>
- <_>
- <!-- tree 264 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 18 5 -1.</_>
- <_>
- 6 4 6 5 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2431263029575348</threshold>
- <left_val>0.0361428782343864</left_val>
- <right_val>-0.1462513059377670</right_val></_></_>
- <_>
- <!-- tree 265 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 5 6 -1.</_>
- <_>
- 9 3 5 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1904131025075913</threshold>
- <left_val>7.3239780031144619e-003</left_val>
- <right_val>-0.2772952020168304</right_val></_></_>
- <_>
- <!-- tree 266 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 6 6 -1.</_>
- <_>
- 10 2 2 6 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0163597594946623</threshold>
- <left_val>-0.1068542972207069</left_val>
- <right_val>0.0491146706044674</right_val></_></_>
- <_>
- <!-- tree 267 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 14 4 -1.</_>
- <_>
- 11 4 7 2 2.</_>
- <_>
- 4 6 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0688577666878700</threshold>
- <left_val>-0.4238899052143097</left_val>
- <right_val>8.5399514064192772e-003</right_val></_></_>
- <_>
- <!-- tree 268 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 14 4 -1.</_>
- <_>
- 0 4 7 2 2.</_>
- <_>
- 7 6 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0203291904181242</threshold>
- <left_val>-0.0396039597690105</left_val>
- <right_val>0.1634790003299713</right_val></_></_>
- <_>
- <!-- tree 269 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 7 6 4 -1.</_>
- <_>
- 13 7 3 2 2.</_>
- <_>
- 10 9 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0129730198532343</threshold>
- <left_val>-0.0195611193776131</left_val>
- <right_val>0.1110479012131691</right_val></_></_>
- <_>
- <!-- tree 270 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 7 6 4 -1.</_>
- <_>
- 2 7 3 2 2.</_>
- <_>
- 5 9 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2990398146212101e-003</threshold>
- <left_val>-0.0387555509805679</left_val>
- <right_val>0.1649558991193771</right_val></_></_>
- <_>
- <!-- tree 271 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 2 2 -1.</_>
- <_>
- 10 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6493619447574019e-004</threshold>
- <left_val>-0.0703989788889885</left_val>
- <right_val>0.0591666884720325</right_val></_></_>
- <_>
- <!-- tree 272 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 14 6 1 -1.</_>
- <_>
- 9 14 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0114370100200176</threshold>
- <left_val>-0.2558253109455109</left_val>
- <right_val>0.0225616004317999</right_val></_></_>
- <_>
- <!-- tree 273 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 6 -1.</_>
- <_>
- 9 9 9 3 2.</_>
- <_>
- 0 12 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0605634413659573</threshold>
- <left_val>-0.1502590030431747</left_val>
- <right_val>0.0358815304934978</right_val></_></_>
- <_>
- <!-- tree 274 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 1 14 -1.</_>
- <_>
- 1 7 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0571704693138599</threshold>
- <left_val>-0.5516524910926819</left_val>
- <right_val>8.8588111102581024e-003</right_val></_></_>
- <_>
- <!-- tree 275 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 1 -1.</_>
- <_>
- 15 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.7495139986276627e-003</threshold>
- <left_val>-0.1063347011804581</left_val>
- <right_val>0.0165663603693247</right_val></_></_>
- <_>
- <!-- tree 276 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 3 3 -1.</_>
- <_>
- 3 8 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.6156480200588703e-003</threshold>
- <left_val>-0.0469515882432461</left_val>
- <right_val>0.0984329879283905</right_val></_></_>
- <_>
- <!-- tree 277 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 1 -1.</_>
- <_>
- 15 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.9375461637973785e-003</threshold>
- <left_val>0.0158571396023035</left_val>
- <right_val>-0.1276154965162277</right_val></_></_>
- <_>
- <!-- tree 278 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 2 2 -1.</_>
- <_>
- 7 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9156679091975093e-004</threshold>
- <left_val>-0.0969325676560402</left_val>
- <right_val>0.0460354201495647</right_val></_></_>
- <_>
- <!-- tree 279 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 12 -1.</_>
- <_>
- 7 0 4 12 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0171396601945162</threshold>
- <left_val>0.1832552999258041</left_val>
- <right_val>-0.0297442600131035</right_val></_></_>
- <_>
- <!-- tree 280 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 2 1 -1.</_>
- <_>
- 9 8 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.1130971144884825e-003</threshold>
- <left_val>-0.1469496935606003</left_val>
- <right_val>0.0371412001550198</right_val></_></_>
- <_>
- <!-- tree 281 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 2 2 -1.</_>
- <_>
- 10 4 1 1 2.</_>
- <_>
- 9 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3239036535378546e-005</threshold>
- <left_val>0.0560943596065044</left_val>
- <right_val>-0.0452513098716736</right_val></_></_>
- <_>
- <!-- tree 282 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 2 2 -1.</_>
- <_>
- 7 4 1 1 2.</_>
- <_>
- 8 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2524639613693580e-005</threshold>
- <left_val>-0.0660794675350189</left_val>
- <right_val>0.0848461315035820</right_val></_></_>
- <_>
- <!-- tree 283 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 4 4 -1.</_>
- <_>
- 8 8 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2989229764789343e-003</threshold>
- <left_val>-0.0628855079412460</left_val>
- <right_val>0.0724585726857185</right_val></_></_>
- <_>
- <!-- tree 284 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 3 1 -1.</_>
- <_>
- 10 7 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.5239242762327194e-003</threshold>
- <left_val>0.0245985891669989</left_val>
- <right_val>-0.2040424942970276</right_val></_></_>
- <_>
- <!-- tree 285 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 18 2 -1.</_>
- <_>
- 0 11 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0152474995702505</threshold>
- <left_val>-0.0463051386177540</left_val>
- <right_val>0.0926802083849907</right_val></_></_>
- <_>
- <!-- tree 286 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 2 8 -1.</_>
- <_>
- 8 5 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0411155596375465</threshold>
- <left_val>-0.1647908985614777</left_val>
- <right_val>0.0320520587265491</right_val></_></_>
- <_>
- <!-- tree 287 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 12 4 -1.</_>
- <_>
- 3 5 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0570124983787537</threshold>
- <left_val>0.1769132018089294</left_val>
- <right_val>-0.0289100594818592</right_val></_></_>
- <_>
- <!-- tree 288 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 8 1 -1.</_>
- <_>
- 6 2 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0361419506371021</threshold>
- <left_val>0.3357386887073517</left_val>
- <right_val>-0.0146681498736143</right_val></_></_>
- <_>
- <!-- tree 289 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 10 -1.</_>
- <_>
- 11 0 2 5 2.</_>
- <_>
- 9 5 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0473424009978771</threshold>
- <left_val>-0.3646846115589142</left_val>
- <right_val>9.7021097317337990e-003</right_val></_></_>
- <_>
- <!-- tree 290 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 10 2 -1.</_>
- <_>
- 4 3 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5224410162772983e-004</threshold>
- <left_val>-0.0855662599205971</left_val>
- <right_val>0.0563358217477798</right_val></_></_>
- <_>
- <!-- tree 291 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 3 4 -1.</_>
- <_>
- 12 0 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0744449682533741e-003</threshold>
- <left_val>0.0676028802990913</left_val>
- <right_val>-0.0449445992708206</right_val></_></_>
- <_>
- <!-- tree 292 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 5 2 -1.</_>
- <_>
- 6 1 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4688818957656622e-003</threshold>
- <left_val>0.0393917709589005</left_val>
- <right_val>-0.1143665015697479</right_val></_></_>
- <_>
- <!-- tree 293 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 3 4 -1.</_>
- <_>
- 12 0 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0223950799554586</threshold>
- <left_val>-0.4149968922138214</left_val>
- <right_val>3.3534979447722435e-003</right_val></_></_>
- <_>
- <!-- tree 294 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 4 -1.</_>
- <_>
- 5 0 1 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0141458800062537</threshold>
- <left_val>7.8060040250420570e-003</left_val>
- <right_val>-0.5624625086784363</right_val></_></_>
- <_>
- <!-- tree 295 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 3 -1.</_>
- <_>
- 10 1 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6172739277826622e-005</threshold>
- <left_val>0.0422396287322044</left_val>
- <right_val>-0.0399822406470776</right_val></_></_>
- <_>
- <!-- tree 296 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 3 3 -1.</_>
- <_>
- 5 1 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.6720141544938087e-003</threshold>
- <left_val>-0.3006666898727417</left_val>
- <right_val>0.0159843992441893</right_val></_></_>
- <_>
- <!-- tree 297 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 2 2 -1.</_>
- <_>
- 12 8 1 1 2.</_>
- <_>
- 11 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9289661294315010e-005</threshold>
- <left_val>-0.0410341098904610</left_val>
- <right_val>0.0526925884187222</right_val></_></_>
- <_>
- <!-- tree 298 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 2 2 -1.</_>
- <_>
- 5 8 1 1 2.</_>
- <_>
- 6 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9730681087821722e-003</threshold>
- <left_val>0.1511884927749634</left_val>
- <right_val>-0.0325110815465450</right_val></_></_>
- <_>
- <!-- tree 299 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 2 2 -1.</_>
- <_>
- 12 8 1 1 2.</_>
- <_>
- 11 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3879110813140869e-005</threshold>
- <left_val>0.0414035692811012</left_val>
- <right_val>-0.0429901182651520</right_val></_></_>
- <_>
- <!-- tree 300 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 2 2 -1.</_>
- <_>
- 5 8 1 1 2.</_>
- <_>
- 6 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1802700909320265e-005</threshold>
- <left_val>-0.0583424791693687</left_val>
- <right_val>0.0939400717616081</right_val></_></_>
- <_>
- <!-- tree 301 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 7 1 4 -1.</_>
- <_>
- 10 8 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.2840979509055614e-003</threshold>
- <left_val>0.0185070801526308</left_val>
- <right_val>-0.0458313114941120</right_val></_></_>
- <_>
- <!-- tree 302 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 5 12 -1.</_>
- <_>
- 3 6 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1312506943941116</threshold>
- <left_val>-0.1768728047609329</left_val>
- <right_val>0.0260149408131838</right_val></_></_>
- <_>
- <!-- tree 303 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 10 4 1 -1.</_>
- <_>
- 11 10 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.1948959436267614e-003</threshold>
- <left_val>0.0419367291033268</left_val>
- <right_val>-0.0555466488003731</right_val></_></_>
- <_>
- <!-- tree 304 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 3 6 -1.</_>
- <_>
- 4 3 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0722346305847168</threshold>
- <left_val>0.0106889596208930</left_val>
- <right_val>-0.4012762010097504</right_val></_></_>
- <_>
- <!-- tree 305 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 16 1 -1.</_>
- <_>
- 6 1 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0563969314098358</threshold>
- <left_val>-0.8849198818206787</left_val>
- <right_val>3.6692508729174733e-004</right_val></_></_>
- <_>
- <!-- tree 306 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 12 4 -1.</_>
- <_>
- 3 6 6 2 2.</_>
- <_>
- 9 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0541536509990692</threshold>
- <left_val>-0.2249650955200195</left_val>
- <right_val>0.0179232098162174</right_val></_></_>
- <_>
- <!-- tree 307 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 16 3 -1.</_>
- <_>
- 1 8 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0251673292368650</threshold>
- <left_val>0.1300235986709595</left_val>
- <right_val>-0.0366861596703529</right_val></_></_>
- <_>
- <!-- tree 308 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 6 6 6 -1.</_>
- <_>
- 4 8 2 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0137102100998163</threshold>
- <left_val>-0.0405139811336994</left_val>
- <right_val>0.1120186001062393</right_val></_></_>
- <_>
- <!-- tree 309 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 4 4 3 -1.</_>
- <_>
- 14 5 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0278908200562000</threshold>
- <left_val>-0.7313765883445740</left_val>
- <right_val>3.7337029352784157e-003</right_val></_></_>
- <_>
- <!-- tree 310 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 4 3 -1.</_>
- <_>
- 0 5 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.5335809960961342e-003</threshold>
- <left_val>-0.2311984002590179</left_val>
- <right_val>0.0176145397126675</right_val></_></_>
- <_>
- <!-- tree 311 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 1 1 3 -1.</_>
- <_>
- 14 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2403611112385988e-003</threshold>
- <left_val>-8.7237963452935219e-003</left_val>
- <right_val>0.2038265019655228</right_val></_></_>
- <_>
- <!-- tree 312 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 9 9 3 -1.</_>
- <_>
- 4 9 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0844089612364769</threshold>
- <left_val>5.1954388618469238e-003</left_val>
- <right_val>-0.8245453238487244</right_val></_></_>
- <_>
- <!-- tree 313 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 2 2 3 -1.</_>
- <_>
- 14 2 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.2196877337992191e-004</threshold>
- <left_val>-0.0817157030105591</left_val>
- <right_val>0.0218308698385954</right_val></_></_>
- <_>
- <!-- tree 314 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 2 4 -1.</_>
- <_>
- 3 2 1 2 2.</_>
- <_>
- 4 4 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9956221114844084e-003</threshold>
- <left_val>-0.0280322693288326</left_val>
- <right_val>0.1512784063816071</right_val></_></_>
- <_>
- <!-- tree 315 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 4 10 -1.</_>
- <_>
- 12 5 2 5 2.</_>
- <_>
- 10 10 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0703764632344246</threshold>
- <left_val>-0.1352009028196335</left_val>
- <right_val>3.9681098423898220e-003</right_val></_></_>
- <_>
- <!-- tree 316 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 4 10 -1.</_>
- <_>
- 4 5 2 5 2.</_>
- <_>
- 6 10 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0321913808584213</threshold>
- <left_val>0.0131358997896314</left_val>
- <right_val>-0.3347019851207733</right_val></_></_>
- <_>
- <!-- tree 317 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 2 2 -1.</_>
- <_>
- 11 2 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.4974909871816635e-003</threshold>
- <left_val>-0.0265497900545597</left_val>
- <right_val>0.1170909032225609</right_val></_></_>
- <_>
- <!-- tree 318 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 3 6 -1.</_>
- <_>
- 5 6 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0164293907582760</threshold>
- <left_val>-0.0533613413572311</left_val>
- <right_val>0.0821190625429153</right_val></_></_>
- <_>
- <!-- tree 319 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 2 2 -1.</_>
- <_>
- 11 2 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.4506900273263454e-003</threshold>
- <left_val>0.0808582007884979</left_val>
- <right_val>-0.0223928596824408</right_val></_></_>
- <_>
- <!-- tree 320 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 2 2 -1.</_>
- <_>
- 7 2 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.9851150251924992e-003</threshold>
- <left_val>-0.0205729696899652</left_val>
- <right_val>0.2598786056041718</right_val></_></_>
- <_>
- <!-- tree 321 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 2 1 -1.</_>
- <_>
- 9 5 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.9100670944899321e-003</threshold>
- <left_val>-0.0231053698807955</left_val>
- <right_val>0.0452293008565903</right_val></_></_>
- <_>
- <!-- tree 322 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 9 14 -1.</_>
- <_>
- 5 0 3 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1352230012416840</threshold>
- <left_val>0.1116971969604492</left_val>
- <right_val>-0.0436136610805988</right_val></_></_>
- <_>
- <!-- tree 323 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 3 1 -1.</_>
- <_>
- 15 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.8680844530463219e-003</threshold>
- <left_val>-0.1834681928157806</left_val>
- <right_val>3.8948319852352142e-003</right_val></_></_>
- <_>
- <!-- tree 324 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 3 -1.</_>
- <_>
- 3 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.0301959961652756e-003</threshold>
- <left_val>0.0233750492334366</left_val>
- <right_val>-0.2056623995304108</right_val></_></_>
- <_>
- <!-- tree 325 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 10 -1.</_>
- <_>
- 11 0 2 5 2.</_>
- <_>
- 9 5 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0396324507892132</threshold>
- <left_val>7.7001759782433510e-003</left_val>
- <right_val>-0.1663939058780670</right_val></_></_>
- <_>
- <!-- tree 326 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 2 5 -1.</_>
- <_>
- 5 0 1 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0127424998208880</threshold>
- <left_val>0.1485241055488586</left_val>
- <right_val>-0.0306067708879709</right_val></_></_>
- <_>
- <!-- tree 327 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 2 1 -1.</_>
- <_>
- 14 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.7017830181866884e-003</threshold>
- <left_val>0.0209220908582211</left_val>
- <right_val>-0.1147229969501495</right_val></_></_>
- <_>
- <!-- tree 328 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 2 -1.</_>
- <_>
- 4 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.2704519797116518e-003</threshold>
- <left_val>0.0270258691161871</left_val>
- <right_val>-0.1654057949781418</right_val></_></_>
- <_>
- <!-- tree 329 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 1 4 4 -1.</_>
- <_>
- 12 1 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1495328992605209</threshold>
- <left_val>-2.0300289615988731e-003</left_val>
- <right_val>0.5981509089469910</right_val></_></_>
- <_>
- <!-- tree 330 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 1 4 -1.</_>
- <_>
- 0 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1417769864201546e-003</threshold>
- <left_val>0.3844088912010193</left_val>
- <right_val>-0.0112848002463579</right_val></_></_>
- <_>
- <!-- tree 331 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 2 4 -1.</_>
- <_>
- 9 7 1 2 2.</_>
- <_>
- 8 9 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3616367988288403e-003</threshold>
- <left_val>-0.3109016120433807</left_val>
- <right_val>0.0143518401309848</right_val></_></_>
- <_>
- <!-- tree 332 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 16 2 -1.</_>
- <_>
- 5 5 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0598138608038425</threshold>
- <left_val>-0.7037869095802307</left_val>
- <right_val>5.7968678884208202e-003</right_val></_></_>
- <_>
- <!-- tree 333 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 12 -1.</_>
- <_>
- 5 4 8 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3535721004009247</threshold>
- <left_val>0.0112126599997282</left_val>
- <right_val>-0.3322969973087311</right_val></_></_>
- <_>
- <!-- tree 334 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 12 9 -1.</_>
- <_>
- 6 5 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6899908185005188</threshold>
- <left_val>-0.0105861099436879</left_val>
- <right_val>0.3837656974792481</right_val></_></_>
- <_>
- <!-- tree 335 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 3 3 -1.</_>
- <_>
- 14 1 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.8297038301825523e-003</threshold>
- <left_val>0.0210381299257278</left_val>
- <right_val>-0.0573535598814487</right_val></_></_>
- <_>
- <!-- tree 336 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 3 3 -1.</_>
- <_>
- 4 1 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0178284905850887</threshold>
- <left_val>-0.0106050595641136</left_val>
- <right_val>0.3956354856491089</right_val></_></_>
- <_>
- <!-- tree 337 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 16 7 -1.</_>
- <_>
- 6 2 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0642841011285782</threshold>
- <left_val>-0.0638428777456284</left_val>
- <right_val>0.0267954096198082</right_val></_></_>
- <_>
- <!-- tree 338 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 16 7 -1.</_>
- <_>
- 4 2 8 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2549147009849548</threshold>
- <left_val>0.0193274095654488</left_val>
- <right_val>-0.2430274933576584</right_val></_></_>
- <_>
- <!-- tree 339 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 13 2 2 -1.</_>
- <_>
- 16 13 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1334970630705357e-003</threshold>
- <left_val>0.0115080103278160</left_val>
- <right_val>-0.2383089959621429</right_val></_></_>
- <_>
- <!-- tree 340 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 2 2 -1.</_>
- <_>
- 1 13 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9797872304916382e-003</threshold>
- <left_val>-0.2042689025402069</left_val>
- <right_val>0.0203900802880526</right_val></_></_>
- <_>
- <!-- tree 341 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 7 2 8 -1.</_>
- <_>
- 17 7 1 4 2.</_>
- <_>
- 16 11 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7258729096502066e-003</threshold>
- <left_val>-0.0465084612369537</left_val>
- <right_val>0.0794106870889664</right_val></_></_>
- <_>
- <!-- tree 342 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 2 8 -1.</_>
- <_>
- 0 7 1 4 2.</_>
- <_>
- 1 11 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0149838598445058</threshold>
- <left_val>0.3958691954612732</left_val>
- <right_val>-0.0113431699573994</right_val></_></_>
- <_>
- <!-- tree 343 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 7 3 -1.</_>
- <_>
- 11 3 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9130540788173676e-003</threshold>
- <left_val>0.0363716296851635</left_val>
- <right_val>-0.0906147211790085</right_val></_></_>
- <_>
- <!-- tree 344 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 2 3 -1.</_>
- <_>
- 1 8 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0548500884324312e-004</threshold>
- <left_val>0.0620919205248356</left_val>
- <right_val>-0.0684250965714455</right_val></_></_>
- <_>
- <!-- tree 345 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 6 4 -1.</_>
- <_>
- 12 7 2 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1165482997894287</threshold>
- <left_val>0.1156952977180481</left_val>
- <right_val>-0.0132687203586102</right_val></_></_>
- <_>
- <!-- tree 346 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 2 1 -1.</_>
- <_>
- 9 7 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0107813002541661</threshold>
- <left_val>0.0174200199544430</left_val>
- <right_val>-0.2803607881069183</right_val></_></_>
- <_>
- <!-- tree 347 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 18 8 -1.</_>
- <_>
- 0 7 18 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.5344784855842590</threshold>
- <left_val>-0.4741159081459045</left_val>
- <right_val>8.6649907752871513e-003</right_val></_></_>
- <_>
- <!-- tree 348 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 2 2 -1.</_>
- <_>
- 7 6 1 1 2.</_>
- <_>
- 8 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6615539506310597e-005</threshold>
- <left_val>-0.0586382709443569</left_val>
- <right_val>0.0750202611088753</right_val></_></_>
- <_>
- <!-- tree 349 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 2 2 -1.</_>
- <_>
- 12 6 1 1 2.</_>
- <_>
- 11 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2536040786653757e-005</threshold>
- <left_val>-0.0498466081917286</left_val>
- <right_val>0.0593500696122646</right_val></_></_>
- <_>
- <!-- tree 350 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 4 6 -1.</_>
- <_>
- 6 7 4 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0730543434619904</threshold>
- <left_val>-0.0140366898849607</left_val>
- <right_val>0.3588446080684662</right_val></_></_>
- <_>
- <!-- tree 351 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 2 2 -1.</_>
- <_>
- 16 3 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0165301598608494</threshold>
- <left_val>-0.3463242053985596</left_val>
- <right_val>6.7927599884569645e-003</right_val></_></_>
- <_>
- <!-- tree 352 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 14 2 1 -1.</_>
- <_>
- 9 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3628758653067052e-005</threshold>
- <left_val>0.0716383680701256</left_val>
- <right_val>-0.0592160597443581</right_val></_></_>
- <_>
- <!-- tree 353 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 7 3 -1.</_>
- <_>
- 11 3 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0194537602365017</threshold>
- <left_val>-0.5169472098350525</left_val>
- <right_val>6.2814089469611645e-003</right_val></_></_>
- <_>
- <!-- tree 354 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 9 12 -1.</_>
- <_>
- 0 5 9 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2120210975408554</threshold>
- <left_val>7.6583931222558022e-003</left_val>
- <right_val>-0.5098584294319153</right_val></_></_>
- <_>
- <!-- tree 355 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 11 -1.</_>
- <_>
- 16 0 1 11 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0196576490998268</threshold>
- <left_val>-0.0431430488824844</left_val>
- <right_val>0.0518909394741058</right_val></_></_></trees>
- <stage_threshold>-1.1554880142211914</stage_threshold>
- <parent>16</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 18 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 3 -1.</_>
- <_>
- 10 2 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0868941992521286</threshold>
- <left_val>-0.1896995007991791</left_val>
- <right_val>0.2203574031591415</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 4 2 -1.</_>
- <_>
- 12 8 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.6704717725515366e-003</threshold>
- <left_val>0.1185135021805763</left_val>
- <right_val>-0.0863395631313324</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 5 6 -1.</_>
- <_>
- 4 6 5 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0814679488539696</threshold>
- <left_val>0.1499083936214447</left_val>
- <right_val>-0.1296371966600418</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 2 3 -1.</_>
- <_>
- 16 2 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7537999665364623e-003</threshold>
- <left_val>0.1775088012218475</left_val>
- <right_val>-0.1069336980581284</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 2 3 -1.</_>
- <_>
- 1 2 1 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4387797212693840e-005</threshold>
- <left_val>0.0960103869438171</left_val>
- <right_val>-0.1622508019208908</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 7 3 3 -1.</_>
- <_>
- 14 8 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0011058598756790e-003</threshold>
- <left_val>-0.0185400806367397</left_val>
- <right_val>0.2466017007827759</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 4 9 -1.</_>
- <_>
- 4 4 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0170908197760582</threshold>
- <left_val>0.0325614809989929</left_val>
- <right_val>-0.2618162035942078</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 4 1 -1.</_>
- <_>
- 10 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.9246148020029068e-003</threshold>
- <left_val>-0.0193589702248573</left_val>
- <right_val>0.1254267990589142</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 2 2 -1.</_>
- <_>
- 8 2 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0122903902083635</threshold>
- <left_val>0.0343302115797997</left_val>
- <right_val>-0.3286471068859100</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 1 -1.</_>
- <_>
- 9 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1256268955767155e-003</threshold>
- <left_val>-0.0717979818582535</left_val>
- <right_val>0.0692160725593567</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 14 15 -1.</_>
- <_>
- 9 0 7 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2496016025543213</threshold>
- <left_val>-0.1123834997415543</left_val>
- <right_val>0.1429843008518219</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 4 4 3 -1.</_>
- <_>
- 12 5 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.9557890743017197e-003</threshold>
- <left_val>0.1379792988300324</left_val>
- <right_val>-0.0583309903740883</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 12 8 -1.</_>
- <_>
- 3 6 6 4 2.</_>
- <_>
- 9 10 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0697411075234413</threshold>
- <left_val>0.0297146998345852</left_val>
- <right_val>-0.3442580103874207</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 5 3 6 -1.</_>
- <_>
- 13 7 1 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.1527782604098320e-003</threshold>
- <left_val>-0.0469510108232498</left_val>
- <right_val>0.0782470628619194</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 3 4 -1.</_>
- <_>
- 6 5 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0103493202477694</threshold>
- <left_val>-0.0694328024983406</left_val>
- <right_val>0.1585589051246643</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 3 3 -1.</_>
- <_>
- 13 8 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.3299350440502167e-003</threshold>
- <left_val>-0.0399102084338665</left_val>
- <right_val>0.1524983942508698</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 4 14 -1.</_>
- <_>
- 0 8 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0309557206928730</threshold>
- <left_val>0.0419439598917961</left_val>
- <right_val>-0.2322739958763123</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 3 4 -1.</_>
- <_>
- 13 9 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0125044696033001</threshold>
- <left_val>-0.0183122493326664</left_val>
- <right_val>0.0996528565883636</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 4 3 -1.</_>
- <_>
- 5 9 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.4256081134080887e-003</threshold>
- <left_val>-0.0621832795441151</left_val>
- <right_val>0.1663811951875687</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 4 -1.</_>
- <_>
- 9 0 6 2 2.</_>
- <_>
- 3 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0200669895857573</threshold>
- <left_val>0.0226579904556274</left_val>
- <right_val>-0.3470891118049622</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 12 12 -1.</_>
- <_>
- 3 8 12 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.5828899741172791</threshold>
- <left_val>0.2862842977046967</left_val>
- <right_val>-0.0296743903309107</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 2 4 -1.</_>
- <_>
- 12 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0142788495868444</threshold>
- <left_val>0.1778019964694977</left_val>
- <right_val>-0.0291071794927120</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 1 6 -1.</_>
- <_>
- 5 8 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9483898803591728e-003</threshold>
- <left_val>-0.0514614395797253</left_val>
- <right_val>0.2133691012859345</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 1 1 14 -1.</_>
- <_>
- 17 8 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0376777388155460</threshold>
- <left_val>-0.3693261146545410</left_val>
- <right_val>0.0577233098447323</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 10 -1.</_>
- <_>
- 0 0 9 5 2.</_>
- <_>
- 9 5 9 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0658088922500610</threshold>
- <left_val>0.0406517907977104</left_val>
- <right_val>-0.2107470035552979</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 12 11 -1.</_>
- <_>
- 9 0 4 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2313210964202881</threshold>
- <left_val>0.4183537065982819</left_val>
- <right_val>-0.0121959000825882</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 4 -1.</_>
- <_>
- 7 0 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>9.2640687944367528e-004</threshold>
- <left_val>-0.1446887999773026</left_val>
- <right_val>0.0585397295653820</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 13 10 2 -1.</_>
- <_>
- 13 13 5 1 2.</_>
- <_>
- 8 14 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0040670167654753e-003</threshold>
- <left_val>-0.0440565086901188</left_val>
- <right_val>0.0339186899363995</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 3 4 -1.</_>
- <_>
- 3 2 3 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0161782503128052</threshold>
- <left_val>-0.2537319064140320</left_val>
- <right_val>0.0289683602750301</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 4 1 -1.</_>
- <_>
- 14 8 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0239218873903155e-004</threshold>
- <left_val>0.0413237288594246</left_val>
- <right_val>-0.0400842092931271</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 3 2 -1.</_>
- <_>
- 4 7 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.0449438169598579e-003</threshold>
- <left_val>0.1437224000692368</left_val>
- <right_val>-0.0471708290278912</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 3 1 -1.</_>
- <_>
- 14 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.2208129521459341e-003</threshold>
- <left_val>0.0451353900134563</left_val>
- <right_val>-0.1686334013938904</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 3 3 -1.</_>
- <_>
- 4 3 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0254353806376457</threshold>
- <left_val>0.2748624980449677</left_val>
- <right_val>-0.0250210706144571</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 3 1 -1.</_>
- <_>
- 14 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.7569217905402184e-003</threshold>
- <left_val>-0.3510535955429077</left_val>
- <right_val>6.7487931810319424e-003</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 11 2 2 -1.</_>
- <_>
- 2 11 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.8798119425773621e-003</threshold>
- <left_val>-0.2365276068449020</left_val>
- <right_val>0.0292028002440929</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 11 16 2 -1.</_>
- <_>
- 2 12 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7566860187798738e-003</threshold>
- <left_val>-0.0990074127912521</left_val>
- <right_val>0.0523698702454567</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 6 6 3 -1.</_>
- <_>
- 10 8 2 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0742733180522919</threshold>
- <left_val>-0.2623257040977478</left_val>
- <right_val>0.0324768982827663</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 16 3 -1.</_>
- <_>
- 2 13 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0311077497899532</threshold>
- <left_val>-0.0317390114068985</left_val>
- <right_val>0.1974492967128754</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 18 4 -1.</_>
- <_>
- 0 10 9 2 2.</_>
- <_>
- 9 12 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0637038722634315</threshold>
- <left_val>0.0268714595586061</left_val>
- <right_val>-0.2767395079135895</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 12 9 2 -1.</_>
- <_>
- 9 12 3 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0475392416119576</threshold>
- <left_val>-0.4051026105880737</left_val>
- <right_val>0.0122220404446125</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 1 3 -1.</_>
- <_>
- 4 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.5632580984383821e-003</threshold>
- <left_val>-0.1999291926622391</left_val>
- <right_val>0.0335399098694324</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 9 6 -1.</_>
- <_>
- 8 3 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0265275891870260</threshold>
- <left_val>-0.1629005968570709</left_val>
- <right_val>0.0278331693261862</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 12 9 -1.</_>
- <_>
- 6 3 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2804817855358124</threshold>
- <left_val>0.0288105905056000</left_val>
- <right_val>-0.2271182984113693</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 12 6 -1.</_>
- <_>
- 7 6 4 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4559194147586823</threshold>
- <left_val>-0.0227571800351143</left_val>
- <right_val>0.3102968931198120</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 8 3 -1.</_>
- <_>
- 10 2 4 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0867485329508781</threshold>
- <left_val>0.0726863965392113</left_val>
- <right_val>-0.1027626991271973</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 1 2 -1.</_>
- <_>
- 11 1 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.6994470497593284e-003</threshold>
- <left_val>-0.0318094082176685</left_val>
- <right_val>0.0871460884809494</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 2 1 -1.</_>
- <_>
- 7 1 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.1253879638388753e-003</threshold>
- <left_val>0.0680664330720901</left_val>
- <right_val>-0.1239006966352463</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 4 3 -1.</_>
- <_>
- 12 2 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0508721508085728</threshold>
- <left_val>-8.7517164647579193e-003</left_val>
- <right_val>0.3118421137332916</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 12 11 -1.</_>
- <_>
- 5 0 4 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1996172964572907</threshold>
- <left_val>-0.0309105496853590</left_val>
- <right_val>0.2165288031101227</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 4 3 -1.</_>
- <_>
- 12 2 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0638386905193329</threshold>
- <left_val>-0.6026582717895508</left_val>
- <right_val>1.3233360368758440e-003</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 3 4 -1.</_>
- <_>
- 6 2 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.3007958233356476e-003</threshold>
- <left_val>-0.0520633496344090</left_val>
- <right_val>0.1260793954133987</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 1 -1.</_>
- <_>
- 9 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.6697470135986805e-003</threshold>
- <left_val>9.0780286118388176e-003</left_val>
- <right_val>-0.1944532990455627</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 10 2 -1.</_>
- <_>
- 0 13 5 1 2.</_>
- <_>
- 5 14 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4293550048023462e-003</threshold>
- <left_val>-0.0857814326882362</left_val>
- <right_val>0.0712894573807716</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 12 4 3 -1.</_>
- <_>
- 13 12 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0138120101764798</threshold>
- <left_val>8.0618355423212051e-003</left_val>
- <right_val>-0.3879789113998413</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 1 2 -1.</_>
- <_>
- 3 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3739310563541949e-005</threshold>
- <left_val>-0.0624911710619926</left_val>
- <right_val>0.1092092990875244</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 4 2 -1.</_>
- <_>
- 7 8 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9398381486535072e-003</threshold>
- <left_val>0.0509323291480541</left_val>
- <right_val>-0.1498032063245773</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 18 4 -1.</_>
- <_>
- 0 12 18 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1235888004302979</threshold>
- <left_val>0.3147651851177216</left_val>
- <right_val>-0.0257598794996738</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 12 4 3 -1.</_>
- <_>
- 13 12 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109574301168323</threshold>
- <left_val>-0.2607482075691223</left_val>
- <right_val>0.0158497299998999</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 4 2 -1.</_>
- <_>
- 5 10 2 1 2.</_>
- <_>
- 7 11 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.6301600784063339e-003</threshold>
- <left_val>0.2610065937042236</left_val>
- <right_val>-0.0243298895657063</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 2 8 -1.</_>
- <_>
- 13 5 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0678390711545944</threshold>
- <left_val>0.1969130933284760</left_val>
- <right_val>-8.3496840670704842e-003</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 2 8 -1.</_>
- <_>
- 3 5 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0186073090881109</threshold>
- <left_val>0.0256039593368769</left_val>
- <right_val>-0.2541362941265106</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 12 4 3 -1.</_>
- <_>
- 13 12 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.8711939345812425e-005</threshold>
- <left_val>0.0356258116662502</left_val>
- <right_val>-0.0410842113196850</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 1 2 -1.</_>
- <_>
- 9 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.3914608694612980e-005</threshold>
- <left_val>-0.1306141018867493</left_val>
- <right_val>0.0493933893740177</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 4 4 -1.</_>
- <_>
- 8 0 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0177341904491186</threshold>
- <left_val>-0.0342735201120377</left_val>
- <right_val>0.1212686002254486</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 4 3 -1.</_>
- <_>
- 3 12 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.8113701418042183e-003</threshold>
- <left_val>0.0226712208241224</left_val>
- <right_val>-0.2659026980400085</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 1 6 -1.</_>
- <_>
- 7 7 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0454825609922409</threshold>
- <left_val>-6.1395200900733471e-003</left_val>
- <right_val>0.4723165929317474</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 4 -1.</_>
- <_>
- 8 2 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0767141878604889e-003</threshold>
- <left_val>-0.3165093064308167</left_val>
- <right_val>0.0200363900512457</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 9 2 2 -1.</_>
- <_>
- 11 9 1 1 2.</_>
- <_>
- 10 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3222210630774498e-004</threshold>
- <left_val>-0.0228806100785732</left_val>
- <right_val>0.0647242665290833</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 2 2 -1.</_>
- <_>
- 6 9 1 1 2.</_>
- <_>
- 7 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.2817400060594082e-003</threshold>
- <left_val>0.2516623139381409</left_val>
- <right_val>-0.0231686402112246</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 12 4 -1.</_>
- <_>
- 9 6 6 2 2.</_>
- <_>
- 3 8 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0461158901453018</threshold>
- <left_val>-0.3592045903205872</left_val>
- <right_val>0.0159878805279732</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 2 2 -1.</_>
- <_>
- 7 1 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0105268899351358</threshold>
- <left_val>9.6597811207175255e-003</left_val>
- <right_val>-0.5830839872360230</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 7 1 6 -1.</_>
- <_>
- 17 9 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0218886006623507</threshold>
- <left_val>2.8070888947695494e-003</left_val>
- <right_val>-0.2902213037014008</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 2 2 -1.</_>
- <_>
- 6 8 1 1 2.</_>
- <_>
- 7 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7969578988850117e-003</threshold>
- <left_val>0.2682308852672577</left_val>
- <right_val>-0.0220357701182365</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 6 3 -1.</_>
- <_>
- 9 7 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0291505903005600</threshold>
- <left_val>0.0370618589222431</left_val>
- <right_val>-0.0972430408000946</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 17 6 -1.</_>
- <_>
- 0 6 17 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0796693712472916</threshold>
- <left_val>-0.0613007396459579</left_val>
- <right_val>0.1079474985599518</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 16 3 -1.</_>
- <_>
- 1 7 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0276291705667973</threshold>
- <left_val>0.2252894937992096</left_val>
- <right_val>-0.0325724296271801</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 12 1 -1.</_>
- <_>
- 3 0 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120179802179337</threshold>
- <left_val>0.1010048985481262</left_val>
- <right_val>-0.0664613619446754</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 3 4 -1.</_>
- <_>
- 12 6 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0119251403957605</threshold>
- <left_val>-0.1859060972929001</left_val>
- <right_val>0.0324855595827103</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 1 8 4 -1.</_>
- <_>
- 7 1 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2512350976467133</threshold>
- <left_val>-0.0248921401798725</left_val>
- <right_val>0.2803005874156952</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 16 1 -1.</_>
- <_>
- 6 0 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9036600179970264e-003</threshold>
- <left_val>-0.0628988519310951</left_val>
- <right_val>0.0317778214812279</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 6 1 -1.</_>
- <_>
- 11 7 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0535753183066845</threshold>
- <left_val>-0.0124396402388811</left_val>
- <right_val>0.4609141051769257</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 6 8 -1.</_>
- <_>
- 13 6 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.4652660191059113e-003</threshold>
- <left_val>0.0841030478477478</left_val>
- <right_val>-0.1130022034049034</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 8 7 -1.</_>
- <_>
- 11 2 4 7 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1846922039985657</threshold>
- <left_val>0.0215761400759220</left_val>
- <right_val>-0.2691057026386261</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 6 8 -1.</_>
- <_>
- 13 6 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1181607022881508</threshold>
- <left_val>-0.4720633924007416</left_val>
- <right_val>9.0096276253461838e-003</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 4 3 -1.</_>
- <_>
- 6 6 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.6900841223541647e-005</threshold>
- <left_val>-0.0588331595063210</left_val>
- <right_val>0.0994533821940422</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 6 6 8 -1.</_>
- <_>
- 13 6 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1633061021566391</threshold>
- <left_val>-0.6099013090133667</left_val>
- <right_val>1.3118899660184979e-003</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 6 8 -1.</_>
- <_>
- 3 6 2 8 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0965555906295776</threshold>
- <left_val>-0.5272396206855774</left_val>
- <right_val>0.0116685898974538</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 6 6 -1.</_>
- <_>
- 6 5 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0401624515652657</threshold>
- <left_val>-0.0327838994562626</left_val>
- <right_val>0.1810777038335800</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 6 4 -1.</_>
- <_>
- 6 6 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0296869408339262</threshold>
- <left_val>0.1054842993617058</left_val>
- <right_val>-0.0615133084356785</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 8 1 2 -1.</_>
- <_>
- 17 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5436946644913405e-005</threshold>
- <left_val>-0.0359807685017586</left_val>
- <right_val>0.0499344505369663</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 1 2 -1.</_>
- <_>
- 0 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0552529022097588e-003</threshold>
- <left_val>0.0275182090699673</left_val>
- <right_val>-0.2457398027181625</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 8 2 4 -1.</_>
- <_>
- 16 9 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3879110813140869e-005</threshold>
- <left_val>-0.0258090496063232</left_val>
- <right_val>0.0299507193267345</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 2 4 -1.</_>
- <_>
- 0 9 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.0713717937469482e-003</threshold>
- <left_val>-0.2063910961151123</left_val>
- <right_val>0.0320026017725468</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 17 2 -1.</_>
- <_>
- 1 5 17 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8216218128800392e-003</threshold>
- <left_val>-0.0975668132305145</left_val>
- <right_val>0.0551092401146889</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 4 -1.</_>
- <_>
- 0 0 9 2 2.</_>
- <_>
- 9 2 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0652106925845146</threshold>
- <left_val>6.3420450314879417e-003</left_val>
- <right_val>-0.7882834076881409</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 9 4 2 -1.</_>
- <_>
- 13 10 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0158219691365957</threshold>
- <left_val>-0.0214756801724434</left_val>
- <right_val>0.1222712993621826</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 2 4 -1.</_>
- <_>
- 5 10 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0300759393721819</threshold>
- <left_val>0.3701142966747284</left_val>
- <right_val>-0.0154766896739602</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 1 2 -1.</_>
- <_>
- 9 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5496598361060023e-004</threshold>
- <left_val>0.0414319299161434</left_val>
- <right_val>-0.1214471980929375</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 4 2 -1.</_>
- <_>
- 7 9 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0247548408806324</threshold>
- <left_val>-0.3526229858398438</left_val>
- <right_val>0.0153448497876525</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 3 1 3 -1.</_>
- <_>
- 16 4 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.7477359920740128e-003</threshold>
- <left_val>0.1915535926818848</left_val>
- <right_val>-0.0225379504263401</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 9 2 3 -1.</_>
- <_>
- 4 10 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.5500800004228950e-004</threshold>
- <left_val>-0.0846040025353432</left_val>
- <right_val>0.0653416514396667</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 16 6 -1.</_>
- <_>
- 1 5 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0578844510018826</threshold>
- <left_val>0.2597366869449616</left_val>
- <right_val>-0.0210837107151747</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 1 2 -1.</_>
- <_>
- 2 12 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.7522350903600454e-003</threshold>
- <left_val>0.0316149704158306</left_val>
- <right_val>-0.1879500001668930</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 1 4 -1.</_>
- <_>
- 17 1 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0266280625946820e-004</threshold>
- <left_val>-0.0488242693245411</left_val>
- <right_val>0.0477622412145138</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 4 2 -1.</_>
- <_>
- 6 5 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0179599896073341</threshold>
- <left_val>-0.1835830062627792</left_val>
- <right_val>0.0270573794841766</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 18 2 -1.</_>
- <_>
- 0 14 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0512004382908344</threshold>
- <left_val>0.2723462879657745</left_val>
- <right_val>-0.0199546292424202</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 4 6 3 -1.</_>
- <_>
- 7 5 6 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.3698651976883411e-003</threshold>
- <left_val>-0.1229937970638275</left_val>
- <right_val>0.0452794395387173</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 2 1 -1.</_>
- <_>
- 9 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1579107791185379e-004</threshold>
- <left_val>0.0460813082754612</left_val>
- <right_val>-0.0212064106017351</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 2 1 -1.</_>
- <_>
- 8 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7019751188345253e-005</threshold>
- <left_val>-0.1122386977076531</left_val>
- <right_val>0.0467198304831982</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 6 10 -1.</_>
- <_>
- 10 0 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0337534099817276</threshold>
- <left_val>-0.0296947807073593</left_val>
- <right_val>0.0309586394578218</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 6 10 -1.</_>
- <_>
- 6 0 2 10 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0288798399269581</threshold>
- <left_val>-0.0476091802120209</left_val>
- <right_val>0.1637064069509506</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 6 6 -1.</_>
- <_>
- 10 5 2 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1380393058061600</threshold>
- <left_val>-0.7450910210609436</left_val>
- <right_val>2.3958049714565277e-003</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 6 6 -1.</_>
- <_>
- 6 5 2 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0903065428137779</threshold>
- <left_val>0.0284100994467735</left_val>
- <right_val>-0.2060600072145462</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 4 6 -1.</_>
- <_>
- 9 5 2 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1313064992427826</threshold>
- <left_val>5.8837989345192909e-003</left_val>
- <right_val>-0.2589462995529175</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 5 6 4 -1.</_>
- <_>
- 9 5 6 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1362369954586029</threshold>
- <left_val>0.0184906795620918</left_val>
- <right_val>-0.2909663021564484</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 3 4 1 -1.</_>
- <_>
- 15 3 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1483960552141070e-003</threshold>
- <left_val>-0.0253341905772686</left_val>
- <right_val>0.0819629207253456</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 4 1 -1.</_>
- <_>
- 1 3 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0390116889029741e-005</threshold>
- <left_val>-0.0650801733136177</left_val>
- <right_val>0.0823377668857574</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 1 -1.</_>
- <_>
- 16 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.8111059479415417e-003</threshold>
- <left_val>-0.2012600004673004</left_val>
- <right_val>0.0141831701621413</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 3 2 -1.</_>
- <_>
- 3 2 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0121500901877880</threshold>
- <left_val>0.2102168947458267</left_val>
- <right_val>-0.0297118108719587</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 3 1 -1.</_>
- <_>
- 16 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.3220389634370804e-003</threshold>
- <left_val>0.0221526604145765</left_val>
- <right_val>-0.1970590054988861</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 1 3 -1.</_>
- <_>
- 2 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.6673179604113102e-003</threshold>
- <left_val>0.0223421193659306</left_val>
- <right_val>-0.2634218931198120</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 1 4 -1.</_>
- <_>
- 17 1 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.3583960244432092e-003</threshold>
- <left_val>0.0737654492259026</left_val>
- <right_val>-0.0178339798003435</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 2 3 -1.</_>
- <_>
- 2 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.0764158368110657e-003</threshold>
- <left_val>-0.1749037057161331</left_val>
- <right_val>0.0299977697432041</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 5 3 1 -1.</_>
- <_>
- 15 5 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.9497750326991081e-003</threshold>
- <left_val>-0.0271147508174181</left_val>
- <right_val>0.1616608947515488</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 3 1 -1.</_>
- <_>
- 2 5 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5937429163604975e-003</threshold>
- <left_val>0.1807800978422165</left_val>
- <right_val>-0.0271914806216955</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 16 2 -1.</_>
- <_>
- 5 13 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0217158906161785</threshold>
- <left_val>0.0960418581962585</left_val>
- <right_val>-0.0522431582212448</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 2 2 -1.</_>
- <_>
- 2 3 1 1 2.</_>
- <_>
- 3 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5649809686001390e-005</threshold>
- <left_val>0.0830500423908234</left_val>
- <right_val>-0.0617705583572388</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 3 2 2 -1.</_>
- <_>
- 15 3 1 1 2.</_>
- <_>
- 14 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8641996737569571e-004</threshold>
- <left_val>-0.0246842093765736</left_val>
- <right_val>0.0971914604306221</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 2 2 -1.</_>
- <_>
- 2 3 1 1 2.</_>
- <_>
- 3 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3739310563541949e-005</threshold>
- <left_val>-0.0695554167032242</left_val>
- <right_val>0.0771528929471970</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 11 3 -1.</_>
- <_>
- 4 2 11 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109101701527834</threshold>
- <left_val>-0.2544479072093964</left_val>
- <right_val>0.0161350406706333</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 1 2 -1.</_>
- <_>
- 7 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6066219258354977e-005</threshold>
- <left_val>-0.0764008387923241</left_val>
- <right_val>0.0709967613220215</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 14 9 1 -1.</_>
- <_>
- 10 14 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0277181603014469</threshold>
- <left_val>7.7127898111939430e-003</left_val>
- <right_val>-0.3020167946815491</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 6 2 -1.</_>
- <_>
- 5 10 3 1 2.</_>
- <_>
- 8 11 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.3827071785926819e-003</threshold>
- <left_val>-0.0343367606401443</left_val>
- <right_val>0.1395512074232101</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 18 2 -1.</_>
- <_>
- 9 10 9 1 2.</_>
- <_>
- 0 11 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0375617109239101</threshold>
- <left_val>-0.4568941891193390</left_val>
- <right_val>0.0118549996986985</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 15 4 -1.</_>
- <_>
- 0 13 15 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0137532595545053</threshold>
- <left_val>-0.0834474489092827</left_val>
- <right_val>0.0594723001122475</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 16 3 -1.</_>
- <_>
- 2 13 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0275797992944717</threshold>
- <left_val>0.2129182070493698</left_val>
- <right_val>-0.0230544097721577</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 16 1 -1.</_>
- <_>
- 4 0 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0408227592706680</threshold>
- <left_val>-0.5026323199272156</left_val>
- <right_val>0.0106398798525333</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 5 12 5 -1.</_>
- <_>
- 9 5 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1474343985319138</threshold>
- <left_val>7.7440468594431877e-003</left_val>
- <right_val>-0.1845449060201645</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 12 5 -1.</_>
- <_>
- 3 5 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1937156021595001</threshold>
- <left_val>0.4649069905281067</left_val>
- <right_val>-0.0140745798125863</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 11 9 3 -1.</_>
- <_>
- 11 12 3 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0414674803614616</threshold>
- <left_val>-0.1333149969577789</left_val>
- <right_val>0.0317224115133286</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 2 -1.</_>
- <_>
- 7 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1617549937218428e-003</threshold>
- <left_val>0.0348884016275406</left_val>
- <right_val>-0.1198396012187004</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 2 -1.</_>
- <_>
- 7 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.8305849991738796e-003</threshold>
- <left_val>-0.2148375064134598</left_val>
- <right_val>0.0255391206592321</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 4 3 -1.</_>
- <_>
- 7 1 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0108386399224401</threshold>
- <left_val>0.3380304872989655</left_val>
- <right_val>-0.0135911796241999</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 1 -1.</_>
- <_>
- 10 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1821239497512579e-003</threshold>
- <left_val>-0.0311352293938398</left_val>
- <right_val>0.0836798921227455</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 7 2 -1.</_>
- <_>
- 3 0 7 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.8489680415950716e-005</threshold>
- <left_val>-0.1545356065034866</left_val>
- <right_val>0.0330539792776108</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 12 4 -1.</_>
- <_>
- 3 7 12 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.2545121870934963e-003</threshold>
- <left_val>-0.0294149704277515</left_val>
- <right_val>0.1650622040033341</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 3 1 -1.</_>
- <_>
- 9 8 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.5199748389422894e-003</threshold>
- <left_val>0.0233634002506733</left_val>
- <right_val>-0.2177156955003738</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 11 8 4 -1.</_>
- <_>
- 7 11 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0451239906251431</threshold>
- <left_val>-0.3253602981567383</left_val>
- <right_val>0.0132816601544619</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 14 6 1 -1.</_>
- <_>
- 8 14 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0451450254768133e-003</threshold>
- <left_val>0.0958046466112137</left_val>
- <right_val>-0.0509931109845638</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 13 4 1 -1.</_>
- <_>
- 8 13 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9070109594613314e-003</threshold>
- <left_val>-0.0276902206242085</left_val>
- <right_val>0.1959555000066757</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 8 2 -1.</_>
- <_>
- 4 12 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0255583897233009</threshold>
- <left_val>-0.2762543857097626</left_val>
- <right_val>0.0211479291319847</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 10 3 2 -1.</_>
- <_>
- 16 11 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.6447090785950422e-003</threshold>
- <left_val>-0.0326275005936623</left_val>
- <right_val>0.0412402711808681</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 2 3 -1.</_>
- <_>
- 2 11 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.8334530725260265e-005</threshold>
- <left_val>-0.0848775878548622</left_val>
- <right_val>0.0558658987283707</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 2 2 -1.</_>
- <_>
- 17 12 1 1 2.</_>
- <_>
- 16 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6109612816944718e-004</threshold>
- <left_val>-0.0328278504312038</left_val>
- <right_val>0.0740109831094742</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 18 4 -1.</_>
- <_>
- 0 12 18 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2091878950595856</threshold>
- <left_val>0.0100189801305532</left_val>
- <right_val>-0.4741156101226807</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 2 2 -1.</_>
- <_>
- 17 12 1 1 2.</_>
- <_>
- 16 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0340400523273274e-005</threshold>
- <left_val>0.0483234487473965</left_val>
- <right_val>-0.0327794998884201</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 4 -1.</_>
- <_>
- 0 1 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.6149746999144554e-005</threshold>
- <left_val>-0.0749692469835281</left_val>
- <right_val>0.0619521290063858</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 2 4 -1.</_>
- <_>
- 16 1 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.1479000831022859e-004</threshold>
- <left_val>-0.0949240326881409</left_val>
- <right_val>0.0353007800877094</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 4 2 -1.</_>
- <_>
- 2 1 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.3261340148746967e-003</threshold>
- <left_val>0.0385022200644016</left_val>
- <right_val>-0.1484065949916840</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 4 3 -1.</_>
- <_>
- 13 1 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0244394596666098</threshold>
- <left_val>-0.0134110199287534</left_val>
- <right_val>0.1884368062019348</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 4 -1.</_>
- <_>
- 5 1 1 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.1021420620381832e-003</threshold>
- <left_val>-0.0499801896512508</left_val>
- <right_val>0.1074775010347366</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 2 2 -1.</_>
- <_>
- 17 2 1 1 2.</_>
- <_>
- 16 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2003119811415672e-003</threshold>
- <left_val>0.1520256996154785</left_val>
- <right_val>-0.0104131698608398</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 2 2 -1.</_>
- <_>
- 0 2 1 1 2.</_>
- <_>
- 1 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3748419051989913e-005</threshold>
- <left_val>0.0831847265362740</left_val>
- <right_val>-0.0730274766683578</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 5 6 1 -1.</_>
- <_>
- 12 5 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0169174205511808</threshold>
- <left_val>0.0226879809051752</left_val>
- <right_val>-0.1706082969903946</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 6 1 -1.</_>
- <_>
- 3 5 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3382799699902534e-003</threshold>
- <left_val>-0.0599084608256817</left_val>
- <right_val>0.0865803733468056</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 8 2 -1.</_>
- <_>
- 9 3 4 1 2.</_>
- <_>
- 5 4 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5319819580763578e-003</threshold>
- <left_val>0.0330129303038120</left_val>
- <right_val>-0.1592663973569870</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 8 -1.</_>
- <_>
- 8 0 1 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2293795421719551e-003</threshold>
- <left_val>-0.0760265216231346</left_val>
- <right_val>0.0753199979662895</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 2 3 -1.</_>
- <_>
- 9 2 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0413003005087376</threshold>
- <left_val>-0.6109560728073120</left_val>
- <right_val>2.1895230747759342e-003</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 3 2 -1.</_>
- <_>
- 9 2 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.3179420754313469e-003</threshold>
- <left_val>0.1440498977899551</left_val>
- <right_val>-0.0388708002865314</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 2 2 -1.</_>
- <_>
- 17 12 1 1 2.</_>
- <_>
- 16 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7153229388641194e-005</threshold>
- <left_val>-0.0498175993561745</left_val>
- <right_val>0.0487685203552246</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 2 2 -1.</_>
- <_>
- 0 12 1 1 2.</_>
- <_>
- 1 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9003963037393987e-005</threshold>
- <left_val>-0.0683221071958542</left_val>
- <right_val>0.0680771768093109</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 2 2 -1.</_>
- <_>
- 17 12 1 1 2.</_>
- <_>
- 16 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0340400523273274e-005</threshold>
- <left_val>0.0513286590576172</left_val>
- <right_val>-0.0355508588254452</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 2 2 -1.</_>
- <_>
- 0 12 1 1 2.</_>
- <_>
- 1 13 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1807070121867582e-005</threshold>
- <left_val>0.0842122733592987</left_val>
- <right_val>-0.0549248084425926</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 13 8 2 -1.</_>
- <_>
- 8 13 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0472138598561287</threshold>
- <left_val>2.3352450225502253e-003</left_val>
- <right_val>-0.3441792130470276</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 2 -1.</_>
- <_>
- 5 0 4 1 2.</_>
- <_>
- 9 1 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0626591071486473e-003</threshold>
- <left_val>-0.1841911971569061</left_val>
- <right_val>0.0257207695394754</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 1 4 -1.</_>
- <_>
- 13 8 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0227853395044804</threshold>
- <left_val>-0.1396211981773377</left_val>
- <right_val>0.0121513595804572</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 16 6 -1.</_>
- <_>
- 0 7 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0758542269468308</threshold>
- <left_val>0.1125688031315804</left_val>
- <right_val>-0.0392036698758602</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 5 1 6 -1.</_>
- <_>
- 12 7 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5154039077460766e-003</threshold>
- <left_val>-0.0197846591472626</left_val>
- <right_val>0.0587355606257916</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 1 6 -1.</_>
- <_>
- 5 7 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1700478866696358e-003</threshold>
- <left_val>-0.0542454309761524</left_val>
- <right_val>0.0902648568153381</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 6 4 -1.</_>
- <_>
- 15 8 3 2 2.</_>
- <_>
- 12 10 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2852489966899157e-003</threshold>
- <left_val>-0.0545393712818623</left_val>
- <right_val>0.0909095332026482</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 18 4 -1.</_>
- <_>
- 0 5 9 2 2.</_>
- <_>
- 9 7 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0938187167048454</threshold>
- <left_val>-0.4816806912422180</left_val>
- <right_val>9.7587006166577339e-003</right_val></_></_>
- <_>
- <!-- tree 181 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 2 2 -1.</_>
- <_>
- 11 3 1 1 2.</_>
- <_>
- 10 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3132712966762483e-005</threshold>
- <left_val>0.0410898402333260</left_val>
- <right_val>-0.0365439392626286</right_val></_></_>
- <_>
- <!-- tree 182 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 10 6 3 -1.</_>
- <_>
- 4 11 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0198575109243393</threshold>
- <left_val>-0.1172147020697594</left_val>
- <right_val>0.0405645594000816</right_val></_></_>
- <_>
- <!-- tree 183 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 5 1 3 -1.</_>
- <_>
- 17 6 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7911748774349689e-003</threshold>
- <left_val>6.4080609008669853e-003</left_val>
- <right_val>-0.3227761089801788</right_val></_></_>
- <_>
- <!-- tree 184 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 3 8 -1.</_>
- <_>
- 8 3 3 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0894692763686180</threshold>
- <left_val>-0.3574151098728180</left_val>
- <right_val>0.0124983703717589</right_val></_></_>
- <_>
- <!-- tree 185 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 4 1 -1.</_>
- <_>
- 13 8 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.4639841914176941e-003</threshold>
- <left_val>-0.0199772007763386</left_val>
- <right_val>0.1834387928247452</right_val></_></_>
- <_>
- <!-- tree 186 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 9 12 -1.</_>
- <_>
- 4 7 3 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3588905930519104</threshold>
- <left_val>0.0110323298722506</left_val>
- <right_val>-0.5567330121994019</right_val></_></_>
- <_>
- <!-- tree 187 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 4 1 -1.</_>
- <_>
- 13 8 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0288398806005716</threshold>
- <left_val>0.1999306976795197</left_val>
- <right_val>-8.9885722845792770e-003</right_val></_></_>
- <_>
- <!-- tree 188 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 1 4 -1.</_>
- <_>
- 5 8 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.3966220431029797e-003</threshold>
- <left_val>-0.0439058393239975</left_val>
- <right_val>0.1105595976114273</right_val></_></_>
- <_>
- <!-- tree 189 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 5 1 3 -1.</_>
- <_>
- 17 6 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6227077990770340e-003</threshold>
- <left_val>-0.4303059875965118</left_val>
- <right_val>4.9329511821269989e-003</right_val></_></_>
- <_>
- <!-- tree 190 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 1 3 -1.</_>
- <_>
- 0 6 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.1372596323490143e-003</threshold>
- <left_val>6.1173681169748306e-003</left_val>
- <right_val>-0.7087032198905945</right_val></_></_>
- <_>
- <!-- tree 191 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 1 3 -1.</_>
- <_>
- 13 2 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2080889872740954e-005</threshold>
- <left_val>0.0546860583126545</left_val>
- <right_val>-0.0489871315658093</right_val></_></_>
- <_>
- <!-- tree 192 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 2 2 -1.</_>
- <_>
- 6 3 1 1 2.</_>
- <_>
- 7 4 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2907347455620766e-005</threshold>
- <left_val>0.0777546167373657</left_val>
- <right_val>-0.0597959607839584</right_val></_></_>
- <_>
- <!-- tree 193 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 13 8 2 -1.</_>
- <_>
- 8 13 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0226010698825121</threshold>
- <left_val>-0.1179111003875732</left_val>
- <right_val>7.3637152090668678e-003</right_val></_></_>
- <_>
- <!-- tree 194 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 4 3 -1.</_>
- <_>
- 6 6 2 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.6634320169687271e-003</threshold>
- <left_val>0.0752310603857040</left_val>
- <right_val>-0.0575729906558990</right_val></_></_>
- <_>
- <!-- tree 195 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 9 6 2 -1.</_>
- <_>
- 6 10 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.7270618379116058e-003</threshold>
- <left_val>0.0710658580064774</left_val>
- <right_val>-0.0859678834676743</right_val></_></_>
- <_>
- <!-- tree 196 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 11 -1.</_>
- <_>
- 6 0 6 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.7271161079406738</threshold>
- <left_val>0.0102728903293610</left_val>
- <right_val>-0.4684585928916931</right_val></_></_>
- <_>
- <!-- tree 197 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 2 4 -1.</_>
- <_>
- 17 3 1 2 2.</_>
- <_>
- 16 5 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0634279828518629e-003</threshold>
- <left_val>0.1082748025655747</left_val>
- <right_val>-0.0231780707836151</right_val></_></_>
- <_>
- <!-- tree 198 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 6 6 -1.</_>
- <_>
- 5 3 3 3 2.</_>
- <_>
- 8 6 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0512203201651573</threshold>
- <left_val>0.0100829303264618</left_val>
- <right_val>-0.4622367024421692</right_val></_></_>
- <_>
- <!-- tree 199 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 8 6 -1.</_>
- <_>
- 7 2 4 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0233622491359711</threshold>
- <left_val>0.2221122980117798</left_val>
- <right_val>-0.0204992592334747</right_val></_></_>
- <_>
- <!-- tree 200 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 12 4 -1.</_>
- <_>
- 6 2 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0226982291787863</threshold>
- <left_val>-0.1140964999794960</left_val>
- <right_val>0.0413477197289467</right_val></_></_>
- <_>
- <!-- tree 201 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 2 4 -1.</_>
- <_>
- 17 3 1 2 2.</_>
- <_>
- 16 5 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2806419767439365e-003</threshold>
- <left_val>-0.0227168798446655</left_val>
- <right_val>0.1028605028986931</right_val></_></_>
- <_>
- <!-- tree 202 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 3 2 -1.</_>
- <_>
- 2 0 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.5968020092695951e-003</threshold>
- <left_val>0.0211614202708006</left_val>
- <right_val>-0.2068026065826416</right_val></_></_>
- <_>
- <!-- tree 203 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 3 2 4 -1.</_>
- <_>
- 17 3 1 2 2.</_>
- <_>
- 16 5 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0120496097952127</threshold>
- <left_val>-0.2600671947002411</left_val>
- <right_val>2.0481001120060682e-003</right_val></_></_>
- <_>
- <!-- tree 204 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 2 4 -1.</_>
- <_>
- 0 3 1 2 2.</_>
- <_>
- 1 5 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6617539115250111e-003</threshold>
- <left_val>0.1557877063751221</left_val>
- <right_val>-0.0324140116572380</right_val></_></_>
- <_>
- <!-- tree 205 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 3 4 1 -1.</_>
- <_>
- 15 4 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0147399995476007</threshold>
- <left_val>-0.1630623042583466</left_val>
- <right_val>7.1668480522930622e-003</right_val></_></_>
- <_>
- <!-- tree 206 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 6 6 -1.</_>
- <_>
- 5 5 3 3 2.</_>
- <_>
- 8 8 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0702147036790848</threshold>
- <left_val>0.3676038086414337</left_val>
- <right_val>-0.0122618498280644</right_val></_></_>
- <_>
- <!-- tree 207 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 2 10 -1.</_>
- <_>
- 8 8 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1149382963776588</threshold>
- <left_val>-0.4100660979747772</left_val>
- <right_val>0.0111378999426961</right_val></_></_>
- <_>
- <!-- tree 208 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 1 4 -1.</_>
- <_>
- 3 4 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0165353007614613</threshold>
- <left_val>-0.4933117032051086</left_val>
- <right_val>8.9259371161460876e-003</right_val></_></_>
- <_>
- <!-- tree 209 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 6 1 -1.</_>
- <_>
- 11 8 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0684577375650406</threshold>
- <left_val>-0.6294438838958740</left_val>
- <right_val>1.3810090022161603e-003</right_val></_></_>
- <_>
- <!-- tree 210 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 1 6 -1.</_>
- <_>
- 7 8 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.7950909677892923e-003</threshold>
- <left_val>0.0439951792359352</left_val>
- <right_val>-0.0981230884790421</right_val></_></_>
- <_>
- <!-- tree 211 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 13 12 1 -1.</_>
- <_>
- 6 13 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.2409765347838402e-003</threshold>
- <left_val>-0.0319279804825783</left_val>
- <right_val>0.0786244422197342</right_val></_></_>
- <_>
- <!-- tree 212 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 16 2 -1.</_>
- <_>
- 8 13 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0150848804041743</threshold>
- <left_val>-0.0652311071753502</left_val>
- <right_val>0.0835528671741486</right_val></_></_>
- <_>
- <!-- tree 213 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 9 4 4 -1.</_>
- <_>
- 10 11 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0147555302828550</threshold>
- <left_val>0.0596954599022865</left_val>
- <right_val>-0.0246289800852537</right_val></_></_>
- <_>
- <!-- tree 214 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 7 3 -1.</_>
- <_>
- 4 2 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0138705503195524</threshold>
- <left_val>6.8354210816323757e-003</left_val>
- <right_val>-0.6697801947593689</right_val></_></_>
- <_>
- <!-- tree 215 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 2 2 -1.</_>
- <_>
- 12 2 1 1 2.</_>
- <_>
- 11 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4027196862734854e-005</threshold>
- <left_val>-0.0388491488993168</left_val>
- <right_val>0.0505469888448715</right_val></_></_>
- <_>
- <!-- tree 216 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 2 2 2 -1.</_>
- <_>
- 5 2 1 1 2.</_>
- <_>
- 6 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3879110813140869e-005</threshold>
- <left_val>0.0776163190603256</left_val>
- <right_val>-0.0570690892636776</right_val></_></_>
- <_>
- <!-- tree 217 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 13 8 2 -1.</_>
- <_>
- 8 13 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.7118638865649700e-003</threshold>
- <left_val>0.0576838590204716</left_val>
- <right_val>-0.0364302918314934</right_val></_></_>
- <_>
- <!-- tree 218 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 13 8 2 -1.</_>
- <_>
- 6 13 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0293781608343124</threshold>
- <left_val>0.0116572398692369</left_val>
- <right_val>-0.3750464916229248</right_val></_></_>
- <_>
- <!-- tree 219 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 12 9 -1.</_>
- <_>
- 8 6 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.7575286030769348</threshold>
- <left_val>-0.0124912802129984</left_val>
- <right_val>0.3014566004276276</right_val></_></_>
- <_>
- <!-- tree 220 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 6 4 -1.</_>
- <_>
- 9 2 2 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0284970905631781</threshold>
- <left_val>-0.0739599689841270</left_val>
- <right_val>0.0625938624143600</right_val></_></_>
- <_>
- <!-- tree 221 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 1 4 -1.</_>
- <_>
- 13 8 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0307283699512482</threshold>
- <left_val>8.5481833666563034e-003</left_val>
- <right_val>-0.2512742877006531</right_val></_></_>
- <_>
- <!-- tree 222 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 4 1 -1.</_>
- <_>
- 5 8 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0336146205663681</threshold>
- <left_val>-0.0114417197182775</left_val>
- <right_val>0.4936141073703766</right_val></_></_>
- <_>
- <!-- tree 223 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 12 5 -1.</_>
- <_>
- 7 1 6 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0226515103131533</threshold>
- <left_val>0.2068635970354080</left_val>
- <right_val>-9.4910562038421631e-003</right_val></_></_>
- <_>
- <!-- tree 224 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 4 1 -1.</_>
- <_>
- 6 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5092899856390432e-005</threshold>
- <left_val>0.0643607303500175</left_val>
- <right_val>-0.0726891383528709</right_val></_></_>
- <_>
- <!-- tree 225 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 1 4 -1.</_>
- <_>
- 8 1 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.5959710627794266e-003</threshold>
- <left_val>-0.1754118949174881</left_val>
- <right_val>0.0161602105945349</right_val></_></_>
- <_>
- <!-- tree 226 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 2 2 -1.</_>
- <_>
- 4 2 1 1 2.</_>
- <_>
- 5 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0941398260183632e-005</threshold>
- <left_val>0.0750486701726913</left_val>
- <right_val>-0.0528231002390385</right_val></_></_>
- <_>
- <!-- tree 227 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 2 2 2 -1.</_>
- <_>
- 13 2 1 1 2.</_>
- <_>
- 12 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.5904899302986450e-005</threshold>
- <left_val>-0.0497396588325500</left_val>
- <right_val>0.0585739016532898</right_val></_></_>
- <_>
- <!-- tree 228 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 2 2 -1.</_>
- <_>
- 4 2 1 1 2.</_>
- <_>
- 5 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0394570280332118e-005</threshold>
- <left_val>-0.0618803091347218</left_val>
- <right_val>0.0666748136281967</right_val></_></_>
- <_>
- <!-- tree 229 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 5 4 -1.</_>
- <_>
- 7 2 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0125536797568202</threshold>
- <left_val>0.0249107405543327</left_val>
- <right_val>-0.1277243942022324</right_val></_></_>
- <_>
- <!-- tree 230 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 1 6 -1.</_>
- <_>
- 9 3 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0580843500792980</threshold>
- <left_val>-0.0178222507238388</left_val>
- <right_val>0.2289890944957733</right_val></_></_>
- <_>
- <!-- tree 231 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 6 2 4 -1.</_>
- <_>
- 15 7 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0750687047839165e-003</threshold>
- <left_val>-0.0227536000311375</left_val>
- <right_val>0.1436315029859543</right_val></_></_>
- <_>
- <!-- tree 232 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 18 2 -1.</_>
- <_>
- 0 6 9 1 2.</_>
- <_>
- 9 7 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0121633401140571</threshold>
- <left_val>0.0267546195536852</left_val>
- <right_val>-0.1825599968433380</right_val></_></_>
- <_>
- <!-- tree 233 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 6 2 2 -1.</_>
- <_>
- 14 6 1 1 2.</_>
- <_>
- 13 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5941649908199906e-003</threshold>
- <left_val>0.0994387790560722</left_val>
- <right_val>-0.0237834397703409</right_val></_></_>
- <_>
- <!-- tree 234 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 5 8 -1.</_>
- <_>
- 0 4 5 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1208584979176521</threshold>
- <left_val>-0.5958552956581116</left_val>
- <right_val>6.8441159091889858e-003</right_val></_></_>
- <_>
- <!-- tree 235 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 2 2 2 -1.</_>
- <_>
- 12 2 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.7481532245874405e-003</threshold>
- <left_val>-0.0220798607915640</left_val>
- <right_val>0.2665669023990631</right_val></_></_>
- <_>
- <!-- tree 236 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 10 2 -1.</_>
- <_>
- 8 0 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0161353591829538</threshold>
- <left_val>0.0678508132696152</left_val>
- <right_val>-0.0773861631751060</right_val></_></_>
- <_>
- <!-- tree 237 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 11 12 -1.</_>
- <_>
- 5 4 11 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2290714979171753</threshold>
- <left_val>-0.0353788398206234</left_val>
- <right_val>0.0487073697149754</right_val></_></_>
- <_>
- <!-- tree 238 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 11 12 -1.</_>
- <_>
- 2 4 11 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5067147016525269</threshold>
- <left_val>5.8341762050986290e-003</left_val>
- <right_val>-0.6683058738708496</right_val></_></_>
- <_>
- <!-- tree 239 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 2 14 -1.</_>
- <_>
- 12 1 1 7 2.</_>
- <_>
- 11 8 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0358187593519688</threshold>
- <left_val>-0.2682330906391144</left_val>
- <right_val>1.7747150268405676e-003</right_val></_></_>
- <_>
- <!-- tree 240 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 2 14 -1.</_>
- <_>
- 5 1 1 7 2.</_>
- <_>
- 6 8 1 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0265013501048088</threshold>
- <left_val>-0.3013739883899689</left_val>
- <right_val>0.0139737101271749</right_val></_></_>
- <_>
- <!-- tree 241 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 2 1 -1.</_>
- <_>
- 11 8 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0247978400439024</threshold>
- <left_val>2.4552580434828997e-003</left_val>
- <right_val>-0.5952212214469910</right_val></_></_>
- <_>
- <!-- tree 242 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 6 2 2 -1.</_>
- <_>
- 3 6 1 1 2.</_>
- <_>
- 4 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6543349483981729e-003</threshold>
- <left_val>-0.0251259692013264</left_val>
- <right_val>0.1939691007137299</right_val></_></_>
- <_>
- <!-- tree 243 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 2 1 -1.</_>
- <_>
- 11 8 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.0274528115987778e-003</threshold>
- <left_val>0.0204041302204132</left_val>
- <right_val>-0.0531757883727551</right_val></_></_>
- <_>
- <!-- tree 244 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 18 4 -1.</_>
- <_>
- 0 8 9 2 2.</_>
- <_>
- 9 10 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0742075890302658</threshold>
- <left_val>0.0124620702117682</left_val>
- <right_val>-0.3335205912590027</right_val></_></_>
- <_>
- <!-- tree 245 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 2 1 -1.</_>
- <_>
- 14 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.3010969161987305e-003</threshold>
- <left_val>-0.1495874971151352</left_val>
- <right_val>0.0201095491647720</right_val></_></_>
- <_>
- <!-- tree 246 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 1 2 -1.</_>
- <_>
- 4 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.3790120137855411e-003</threshold>
- <left_val>0.0333775207400322</left_val>
- <right_val>-0.1239598989486694</right_val></_></_>
- <_>
- <!-- tree 247 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 15 14 -1.</_>
- <_>
- 8 0 5 14 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.8267709016799927</threshold>
- <left_val>4.6560140326619148e-003</left_val>
- <right_val>-0.7640576958656311</right_val></_></_>
- <_>
- <!-- tree 248 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 9 13 -1.</_>
- <_>
- 7 0 3 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2946146130561829</threshold>
- <left_val>-0.0152309397235513</left_val>
- <right_val>0.3104419112205505</right_val></_></_>
- <_>
- <!-- tree 249 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 4 9 -1.</_>
- <_>
- 7 5 2 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0746835619211197</threshold>
- <left_val>8.8676074519753456e-003</left_val>
- <right_val>-0.5228682756423950</right_val></_></_>
- <_>
- <!-- tree 250 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 4 -1.</_>
- <_>
- 9 1 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0880003422498703</threshold>
- <left_val>-0.0119359400123358</left_val>
- <right_val>0.4041942954063416</right_val></_></_>
- <_>
- <!-- tree 251 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 6 2 -1.</_>
- <_>
- 10 2 3 1 2.</_>
- <_>
- 7 3 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.3336159326136112e-003</threshold>
- <left_val>0.0136402798816562</left_val>
- <right_val>-0.2447970956563950</right_val></_></_>
- <_>
- <!-- tree 252 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 6 2 -1.</_>
- <_>
- 9 6 2 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0543241314589977</threshold>
- <left_val>-0.3354822993278503</left_val>
- <right_val>0.0117584997788072</right_val></_></_>
- <_>
- <!-- tree 253 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 3 2 -1.</_>
- <_>
- 12 9 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0325612500309944</threshold>
- <left_val>1.3724969467148185e-003</left_val>
- <right_val>-0.3325941860675812</right_val></_></_>
- <_>
- <!-- tree 254 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 2 3 -1.</_>
- <_>
- 6 9 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.8455069772899151e-003</threshold>
- <left_val>-0.0363678596913815</left_val>
- <right_val>0.1394127011299133</right_val></_></_>
- <_>
- <!-- tree 255 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 14 4 1 -1.</_>
- <_>
- 12 14 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.4578228890895844e-003</threshold>
- <left_val>-0.1517935991287231</left_val>
- <right_val>7.1280989795923233e-003</right_val></_></_>
- <_>
- <!-- tree 256 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 14 4 1 -1.</_>
- <_>
- 4 14 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5718130208551884e-003</threshold>
- <left_val>0.0160512197762728</left_val>
- <right_val>-0.2522624135017395</right_val></_></_>
- <_>
- <!-- tree 257 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 11 4 4 -1.</_>
- <_>
- 14 11 2 2 2.</_>
- <_>
- 12 13 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0234677102416754</threshold>
- <left_val>6.1246878467500210e-003</left_val>
- <right_val>-0.2341949939727783</right_val></_></_>
- <_>
- <!-- tree 258 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 12 1 3 -1.</_>
- <_>
- 6 13 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7358670011162758e-003</threshold>
- <left_val>-0.0396148599684238</left_val>
- <right_val>0.1216652020812035</right_val></_></_>
- <_>
- <!-- tree 259 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 1 2 -1.</_>
- <_>
- 11 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.0753577640280128e-004</threshold>
- <left_val>-0.0265275705605745</left_val>
- <right_val>0.0391027294099331</right_val></_></_>
- <_>
- <!-- tree 260 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 4 4 -1.</_>
- <_>
- 3 11 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.5824369192123413e-003</threshold>
- <left_val>-0.1007393002510071</left_val>
- <right_val>0.0372616909444332</right_val></_></_>
- <_>
- <!-- tree 261 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 13 1 2 -1.</_>
- <_>
- 11 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6079979725182056e-003</threshold>
- <left_val>0.0740168169140816</left_val>
- <right_val>-0.0109551800414920</right_val></_></_>
- <_>
- <!-- tree 262 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 13 1 2 -1.</_>
- <_>
- 6 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.9571033236570656e-005</threshold>
- <left_val>-0.0852629169821739</left_val>
- <right_val>0.0644899830222130</right_val></_></_>
- <_>
- <!-- tree 263 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 10 4 -1.</_>
- <_>
- 12 7 5 2 2.</_>
- <_>
- 7 9 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0819417685270309</threshold>
- <left_val>2.0980359986424446e-003</left_val>
- <right_val>-0.6184495091438294</right_val></_></_>
- <_>
- <!-- tree 264 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 10 4 -1.</_>
- <_>
- 1 7 5 2 2.</_>
- <_>
- 6 9 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0194270908832550</threshold>
- <left_val>-0.0222837105393410</left_val>
- <right_val>0.1991835981607437</right_val></_></_>
- <_>
- <!-- tree 265 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 18 4 -1.</_>
- <_>
- 6 4 6 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1507761031389237</threshold>
- <left_val>-0.6439470052719116</left_val>
- <right_val>7.0817708037793636e-003</right_val></_></_>
- <_>
- <!-- tree 266 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 11 4 4 -1.</_>
- <_>
- 2 11 2 2 2.</_>
- <_>
- 4 13 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5093310503289104e-003</threshold>
- <left_val>-0.1065026968717575</left_val>
- <right_val>0.0375769101083279</right_val></_></_>
- <_>
- <!-- tree 267 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 14 6 1 -1.</_>
- <_>
- 11 14 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0362875610589981</threshold>
- <left_val>6.2272557988762856e-004</left_val>
- <right_val>-1.0000269412994385</right_val></_></_>
- <_>
- <!-- tree 268 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 14 6 1 -1.</_>
- <_>
- 5 14 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7432459862902761e-003</threshold>
- <left_val>0.0829876065254211</left_val>
- <right_val>-0.0519000887870789</right_val></_></_>
- <_>
- <!-- tree 269 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 12 3 1 -1.</_>
- <_>
- 12 12 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1345883295871317e-005</threshold>
- <left_val>0.0411302000284195</left_val>
- <right_val>-0.0397632196545601</right_val></_></_>
- <_>
- <!-- tree 270 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 12 3 1 -1.</_>
- <_>
- 5 12 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6694999178289436e-005</threshold>
- <left_val>-0.0574894510209560</left_val>
- <right_val>0.0767864733934402</right_val></_></_>
- <_>
- <!-- tree 271 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 5 1 2 -1.</_>
- <_>
- 13 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4684870368218981e-005</threshold>
- <left_val>-0.0332492999732494</left_val>
- <right_val>0.0608417689800262</right_val></_></_>
- <_>
- <!-- tree 272 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 6 4 -1.</_>
- <_>
- 5 4 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0216660704463720</threshold>
- <left_val>-0.4239960014820099</left_val>
- <right_val>9.5887510105967522e-003</right_val></_></_>
- <_>
- <!-- tree 273 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 12 9 -1.</_>
- <_>
- 8 6 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.6512408256530762</threshold>
- <left_val>-0.0139236301183701</left_val>
- <right_val>0.2035869956016541</right_val></_></_>
- <_>
- <!-- tree 274 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 10 2 -1.</_>
- <_>
- 4 7 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1125432625412941e-003</threshold>
- <left_val>0.0472846701741219</left_val>
- <right_val>-0.0877940282225609</right_val></_></_>
- <_>
- <!-- tree 275 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 5 1 2 -1.</_>
- <_>
- 13 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.7661407887935638e-003</threshold>
- <left_val>3.6122149322181940e-004</left_val>
- <right_val>-0.4613266885280609</right_val></_></_>
- <_>
- <!-- tree 276 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 1 2 -1.</_>
- <_>
- 4 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6974760809680447e-005</threshold>
- <left_val>-0.0540806017816067</left_val>
- <right_val>0.0876793190836906</right_val></_></_>
- <_>
- <!-- tree 277 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 4 4 2 -1.</_>
- <_>
- 11 5 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2681202911771834e-005</threshold>
- <left_val>-0.0361079499125481</left_val>
- <right_val>0.0403531081974506</right_val></_></_>
- <_>
- <!-- tree 278 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 4 2 -1.</_>
- <_>
- 3 5 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6902779247611761e-003</threshold>
- <left_val>0.0328456684947014</left_val>
- <right_val>-0.1765446066856384</right_val></_></_>
- <_>
- <!-- tree 279 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 8 2 -1.</_>
- <_>
- 9 4 4 1 2.</_>
- <_>
- 5 5 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4884620215743780e-003</threshold>
- <left_val>-0.1116909012198448</left_val>
- <right_val>0.0380927696824074</right_val></_></_>
- <_>
- <!-- tree 280 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 2 2 -1.</_>
- <_>
- 6 2 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.1029191128909588e-003</threshold>
- <left_val>-0.0218723006546497</left_val>
- <right_val>0.2147480994462967</right_val></_></_>
- <_>
- <!-- tree 281 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 3 2 11 -1.</_>
- <_>
- 14 3 1 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.4216389805078506e-003</threshold>
- <left_val>0.0250333193689585</left_val>
- <right_val>-0.1052472963929176</right_val></_></_>
- <_>
- <!-- tree 282 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 2 11 -1.</_>
- <_>
- 3 3 1 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0112776597961783</threshold>
- <left_val>-0.1206863969564438</left_val>
- <right_val>0.0366918705403805</right_val></_></_>
- <_>
- <!-- tree 283 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 6 4 3 -1.</_>
- <_>
- 15 6 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5908139068633318e-003</threshold>
- <left_val>0.0489619709551334</left_val>
- <right_val>-0.0271127801388502</right_val></_></_>
- <_>
- <!-- tree 284 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 4 5 -1.</_>
- <_>
- 1 6 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.9354357868432999e-003</threshold>
- <left_val>-0.0488033294677734</left_val>
- <right_val>0.0915941670536995</right_val></_></_>
- <_>
- <!-- tree 285 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 6 3 -1.</_>
- <_>
- 13 0 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.7140849530696869e-003</threshold>
- <left_val>0.0652810335159302</left_val>
- <right_val>-0.0544281415641308</right_val></_></_>
- <_>
- <!-- tree 286 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 2 2 -1.</_>
- <_>
- 7 6 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.5044799596071243e-003</threshold>
- <left_val>0.0404559001326561</left_val>
- <right_val>-0.1001691967248917</right_val></_></_>
- <_>
- <!-- tree 287 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 1 6 -1.</_>
- <_>
- 13 5 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.6039410624653101e-003</threshold>
- <left_val>-0.0484412014484406</left_val>
- <right_val>0.0443660393357277</right_val></_></_>
- <_>
- <!-- tree 288 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 4 4 -1.</_>
- <_>
- 5 4 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0142484996467829</threshold>
- <left_val>-0.1895865947008133</left_val>
- <right_val>0.0223791096359491</right_val></_></_>
- <_>
- <!-- tree 289 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 1 3 9 -1.</_>
- <_>
- 9 4 1 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1074685975909233</threshold>
- <left_val>-0.0145733403041959</left_val>
- <right_val>0.1853380054235458</right_val></_></_>
- <_>
- <!-- tree 290 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 3 1 -1.</_>
- <_>
- 10 5 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.5448340028524399e-003</threshold>
- <left_val>0.0309639498591423</left_val>
- <right_val>-0.1545622944831848</right_val></_></_>
- <_>
- <!-- tree 291 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 9 9 -1.</_>
- <_>
- 9 5 3 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4055879116058350</threshold>
- <left_val>-0.0106067704036832</left_val>
- <right_val>0.0930665135383606</right_val></_></_>
- <_>
- <!-- tree 292 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 9 9 -1.</_>
- <_>
- 6 5 3 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.4504162073135376</threshold>
- <left_val>-0.0119176097214222</left_val>
- <right_val>0.3723948001861572</right_val></_></_>
- <_>
- <!-- tree 293 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 12 -1.</_>
- <_>
- 6 4 6 4 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.0484869480133057</threshold>
- <left_val>0.0248466003686190</left_val>
- <right_val>-0.2055020928382874</right_val></_></_>
- <_>
- <!-- tree 294 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 14 4 -1.</_>
- <_>
- 1 3 7 2 2.</_>
- <_>
- 8 5 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0317365005612373</threshold>
- <left_val>0.1823897957801819</left_val>
- <right_val>-0.0208370704203844</right_val></_></_>
- <_>
- <!-- tree 295 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 8 -1.</_>
- <_>
- 9 0 9 4 2.</_>
- <_>
- 0 4 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1016217023134232</threshold>
- <left_val>0.0152149600908160</left_val>
- <right_val>-0.2873800098896027</right_val></_></_>
- <_>
- <!-- tree 296 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 2 2 -1.</_>
- <_>
- 5 10 1 1 2.</_>
- <_>
- 6 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6911029815673828e-003</threshold>
- <left_val>-0.0272036101669073</left_val>
- <right_val>0.1536138951778412</right_val></_></_>
- <_>
- <!-- tree 297 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 2 3 -1.</_>
- <_>
- 8 9 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0550902001559734</threshold>
- <left_val>0.4018200933933258</left_val>
- <right_val>-2.6924409903585911e-003</right_val></_></_>
- <_>
- <!-- tree 298 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 8 3 2 -1.</_>
- <_>
- 10 9 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.6355741582810879e-003</threshold>
- <left_val>-0.1039951965212822</left_val>
- <right_val>0.0399309694766998</right_val></_></_>
- <_>
- <!-- tree 299 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 6 9 -1.</_>
- <_>
- 9 0 3 9 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.2823461890220642</threshold>
- <left_val>-0.6573529839515686</left_val>
- <right_val>2.2085180971771479e-003</right_val></_></_>
- <_>
- <!-- tree 300 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 9 6 -1.</_>
- <_>
- 9 0 9 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.3560608029365540</threshold>
- <left_val>8.8273994624614716e-003</left_val>
- <right_val>-0.4184055030345917</right_val></_></_>
- <_>
- <!-- tree 301 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 4 2 -1.</_>
- <_>
- 9 4 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8794088866561651e-003</threshold>
- <left_val>-0.0477025806903839</left_val>
- <right_val>0.0486192405223846</right_val></_></_>
- <_>
- <!-- tree 302 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 18 1 -1.</_>
- <_>
- 9 2 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0345713905990124</threshold>
- <left_val>-0.1654108017683029</left_val>
- <right_val>0.0324508398771286</right_val></_></_>
- <_>
- <!-- tree 303 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 10 6 3 -1.</_>
- <_>
- 11 11 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0700211822986603</threshold>
- <left_val>7.1347500197589397e-003</left_val>
- <right_val>-0.5142191052436829</right_val></_></_>
- <_>
- <!-- tree 304 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 8 4 -1.</_>
- <_>
- 0 5 8 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0253863092511892</threshold>
- <left_val>-0.1287622004747391</left_val>
- <right_val>0.0291819702833891</right_val></_></_>
- <_>
- <!-- tree 305 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 3 3 8 -1.</_>
- <_>
- 14 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.7927471138536930e-003</threshold>
- <left_val>0.0385298691689968</left_val>
- <right_val>-0.0494838394224644</right_val></_></_>
- <_>
- <!-- tree 306 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 2 1 -1.</_>
- <_>
- 5 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0142815597355366</threshold>
- <left_val>5.6447219103574753e-003</left_val>
- <right_val>-0.7038524746894836</right_val></_></_>
- <_>
- <!-- tree 307 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 1 2 2 -1.</_>
- <_>
- 14 1 1 1 2.</_>
- <_>
- 13 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3879110813140869e-005</threshold>
- <left_val>-0.0420181788504124</left_val>
- <right_val>0.0442302897572517</right_val></_></_>
- <_>
- <!-- tree 308 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 2 2 -1.</_>
- <_>
- 3 1 1 1 2.</_>
- <_>
- 4 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.5789560060948133e-003</threshold>
- <left_val>0.4614329040050507</left_val>
- <right_val>-9.7652971744537354e-003</right_val></_></_>
- <_>
- <!-- tree 309 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 4 1 -1.</_>
- <_>
- 14 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9024448748677969e-005</threshold>
- <left_val>0.0501331388950348</left_val>
- <right_val>-0.0589645393192768</right_val></_></_>
- <_>
- <!-- tree 310 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 4 1 -1.</_>
- <_>
- 2 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.0192299745976925e-003</threshold>
- <left_val>-0.1949381977319717</left_val>
- <right_val>0.0247106906026602</right_val></_></_>
- <_>
- <!-- tree 311 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 1 2 -1.</_>
- <_>
- 17 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-2.5278010871261358e-003</threshold>
- <left_val>0.0835050269961357</left_val>
- <right_val>-0.0252687390893698</right_val></_></_>
- <_>
- <!-- tree 312 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 2 1 -1.</_>
- <_>
- 1 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.7980269622057676e-003</threshold>
- <left_val>-0.0484824590384960</left_val>
- <right_val>0.0943117365241051</right_val></_></_>
- <_>
- <!-- tree 313 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 1 8 -1.</_>
- <_>
- 16 2 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0226906202733517</threshold>
- <left_val>-0.2997882068157196</left_val>
- <right_val>2.2890099789947271e-003</right_val></_></_>
- <_>
- <!-- tree 314 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 1 8 -1.</_>
- <_>
- 1 2 1 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4375130413100123e-003</threshold>
- <left_val>-0.0624394081532955</left_val>
- <right_val>0.0752900913357735</right_val></_></_>
- <_>
- <!-- tree 315 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 4 2 -1.</_>
- <_>
- 8 0 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.2696974277496338e-003</threshold>
- <left_val>-0.0303539503365755</left_val>
- <right_val>0.0880893915891647</right_val></_></_>
- <_>
- <!-- tree 316 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 12 15 -1.</_>
- <_>
- 5 0 6 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1505593955516815</threshold>
- <left_val>0.1941386014223099</left_val>
- <right_val>-0.0227722208946943</right_val></_></_>
- <_>
- <!-- tree 317 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 6 4 -1.</_>
- <_>
- 11 2 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7811149591580033e-003</threshold>
- <left_val>-0.0603102482855320</left_val>
- <right_val>0.0200738906860352</right_val></_></_>
- <_>
- <!-- tree 318 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 8 6 -1.</_>
- <_>
- 4 2 4 3 2.</_>
- <_>
- 8 5 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7450647689402103e-003</threshold>
- <left_val>-0.0518799908459187</left_val>
- <right_val>0.0740923434495926</right_val></_></_>
- <_>
- <!-- tree 319 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 1 4 -1.</_>
- <_>
- 9 2 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.9645358920097351e-003</threshold>
- <left_val>-0.1222385987639427</left_val>
- <right_val>0.0184847600758076</right_val></_></_>
- <_>
- <!-- tree 320 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 7 6 -1.</_>
- <_>
- 7 2 7 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2112957984209061</threshold>
- <left_val>6.9678751751780510e-003</left_val>
- <right_val>-0.6340553164482117</right_val></_></_>
- <_>
- <!-- tree 321 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 6 8 2 -1.</_>
- <_>
- 10 6 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0679322928190231</threshold>
- <left_val>0.0112383002415299</left_val>
- <right_val>-0.2989783883094788</right_val></_></_>
- <_>
- <!-- tree 322 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 17 9 -1.</_>
- <_>
- 0 3 17 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.3546049892902374</threshold>
- <left_val>0.0108207296580076</left_val>
- <right_val>-0.4018031060695648</right_val></_></_>
- <_>
- <!-- tree 323 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 5 6 -1.</_>
- <_>
- 7 3 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0678805708885193</threshold>
- <left_val>-9.0837832540273666e-003</left_val>
- <right_val>0.2855814099311829</right_val></_></_>
- <_>
- <!-- tree 324 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 8 4 -1.</_>
- <_>
- 5 1 4 2 2.</_>
- <_>
- 9 3 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0231790095567703</threshold>
- <left_val>0.0120336599647999</left_val>
- <right_val>-0.3428303003311157</right_val></_></_>
- <_>
- <!-- tree 325 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 3 9 -1.</_>
- <_>
- 9 3 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0250181294977665</threshold>
- <left_val>0.1685106009244919</left_val>
- <right_val>-0.0148548297584057</right_val></_></_>
- <_>
- <!-- tree 326 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 4 2 -1.</_>
- <_>
- 9 2 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0108465002849698</threshold>
- <left_val>-0.0498660691082478</left_val>
- <right_val>0.0913302898406982</right_val></_></_>
- <_>
- <!-- tree 327 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 11 8 -1.</_>
- <_>
- 4 4 11 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0674327909946442</threshold>
- <left_val>-0.0671769231557846</left_val>
- <right_val>0.0522870086133480</right_val></_></_>
- <_>
- <!-- tree 328 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 16 6 -1.</_>
- <_>
- 1 6 16 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1040098965167999</threshold>
- <left_val>0.2126909047365189</left_val>
- <right_val>-0.0196353103965521</right_val></_></_>
- <_>
- <!-- tree 329 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 6 8 2 -1.</_>
- <_>
- 10 6 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0195524599403143</threshold>
- <left_val>-0.0859493836760521</left_val>
- <right_val>0.0108785601332784</right_val></_></_>
- <_>
- <!-- tree 330 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 8 2 -1.</_>
- <_>
- 4 6 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0041260393336415e-003</threshold>
- <left_val>-0.0881467536091805</left_val>
- <right_val>0.0533496886491776</right_val></_></_>
- <_>
- <!-- tree 331 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 4 2 -1.</_>
- <_>
- 15 8 2 1 2.</_>
- <_>
- 13 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.1779510900378227e-003</threshold>
- <left_val>-0.0257080793380737</left_val>
- <right_val>0.1262018978595734</right_val></_></_>
- <_>
- <!-- tree 332 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 3 3 -1.</_>
- <_>
- 0 8 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1974221132695675e-003</threshold>
- <left_val>-0.1490999013185501</left_val>
- <right_val>0.0257342308759689</right_val></_></_>
- <_>
- <!-- tree 333 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 5 1 3 -1.</_>
- <_>
- 16 6 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-8.4385536611080170e-003</threshold>
- <left_val>0.1762731969356537</left_val>
- <right_val>-0.0173361804336309</right_val></_></_>
- <_>
- <!-- tree 334 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 3 1 -1.</_>
- <_>
- 2 6 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.3723679631948471e-003</threshold>
- <left_val>-0.0288299303501844</left_val>
- <right_val>0.1601462066173554</right_val></_></_>
- <_>
- <!-- tree 335 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 6 1 2 -1.</_>
- <_>
- 17 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.4913480309769511e-004</threshold>
- <left_val>0.0250607505440712</left_val>
- <right_val>-0.0684819966554642</right_val></_></_>
- <_>
- <!-- tree 336 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 1 2 -1.</_>
- <_>
- 0 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3739310563541949e-005</threshold>
- <left_val>0.0597767196595669</left_val>
- <right_val>-0.0690794587135315</right_val></_></_>
- <_>
- <!-- tree 337 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 1 1 12 -1.</_>
- <_>
- 17 7 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0219023097306490</threshold>
- <left_val>0.0158000495284796</left_val>
- <right_val>-0.2590233981609345</right_val></_></_>
- <_>
- <!-- tree 338 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 1 12 -1.</_>
- <_>
- 0 7 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0232256501913071</threshold>
- <left_val>-0.1524018943309784</left_val>
- <right_val>0.0343589708209038</right_val></_></_>
- <_>
- <!-- tree 339 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 18 4 -1.</_>
- <_>
- 0 7 18 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0173969995230436</threshold>
- <left_val>-0.0445144101977348</left_val>
- <right_val>0.0861461684107780</right_val></_></_>
- <_>
- <!-- tree 340 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 2 -1.</_>
- <_>
- 0 10 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3821102008223534e-003</threshold>
- <left_val>-0.0655946731567383</left_val>
- <right_val>0.0700312927365303</right_val></_></_>
- <_>
- <!-- tree 341 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 6 2 -1.</_>
- <_>
- 6 8 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0522718392312527</threshold>
- <left_val>-0.8459323048591614</left_val>
- <right_val>4.0736538358032703e-003</right_val></_></_>
- <_>
- <!-- tree 342 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 3 1 -1.</_>
- <_>
- 1 9 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6945039280690253e-005</threshold>
- <left_val>0.0711033865809441</left_val>
- <right_val>-0.0569700710475445</right_val></_></_>
- <_>
- <!-- tree 343 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 9 2 2 -1.</_>
- <_>
- 16 10 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3246699757874012e-003</threshold>
- <left_val>0.0101481601595879</left_val>
- <right_val>-0.1649581938982010</right_val></_></_>
- <_>
- <!-- tree 344 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 6 3 -1.</_>
- <_>
- 5 11 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0796489417552948</threshold>
- <left_val>4.9309800378978252e-003</left_val>
- <right_val>-0.7393599152565002</right_val></_></_>
- <_>
- <!-- tree 345 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 3 -1.</_>
- <_>
- 14 2 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0256457198411226</threshold>
- <left_val>-9.9361119791865349e-003</left_val>
- <right_val>0.1957349032163620</right_val></_></_>
- <_>
- <!-- tree 346 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 14 2 -1.</_>
- <_>
- 2 5 7 1 2.</_>
- <_>
- 9 6 7 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0215177107602358</threshold>
- <left_val>-0.3739817142486572</left_val>
- <right_val>0.0105646802112460</right_val></_></_>
- <_>
- <!-- tree 347 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 3 -1.</_>
- <_>
- 14 2 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>3.1084879301488400e-003</threshold>
- <left_val>-0.0232892800122499</left_val>
- <right_val>0.0444528982043266</right_val></_></_>
- <_>
- <!-- tree 348 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 3 3 -1.</_>
- <_>
- 4 2 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0203057900071144</threshold>
- <left_val>0.1845038980245590</left_val>
- <right_val>-0.0220416504889727</right_val></_></_>
- <_>
- <!-- tree 349 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 4 3 2 -1.</_>
- <_>
- 14 5 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3073209740687162e-004</threshold>
- <left_val>-0.0425330288708210</left_val>
- <right_val>0.0405342392623425</right_val></_></_>
- <_>
- <!-- tree 350 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 3 2 -1.</_>
- <_>
- 1 5 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1654567942023277e-003</threshold>
- <left_val>0.0195509009063244</left_val>
- <right_val>-0.2752223014831543</right_val></_></_>
- <_>
- <!-- tree 351 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 3 3 11 -1.</_>
- <_>
- 16 3 1 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0133738899603486</threshold>
- <left_val>-0.1067676991224289</left_val>
- <right_val>0.0157130900770426</right_val></_></_>
- <_>
- <!-- tree 352 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 3 11 -1.</_>
- <_>
- 1 3 1 11 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0305575095117092</threshold>
- <left_val>-0.4903602004051209</left_val>
- <right_val>8.4824627265334129e-003</right_val></_></_>
- <_>
- <!-- tree 353 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 5 2 2 -1.</_>
- <_>
- 15 5 1 1 2.</_>
- <_>
- 14 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4938637875020504e-003</threshold>
- <left_val>0.2458741962909699</left_val>
- <right_val>-7.3765181005001068e-003</right_val></_></_>
- <_>
- <!-- tree 354 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 5 2 2 -1.</_>
- <_>
- 2 5 1 1 2.</_>
- <_>
- 3 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5328789595514536e-003</threshold>
- <left_val>-0.0219983607530594</left_val>
- <right_val>0.1710575073957443</right_val></_></_>
- <_>
- <!-- tree 355 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 5 3 4 -1.</_>
- <_>
- 15 6 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0284645706415176</threshold>
- <left_val>-4.4271750375628471e-003</left_val>
- <right_val>0.3786450028419495</right_val></_></_>
- <_>
- <!-- tree 356 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 3 4 -1.</_>
- <_>
- 0 6 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.6278439220041037e-003</threshold>
- <left_val>-0.1194301024079323</left_val>
- <right_val>0.0363873392343521</right_val></_></_>
- <_>
- <!-- tree 357 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 8 1 3 -1.</_>
- <_>
- 17 9 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5880590118467808e-003</threshold>
- <left_val>4.7421031631529331e-003</left_val>
- <right_val>-0.2304062992334366</right_val></_></_>
- <_>
- <!-- tree 358 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 1 3 -1.</_>
- <_>
- 0 9 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7257609870284796e-003</threshold>
- <left_val>-0.1512462049722672</left_val>
- <right_val>0.0245305094867945</right_val></_></_>
- <_>
- <!-- tree 359 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 6 2 4 -1.</_>
- <_>
- 17 6 1 2 2.</_>
- <_>
- 16 8 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.0079229511320591e-003</threshold>
- <left_val>0.1179575026035309</left_val>
- <right_val>-0.0284553095698357</right_val></_></_>
- <_>
- <!-- tree 360 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 2 4 -1.</_>
- <_>
- 0 6 1 2 2.</_>
- <_>
- 1 8 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0597620904445648e-003</threshold>
- <left_val>-0.0159428808838129</left_val>
- <right_val>0.2634926140308380</right_val></_></_>
- <_>
- <!-- tree 361 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 18 6 -1.</_>
- <_>
- 9 6 9 3 2.</_>
- <_>
- 0 9 9 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1020618006587029</threshold>
- <left_val>0.0228738095611334</left_val>
- <right_val>-0.1756930947303772</right_val></_></_>
- <_>
- <!-- tree 362 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 6 2 -1.</_>
- <_>
- 5 1 3 1 2.</_>
- <_>
- 8 2 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3605949506163597e-003</threshold>
- <left_val>-0.2843278944492340</left_val>
- <right_val>0.0135392798110843</right_val></_></_>
- <_>
- <!-- tree 363 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 2 2 -1.</_>
- <_>
- 11 1 1 1 2.</_>
- <_>
- 10 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3634009519591928e-003</threshold>
- <left_val>0.0150163397192955</left_val>
- <right_val>-0.2169246971607208</right_val></_></_>
- <_>
- <!-- tree 364 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 2 2 -1.</_>
- <_>
- 6 1 1 1 2.</_>
- <_>
- 7 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1867151341866702e-005</threshold>
- <left_val>0.0715956836938858</left_val>
- <right_val>-0.0591941215097904</right_val></_></_>
- <_>
- <!-- tree 365 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 1 6 3 -1.</_>
- <_>
- 10 1 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5599510669708252e-003</threshold>
- <left_val>-0.0504433810710907</left_val>
- <right_val>0.0246312096714973</right_val></_></_>
- <_>
- <!-- tree 366 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 6 3 -1.</_>
- <_>
- 5 1 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.1721879541873932e-003</threshold>
- <left_val>0.1485853940248489</left_val>
- <right_val>-0.0320550985634327</right_val></_></_>
- <_>
- <!-- tree 367 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 6 3 -1.</_>
- <_>
- 14 0 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0511872991919518</threshold>
- <left_val>-0.2539905905723572</left_val>
- <right_val>6.8093240261077881e-003</right_val></_></_>
- <_>
- <!-- tree 368 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 3 -1.</_>
- <_>
- 2 0 2 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0402427017688751</threshold>
- <left_val>7.3603428900241852e-003</left_val>
- <right_val>-0.5389612913131714</right_val></_></_>
- <_>
- <!-- tree 369 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 8 4 2 -1.</_>
- <_>
- 15 8 2 1 2.</_>
- <_>
- 13 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6354929953813553e-003</threshold>
- <left_val>0.2015924006700516</left_val>
- <right_val>-0.0168281905353069</right_val></_></_>
- <_>
- <!-- tree 370 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 4 2 -1.</_>
- <_>
- 1 8 2 1 2.</_>
- <_>
- 3 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2959326896816492e-005</threshold>
- <left_val>-0.0544128902256489</left_val>
- <right_val>0.0732978805899620</right_val></_></_></trees>
- <stage_threshold>-1.1236120462417603</stage_threshold>
- <parent>17</parent>
- <next>-1</next></_>
- <_>
- <!-- stage 19 -->
- <trees>
- <_>
- <!-- tree 0 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 1 6 -1.</_>
- <_>
- 7 8 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0465844385325909</threshold>
- <left_val>0.3975890874862671</left_val>
- <right_val>-0.1048778966069222</right_val></_></_>
- <_>
- <!-- tree 1 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 6 6 -1.</_>
- <_>
- 12 2 2 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0135460803285241</threshold>
- <left_val>0.1016070991754532</left_val>
- <right_val>-0.0605821199715137</right_val></_></_>
- <_>
- <!-- tree 2 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 4 8 -1.</_>
- <_>
- 7 0 2 8 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0212406199425459</threshold>
- <left_val>-0.2152090966701508</left_val>
- <right_val>0.0991928800940514</right_val></_></_>
- <_>
- <!-- tree 3 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 1 3 -1.</_>
- <_>
- 12 8 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.8675312213599682e-003</threshold>
- <left_val>0.3455908000469208</left_val>
- <right_val>-0.0272973105311394</right_val></_></_>
- <_>
- <!-- tree 4 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 1 3 -1.</_>
- <_>
- 4 8 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.8874719971790910e-003</threshold>
- <left_val>-0.0626463666558266</left_val>
- <right_val>0.2202863991260529</right_val></_></_>
- <_>
- <!-- tree 5 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 5 1 3 -1.</_>
- <_>
- 14 6 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.6648931503295898e-003</threshold>
- <left_val>0.1264203935861588</left_val>
- <right_val>-2.9440899379551411e-003</right_val></_></_>
- <_>
- <!-- tree 6 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 3 1 -1.</_>
- <_>
- 4 6 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.7599171996116638e-003</threshold>
- <left_val>-0.0645451918244362</left_val>
- <right_val>0.2116688936948776</right_val></_></_>
- <_>
- <!-- tree 7 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 4 -1.</_>
- <_>
- 9 9 9 2 2.</_>
- <_>
- 0 11 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0426046885550022</threshold>
- <left_val>0.0816654786467552</left_val>
- <right_val>-0.2211515009403229</right_val></_></_>
- <_>
- <!-- tree 8 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 1 2 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.1809020070359111e-003</threshold>
- <left_val>0.0537825897336006</left_val>
- <right_val>-0.2183254957199097</right_val></_></_>
- <_>
- <!-- tree 9 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 7 4 -1.</_>
- <_>
- 8 2 7 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0258668307214975</threshold>
- <left_val>-3.4579040948301554e-003</left_val>
- <right_val>-0.2280915975570679</right_val></_></_>
- <_>
- <!-- tree 10 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 12 4 -1.</_>
- <_>
- 3 0 6 2 2.</_>
- <_>
- 9 2 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0130240898579359</threshold>
- <left_val>-0.2336263954639435</left_val>
- <right_val>0.0455196797847748</right_val></_></_>
- <_>
- <!-- tree 11 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 2 2 -1.</_>
- <_>
- 10 1 1 1 2.</_>
- <_>
- 9 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6178720872849226e-005</threshold>
- <left_val>0.0630585104227066</left_val>
- <right_val>-0.0357771515846252</right_val></_></_>
- <_>
- <!-- tree 12 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 4 -1.</_>
- <_>
- 7 0 2 2 2.</_>
- <_>
- 9 2 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8649858906865120e-003</threshold>
- <left_val>0.0413089096546173</left_val>
- <right_val>-0.2126125991344452</right_val></_></_>
- <_>
- <!-- tree 13 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 8 2 2 -1.</_>
- <_>
- 12 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.3429462239146233e-003</threshold>
- <left_val>0.1096725985407829</left_val>
- <right_val>-0.0673774331808090</right_val></_></_>
- <_>
- <!-- tree 14 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 2 2 -1.</_>
- <_>
- 4 9 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.2463369425386190e-003</threshold>
- <left_val>-0.0599126406013966</left_val>
- <right_val>0.2478830069303513</right_val></_></_>
- <_>
- <!-- tree 15 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 4 10 -1.</_>
- <_>
- 11 5 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0446722097694874</threshold>
- <left_val>-0.1378764957189560</left_val>
- <right_val>7.5812488794326782e-003</right_val></_></_>
- <_>
- <!-- tree 16 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 4 10 -1.</_>
- <_>
- 5 5 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0596978403627872</threshold>
- <left_val>-0.3720127940177918</left_val>
- <right_val>0.0243327803909779</right_val></_></_>
- <_>
- <!-- tree 17 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 16 3 -1.</_>
- <_>
- 5 10 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.9666267633438110e-003</threshold>
- <left_val>0.0740873217582703</left_val>
- <right_val>-0.1286740005016327</right_val></_></_>
- <_>
- <!-- tree 18 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 8 2 2 -1.</_>
- <_>
- 5 8 1 1 2.</_>
- <_>
- 6 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1090090265497565e-003</threshold>
- <left_val>-0.0450637899339199</left_val>
- <right_val>0.1985294967889786</right_val></_></_>
- <_>
- <!-- tree 19 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 18 8 -1.</_>
- <_>
- 9 5 9 4 2.</_>
- <_>
- 0 9 9 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1913764029741287</threshold>
- <left_val>0.0166084691882133</left_val>
- <right_val>-0.4066238999366760</right_val></_></_>
- <_>
- <!-- tree 20 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 3 9 -1.</_>
- <_>
- 0 6 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0291308406740427</threshold>
- <left_val>0.0361067317426205</left_val>
- <right_val>-0.2113531976938248</right_val></_></_>
- <_>
- <!-- tree 21 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 8 2 -1.</_>
- <_>
- 9 4 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9123510941863060e-003</threshold>
- <left_val>-0.1371506005525589</left_val>
- <right_val>0.0311542004346848</right_val></_></_>
- <_>
- <!-- tree 22 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 18 2 -1.</_>
- <_>
- 0 3 9 1 2.</_>
- <_>
- 9 4 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0102061899378896</threshold>
- <left_val>0.0290562491863966</left_val>
- <right_val>-0.2503226995468140</right_val></_></_>
- <_>
- <!-- tree 23 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 11 8 4 -1.</_>
- <_>
- 8 11 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0544211715459824</threshold>
- <left_val>-0.3678776025772095</left_val>
- <right_val>4.9542388878762722e-003</right_val></_></_>
- <_>
- <!-- tree 24 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 3 2 -1.</_>
- <_>
- 3 5 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0105043696239591</threshold>
- <left_val>-0.0391194783151150</left_val>
- <right_val>0.1786668002605438</right_val></_></_>
- <_>
- <!-- tree 25 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 4 4 6 -1.</_>
- <_>
- 14 7 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0389032289385796</threshold>
- <left_val>-0.1115652024745941</left_val>
- <right_val>0.0494851097464561</right_val></_></_>
- <_>
- <!-- tree 26 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 9 3 -1.</_>
- <_>
- 8 1 9 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.0581050086766481e-003</threshold>
- <left_val>0.1185448989272118</left_val>
- <right_val>-0.0652535036206245</right_val></_></_>
- <_>
- <!-- tree 27 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 11 8 4 -1.</_>
- <_>
- 8 11 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0120711103081703</threshold>
- <left_val>0.0169083792716265</left_val>
- <right_val>-0.0460892505943775</right_val></_></_>
- <_>
- <!-- tree 28 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 11 8 4 -1.</_>
- <_>
- 6 11 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0361215807497501</threshold>
- <left_val>-0.2858510911464691</left_val>
- <right_val>0.0273920707404613</right_val></_></_>
- <_>
- <!-- tree 29 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 2 1 -1.</_>
- <_>
- 15 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.0450740167871118e-005</threshold>
- <left_val>0.0811922177672386</left_val>
- <right_val>-0.0853394791483879</right_val></_></_>
- <_>
- <!-- tree 30 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 6 2 -1.</_>
- <_>
- 6 6 2 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0614753998816013</threshold>
- <left_val>-0.3050264120101929</left_val>
- <right_val>0.0216726101934910</right_val></_></_>
- <_>
- <!-- tree 31 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 6 4 -1.</_>
- <_>
- 11 5 2 4 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1238436028361321</threshold>
- <left_val>-8.6616817861795425e-003</left_val>
- <right_val>0.0958835631608963</right_val></_></_>
- <_>
- <!-- tree 32 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 4 6 -1.</_>
- <_>
- 7 5 4 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1372978985309601</threshold>
- <left_val>0.3248777985572815</left_val>
- <right_val>-0.0273847002536058</right_val></_></_>
- <_>
- <!-- tree 33 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 15 14 -1.</_>
- <_>
- 3 8 15 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.3766013085842133</threshold>
- <left_val>0.0695123001933098</left_val>
- <right_val>-0.0875100269913673</right_val></_></_>
- <_>
- <!-- tree 34 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 4 14 -1.</_>
- <_>
- 0 8 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1042848974466324</threshold>
- <left_val>-0.1743391007184982</left_val>
- <right_val>0.0465723089873791</right_val></_></_>
- <_>
- <!-- tree 35 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 2 2 -1.</_>
- <_>
- 12 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0153772495687008</threshold>
- <left_val>7.2437077760696411e-003</left_val>
- <right_val>-0.3706468939781189</right_val></_></_>
- <_>
- <!-- tree 36 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 2 2 -1.</_>
- <_>
- 6 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0103409802541137</threshold>
- <left_val>0.0195991508662701</left_val>
- <right_val>-0.3505811989307404</right_val></_></_>
- <_>
- <!-- tree 37 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 2 1 -1.</_>
- <_>
- 15 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.6178720872849226e-005</threshold>
- <left_val>-0.0371437408030033</left_val>
- <right_val>0.0463190414011478</right_val></_></_>
- <_>
- <!-- tree 38 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 2 1 -1.</_>
- <_>
- 2 0 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.1104918384226039e-005</threshold>
- <left_val>0.0750196501612663</left_val>
- <right_val>-0.0955687314271927</right_val></_></_>
- <_>
- <!-- tree 39 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 7 2 2 -1.</_>
- <_>
- 12 7 1 1 2.</_>
- <_>
- 11 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2594480067491531e-003</threshold>
- <left_val>-0.0361403413116932</left_val>
- <right_val>0.1402405053377152</right_val></_></_>
- <_>
- <!-- tree 40 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 4 6 -1.</_>
- <_>
- 0 0 2 3 2.</_>
- <_>
- 2 3 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.4775051064789295e-003</threshold>
- <left_val>0.1198429986834526</left_val>
- <right_val>-0.0559747815132141</right_val></_></_>
- <_>
- <!-- tree 41 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 7 2 2 -1.</_>
- <_>
- 12 7 1 1 2.</_>
- <_>
- 11 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5892409030348063e-003</threshold>
- <left_val>0.2098380029201508</left_val>
- <right_val>-0.0216069091111422</right_val></_></_>
- <_>
- <!-- tree 42 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 2 2 -1.</_>
- <_>
- 5 7 1 1 2.</_>
- <_>
- 6 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8334530725260265e-005</threshold>
- <left_val>-0.0646458193659782</left_val>
- <right_val>0.1100763976573944</right_val></_></_>
- <_>
- <!-- tree 43 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 6 4 5 -1.</_>
- <_>
- 14 6 2 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0493306517601013</threshold>
- <left_val>-0.0343082509934902</left_val>
- <right_val>0.1055921986699104</right_val></_></_>
- <_>
- <!-- tree 44 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 2 2 -1.</_>
- <_>
- 8 8 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.1046869116835296e-004</threshold>
- <left_val>0.0380286201834679</left_val>
- <right_val>-0.2067811042070389</right_val></_></_>
- <_>
- <!-- tree 45 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 16 3 -1.</_>
- <_>
- 1 9 16 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0112909199669957</threshold>
- <left_val>-0.0430234186351299</left_val>
- <right_val>0.1697725951671600</right_val></_></_>
- <_>
- <!-- tree 46 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 16 2 -1.</_>
- <_>
- 1 11 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9364829640835524e-003</threshold>
- <left_val>-0.1082670986652374</left_val>
- <right_val>0.0643948465585709</right_val></_></_>
- <_>
- <!-- tree 47 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 6 4 5 -1.</_>
- <_>
- 14 6 2 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1330419927835465</threshold>
- <left_val>-0.0107648801058531</left_val>
- <right_val>0.3024955093860626</right_val></_></_>
- <_>
- <!-- tree 48 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 5 4 -1.</_>
- <_>
- 4 6 5 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1217804998159409</threshold>
- <left_val>-0.4010885059833527</left_val>
- <right_val>0.0199013296514750</right_val></_></_>
- <_>
- <!-- tree 49 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 1 2 -1.</_>
- <_>
- 15 2 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8507350584259257e-005</threshold>
- <left_val>0.0578306503593922</left_val>
- <right_val>-0.0554163902997971</right_val></_></_>
- <_>
- <!-- tree 50 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 1 10 2 -1.</_>
- <_>
- 2 1 10 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.1427283585071564e-003</threshold>
- <left_val>-0.1303842961788178</left_val>
- <right_val>0.0504461117088795</right_val></_></_>
- <_>
- <!-- tree 51 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 6 9 -1.</_>
- <_>
- 12 2 2 9 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2504931092262268</threshold>
- <left_val>4.9552097916603088e-003</left_val>
- <right_val>-0.8452144265174866</right_val></_></_>
- <_>
- <!-- tree 52 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 3 3 -1.</_>
- <_>
- 4 10 3 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.9000479262322187e-003</threshold>
- <left_val>-0.0486341603100300</left_val>
- <right_val>0.1397586017847061</right_val></_></_>
- <_>
- <!-- tree 53 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 3 4 -1.</_>
- <_>
- 10 1 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.5292963087558746e-003</threshold>
- <left_val>-0.4822708964347839</left_val>
- <right_val>8.9182211086153984e-003</right_val></_></_>
- <_>
- <!-- tree 54 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 10 2 1 -1.</_>
- <_>
- 1 10 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.2608580291271210e-003</threshold>
- <left_val>-0.1439639925956726</left_val>
- <right_val>0.0446254611015320</right_val></_></_>
- <_>
- <!-- tree 55 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 11 3 1 -1.</_>
- <_>
- 16 12 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.9864251418039203e-004</threshold>
- <left_val>-0.0534688793122768</left_val>
- <right_val>0.0444802902638912</right_val></_></_>
- <_>
- <!-- tree 56 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 11 1 3 -1.</_>
- <_>
- 2 12 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.0955888582393527e-005</threshold>
- <left_val>-0.0910912230610847</left_val>
- <right_val>0.0615591295063496</right_val></_></_>
- <_>
- <!-- tree 57 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 6 9 -1.</_>
- <_>
- 12 2 2 9 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0422890111804008</threshold>
- <left_val>-0.1452918946743012</left_val>
- <right_val>0.0229476597160101</right_val></_></_>
- <_>
- <!-- tree 58 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 9 6 -1.</_>
- <_>
- 6 2 9 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0839773416519165</threshold>
- <left_val>0.0371137298643589</left_val>
- <right_val>-0.1620655953884125</right_val></_></_>
- <_>
- <!-- tree 59 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 6 2 -1.</_>
- <_>
- 10 10 3 1 2.</_>
- <_>
- 7 11 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.1143082827329636e-003</threshold>
- <left_val>-8.4407972171902657e-003</left_val>
- <right_val>0.1036289036273956</right_val></_></_>
- <_>
- <!-- tree 60 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 2 2 -1.</_>
- <_>
- 7 7 1 1 2.</_>
- <_>
- 8 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6319790271809325e-005</threshold>
- <left_val>-0.0675051584839821</left_val>
- <right_val>0.0853116363286972</right_val></_></_>
- <_>
- <!-- tree 61 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 12 6 -1.</_>
- <_>
- 7 5 4 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5213608741760254</threshold>
- <left_val>-0.0144045604392886</left_val>
- <right_val>0.4496696889400482</right_val></_></_>
- <_>
- <!-- tree 62 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 1 6 -1.</_>
- <_>
- 6 5 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0158583596348763</threshold>
- <left_val>0.0245071090757847</left_val>
- <right_val>-0.2806138098239899</right_val></_></_>
- <_>
- <!-- tree 63 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 1 3 -1.</_>
- <_>
- 16 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.0295937843620777e-004</threshold>
- <left_val>-0.0197774693369865</left_val>
- <right_val>0.0582239516079426</right_val></_></_>
- <_>
- <!-- tree 64 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 3 2 -1.</_>
- <_>
- 4 1 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.6763530438765883e-003</threshold>
- <left_val>-0.1580125987529755</left_val>
- <right_val>0.0340122990310192</right_val></_></_>
- <_>
- <!-- tree 65 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 1 3 -1.</_>
- <_>
- 16 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4684870368218981e-005</threshold>
- <left_val>0.0519807413220406</left_val>
- <right_val>-0.0352598205208778</right_val></_></_>
- <_>
- <!-- tree 66 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 1 3 -1.</_>
- <_>
- 1 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3879110813140869e-005</threshold>
- <left_val>-0.0777395367622375</left_val>
- <right_val>0.0757706016302109</right_val></_></_>
- <_>
- <!-- tree 67 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 8 2 -1.</_>
- <_>
- 10 3 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9450380504131317e-003</threshold>
- <left_val>-0.1076762974262238</left_val>
- <right_val>0.0473425313830376</right_val></_></_>
- <_>
- <!-- tree 68 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 8 2 -1.</_>
- <_>
- 4 3 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0338867083191872</threshold>
- <left_val>0.2539583146572113</left_val>
- <right_val>-0.0263967607170343</right_val></_></_>
- <_>
- <!-- tree 69 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 1 -1.</_>
- <_>
- 7 0 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5312961339950562e-003</threshold>
- <left_val>-0.0277216397225857</left_val>
- <right_val>0.2323354035615921</right_val></_></_>
- <_>
- <!-- tree 70 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 2 -1.</_>
- <_>
- 0 0 9 1 2.</_>
- <_>
- 9 1 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.0472032055258751e-003</threshold>
- <left_val>-0.1738715022802353</left_val>
- <right_val>0.0345614999532700</right_val></_></_>
- <_>
- <!-- tree 71 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 3 2 12 -1.</_>
- <_>
- 12 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0319555215537548</threshold>
- <left_val>-0.0191999804228544</left_val>
- <right_val>0.0308420602232218</right_val></_></_>
- <_>
- <!-- tree 72 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 2 12 -1.</_>
- <_>
- 4 9 2 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0907370969653130</threshold>
- <left_val>7.7871060930192471e-003</left_val>
- <right_val>-0.7586475014686585</right_val></_></_>
- <_>
- <!-- tree 73 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 6 2 -1.</_>
- <_>
- 10 10 3 1 2.</_>
- <_>
- 7 11 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0124458596110344</threshold>
- <left_val>0.1437095999717712</left_val>
- <right_val>-0.0104776499792933</right_val></_></_>
- <_>
- <!-- tree 74 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 7 2 -1.</_>
- <_>
- 6 4 7 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0113015202805400</threshold>
- <left_val>-0.1322194039821625</left_val>
- <right_val>0.0409673303365707</right_val></_></_>
- <_>
- <!-- tree 75 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 13 4 1 -1.</_>
- <_>
- 13 13 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0105583202093840</threshold>
- <left_val>-0.3396332859992981</left_val>
- <right_val>0.0126309199258685</right_val></_></_>
- <_>
- <!-- tree 76 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 6 2 -1.</_>
- <_>
- 4 9 3 1 2.</_>
- <_>
- 7 10 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.6060150489211082e-003</threshold>
- <left_val>-0.0353191308677197</left_val>
- <right_val>0.1581331938505173</right_val></_></_>
- <_>
- <!-- tree 77 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 4 2 -1.</_>
- <_>
- 7 9 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0306612607091665</threshold>
- <left_val>-0.5879328250885010</left_val>
- <right_val>9.6826143562793732e-003</right_val></_></_>
- <_>
- <!-- tree 78 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 4 1 -1.</_>
- <_>
- 3 13 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.2674311921000481e-003</threshold>
- <left_val>-0.1976262032985687</left_val>
- <right_val>0.0269288308918476</right_val></_></_>
- <_>
- <!-- tree 79 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 10 1 3 -1.</_>
- <_>
- 12 11 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2989880051463842e-003</threshold>
- <left_val>-0.0291242301464081</left_val>
- <right_val>0.0762825235724449</right_val></_></_>
- <_>
- <!-- tree 80 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 6 2 -1.</_>
- <_>
- 6 0 3 1 2.</_>
- <_>
- 9 1 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8161852173507214e-003</threshold>
- <left_val>0.0180221293121576</left_val>
- <right_val>-0.2925927042961121</right_val></_></_>
- <_>
- <!-- tree 81 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 2 -1.</_>
- <_>
- 9 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.4622411951422691e-003</threshold>
- <left_val>0.0485544018447399</left_val>
- <right_val>-0.0468474701046944</right_val></_></_>
- <_>
- <!-- tree 82 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 2 2 -1.</_>
- <_>
- 6 2 1 1 2.</_>
- <_>
- 7 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9135680455947295e-005</threshold>
- <left_val>0.0812152177095413</left_val>
- <right_val>-0.0633795633912086</right_val></_></_>
- <_>
- <!-- tree 83 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 3 4 -1.</_>
- <_>
- 8 1 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0573139451444149e-003</threshold>
- <left_val>0.0140971401706338</left_val>
- <right_val>-0.2068593055009842</right_val></_></_>
- <_>
- <!-- tree 84 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 1 3 -1.</_>
- <_>
- 6 8 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.3823669869452715e-003</threshold>
- <left_val>-0.0426558181643486</left_val>
- <right_val>0.1154166981577873</right_val></_></_>
- <_>
- <!-- tree 85 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 8 10 4 -1.</_>
- <_>
- 9 8 5 2 2.</_>
- <_>
- 4 10 5 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0401844494044781</threshold>
- <left_val>-0.2984366118907929</left_val>
- <right_val>0.0174637306481600</right_val></_></_>
- <_>
- <!-- tree 86 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 18 2 -1.</_>
- <_>
- 0 10 18 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.0384680293500423e-003</threshold>
- <left_val>-0.0521952509880066</left_val>
- <right_val>0.0946906581521034</right_val></_></_>
- <_>
- <!-- tree 87 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 9 1 2 -1.</_>
- <_>
- 9 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.6935990869533271e-005</threshold>
- <left_val>0.0507361218333244</left_val>
- <right_val>-0.1222994998097420</right_val></_></_>
- <_>
- <!-- tree 88 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 9 2 2 -1.</_>
- <_>
- 8 9 1 1 2.</_>
- <_>
- 9 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.9834190324181691e-005</threshold>
- <left_val>-0.0615346282720566</left_val>
- <right_val>0.0821938663721085</right_val></_></_>
- <_>
- <!-- tree 89 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 5 12 6 -1.</_>
- <_>
- 7 7 4 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0239803306758404</threshold>
- <left_val>0.0899486094713211</left_val>
- <right_val>-0.0531572587788105</right_val></_></_>
- <_>
- <!-- tree 90 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 6 4 -1.</_>
- <_>
- 6 6 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0198573190718889</threshold>
- <left_val>-0.0290171504020691</left_val>
- <right_val>0.1902642995119095</right_val></_></_>
- <_>
- <!-- tree 91 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 7 8 -1.</_>
- <_>
- 7 2 7 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1887260973453522</threshold>
- <left_val>-0.1891600936651230</left_val>
- <right_val>9.1472929343581200e-003</right_val></_></_>
- <_>
- <!-- tree 92 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 6 2 -1.</_>
- <_>
- 6 7 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3056180477142334e-003</threshold>
- <left_val>0.0595022700726986</left_val>
- <right_val>-0.1106636002659798</right_val></_></_>
- <_>
- <!-- tree 93 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 0 3 3 -1.</_>
- <_>
- 13 1 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0179616697132587</threshold>
- <left_val>6.9341547787189484e-003</left_val>
- <right_val>-0.2935161888599396</right_val></_></_>
- <_>
- <!-- tree 94 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 3 3 -1.</_>
- <_>
- 5 1 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.4897631742060184e-003</threshold>
- <left_val>0.0345449112355709</left_val>
- <right_val>-0.1438962072134018</right_val></_></_>
- <_>
- <!-- tree 95 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 8 6 -1.</_>
- <_>
- 5 4 8 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1378097981214523</threshold>
- <left_val>0.6665669083595276</left_val>
- <right_val>-7.6799020171165466e-003</right_val></_></_>
- <_>
- <!-- tree 96 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 7 3 -1.</_>
- <_>
- 8 1 7 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0250661708414555</threshold>
- <left_val>0.0270246397703886</left_val>
- <right_val>-0.1813068985939026</right_val></_></_>
- <_>
- <!-- tree 97 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 5 4 4 -1.</_>
- <_>
- 14 7 4 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6011329181492329e-003</threshold>
- <left_val>-0.0471079796552658</left_val>
- <right_val>0.0535648204386234</right_val></_></_>
- <_>
- <!-- tree 98 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 18 4 -1.</_>
- <_>
- 0 13 18 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0446340888738632</threshold>
- <left_val>-0.0582992509007454</left_val>
- <right_val>0.0854041278362274</right_val></_></_>
- <_>
- <!-- tree 99 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 13 16 2 -1.</_>
- <_>
- 1 14 16 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0209591109305620</threshold>
- <left_val>0.1715489029884338</left_val>
- <right_val>-0.0302498191595078</right_val></_></_>
- <_>
- <!-- tree 100 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 6 10 -1.</_>
- <_>
- 2 0 3 5 2.</_>
- <_>
- 5 5 3 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0486911907792091</threshold>
- <left_val>0.0214052200317383</left_val>
- <right_val>-0.2313596010208130</right_val></_></_>
- <_>
- <!-- tree 101 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 3 4 3 -1.</_>
- <_>
- 13 4 4 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0334771387279034</threshold>
- <left_val>-0.0175353996455669</left_val>
- <right_val>0.2070588022470474</right_val></_></_>
- <_>
- <!-- tree 102 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 3 3 -1.</_>
- <_>
- 5 4 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0157824493944645</threshold>
- <left_val>0.2044699937105179</left_val>
- <right_val>-0.0294545702636242</right_val></_></_>
- <_>
- <!-- tree 103 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 2 3 -1.</_>
- <_>
- 15 3 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0216255001723766</threshold>
- <left_val>-0.0121418898925185</left_val>
- <right_val>0.2520450055599213</right_val></_></_>
- <_>
- <!-- tree 104 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 4 1 -1.</_>
- <_>
- 8 8 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.1940139383077621e-003</threshold>
- <left_val>-0.1221897974610329</left_val>
- <right_val>0.0451432801783085</right_val></_></_>
- <_>
- <!-- tree 105 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 2 3 -1.</_>
- <_>
- 15 3 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0313102789223194</threshold>
- <left_val>0.2868792116641998</left_val>
- <right_val>-8.2902582362294197e-003</right_val></_></_>
- <_>
- <!-- tree 106 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 2 10 -1.</_>
- <_>
- 4 5 2 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0155427400022745</threshold>
- <left_val>0.0274001006036997</left_val>
- <right_val>-0.2035340964794159</right_val></_></_>
- <_>
- <!-- tree 107 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 2 2 3 -1.</_>
- <_>
- 15 3 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.2836928516626358e-003</threshold>
- <left_val>0.0541945882141590</left_val>
- <right_val>-0.0240161493420601</right_val></_></_>
- <_>
- <!-- tree 108 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 3 2 -1.</_>
- <_>
- 3 3 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.4056441187858582e-003</threshold>
- <left_val>0.1331644058227539</left_val>
- <right_val>-0.0465831793844700</right_val></_></_>
- <_>
- <!-- tree 109 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 2 -1.</_>
- <_>
- 16 2 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.7195679508149624e-003</threshold>
- <left_val>-0.1046644002199173</left_val>
- <right_val>0.0291981901973486</right_val></_></_>
- <_>
- <!-- tree 110 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 2 3 -1.</_>
- <_>
- 2 2 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0122418403625488</threshold>
- <left_val>-0.3540002107620239</left_val>
- <right_val>0.0156168602406979</right_val></_></_>
- <_>
- <!-- tree 111 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 0 2 8 -1.</_>
- <_>
- 8 2 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.4770739730447531e-003</threshold>
- <left_val>0.0471543706953526</left_val>
- <right_val>-0.0372542105615139</right_val></_></_>
- <_>
- <!-- tree 112 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 15 13 -1.</_>
- <_>
- 5 0 5 13 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1831195950508118</threshold>
- <left_val>-0.0496848896145821</left_val>
- <right_val>0.1203569024801254</right_val></_></_>
- <_>
- <!-- tree 113 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 12 9 -1.</_>
- <_>
- 8 6 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1365886926651001</threshold>
- <left_val>-0.2270102053880692</left_val>
- <right_val>8.3362739533185959e-003</right_val></_></_>
- <_>
- <!-- tree 114 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 6 12 9 -1.</_>
- <_>
- 4 6 6 9 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0449327491223812</threshold>
- <left_val>0.0796067118644714</left_val>
- <right_val>-0.0694770887494087</right_val></_></_>
- <_>
- <!-- tree 115 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 5 2 2 -1.</_>
- <_>
- 17 5 1 1 2.</_>
- <_>
- 16 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0785179911181331e-003</threshold>
- <left_val>0.1114739030599594</left_val>
- <right_val>-0.0302823390811682</right_val></_></_>
- <_>
- <!-- tree 116 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 2 2 -1.</_>
- <_>
- 7 3 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.6406682385131717e-004</threshold>
- <left_val>-0.1434711962938309</left_val>
- <right_val>0.0378380417823792</right_val></_></_>
- <_>
- <!-- tree 117 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 5 2 2 -1.</_>
- <_>
- 17 5 1 1 2.</_>
- <_>
- 16 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.4584630262106657e-003</threshold>
- <left_val>-0.0272518005222082</left_val>
- <right_val>0.1547423005104065</right_val></_></_>
- <_>
- <!-- tree 118 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 10 13 -1.</_>
- <_>
- 9 0 5 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1886447966098785</threshold>
- <left_val>0.1795275956392288</left_val>
- <right_val>-0.0304256193339825</right_val></_></_>
- <_>
- <!-- tree 119 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 5 2 2 -1.</_>
- <_>
- 17 5 1 1 2.</_>
- <_>
- 16 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.0535402705427259e-005</threshold>
- <left_val>0.0379448309540749</left_val>
- <right_val>-0.0349269211292267</right_val></_></_>
- <_>
- <!-- tree 120 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 2 2 -1.</_>
- <_>
- 0 5 1 1 2.</_>
- <_>
- 1 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.8015682306140661e-004</threshold>
- <left_val>0.1471706032752991</left_val>
- <right_val>-0.0350825004279613</right_val></_></_>
- <_>
- <!-- tree 121 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 18 2 -1.</_>
- <_>
- 9 5 9 1 2.</_>
- <_>
- 0 6 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0126139298081398</threshold>
- <left_val>-0.2303957939147949</left_val>
- <right_val>0.0261014793068171</right_val></_></_>
- <_>
- <!-- tree 122 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 13 2 2 -1.</_>
- <_>
- 0 13 1 1 2.</_>
- <_>
- 1 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1353210437810048e-005</threshold>
- <left_val>-0.0731913670897484</left_val>
- <right_val>0.0707238763570786</right_val></_></_>
- <_>
- <!-- tree 123 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 10 2 2 -1.</_>
- <_>
- 17 10 1 1 2.</_>
- <_>
- 16 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1017440119758248e-003</threshold>
- <left_val>0.1000130027532578</left_val>
- <right_val>-0.0199915599077940</right_val></_></_>
- <_>
- <!-- tree 124 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 2 2 -1.</_>
- <_>
- 0 10 1 1 2.</_>
- <_>
- 1 11 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.3879110813140869e-005</threshold>
- <left_val>-0.0730697214603424</left_val>
- <right_val>0.0769988894462585</right_val></_></_>
- <_>
- <!-- tree 125 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 7 5 2 -1.</_>
- <_>
- 7 8 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.5628936067223549e-003</threshold>
- <left_val>0.0538700483739376</left_val>
- <right_val>-0.0811710432171822</right_val></_></_>
- <_>
- <!-- tree 126 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 9 3 -1.</_>
- <_>
- 11 6 3 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.2404216974973679</threshold>
- <left_val>-0.0140129402279854</left_val>
- <right_val>0.5036615729331970</right_val></_></_>
- <_>
- <!-- tree 127 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 1 3 2 -1.</_>
- <_>
- 16 2 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.4416628554463387e-003</threshold>
- <left_val>0.0254909899085760</left_val>
- <right_val>-0.1216735988855362</right_val></_></_>
- <_>
- <!-- tree 128 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 2 3 -1.</_>
- <_>
- 2 2 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0123843001201749</threshold>
- <left_val>0.0125095099210739</left_val>
- <right_val>-0.3812165856361389</right_val></_></_>
- <_>
- <!-- tree 129 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 1 10 -1.</_>
- <_>
- 11 2 1 5 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0969182103872299</threshold>
- <left_val>-0.0125396698713303</left_val>
- <right_val>0.1020260006189346</right_val></_></_>
- <_>
- <!-- tree 130 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 2 10 1 -1.</_>
- <_>
- 7 2 5 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1247290968894959</threshold>
- <left_val>8.6807161569595337e-003</left_val>
- <right_val>-0.6021987199783325</right_val></_></_>
- <_>
- <!-- tree 131 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 2 2 -1.</_>
- <_>
- 14 0 1 1 2.</_>
- <_>
- 13 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.1862320106010884e-005</threshold>
- <left_val>-0.0602015890181065</left_val>
- <right_val>0.0648947283625603</right_val></_></_>
- <_>
- <!-- tree 132 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 2 2 -1.</_>
- <_>
- 3 0 1 1 2.</_>
- <_>
- 4 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2220391808077693e-005</threshold>
- <left_val>0.0786095485091209</left_val>
- <right_val>-0.0601177997887135</right_val></_></_>
- <_>
- <!-- tree 133 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 2 2 -1.</_>
- <_>
- 14 0 1 1 2.</_>
- <_>
- 13 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3879110813140869e-005</threshold>
- <left_val>0.0795721486210823</left_val>
- <right_val>-0.0547612011432648</right_val></_></_>
- <_>
- <!-- tree 134 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 2 2 -1.</_>
- <_>
- 3 0 1 1 2.</_>
- <_>
- 4 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.4684870368218981e-005</threshold>
- <left_val>-0.0759956613183022</left_val>
- <right_val>0.0895266085863113</right_val></_></_>
- <_>
- <!-- tree 135 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 6 3 -1.</_>
- <_>
- 8 9 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0666326731443405</threshold>
- <left_val>0.0116960098966956</left_val>
- <right_val>-0.3817116022109985</right_val></_></_>
- <_>
- <!-- tree 136 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 10 1 3 -1.</_>
- <_>
- 5 11 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.0522400736808777e-003</threshold>
- <left_val>-0.0348950810730457</left_val>
- <right_val>0.1341329067945480</right_val></_></_>
- <_>
- <!-- tree 137 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 7 1 6 -1.</_>
- <_>
- 17 9 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-3.9307191036641598e-003</threshold>
- <left_val>-0.0662832930684090</left_val>
- <right_val>0.0296108499169350</right_val></_></_>
- <_>
- <!-- tree 138 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 1 6 -1.</_>
- <_>
- 0 9 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0124414796009660</threshold>
- <left_val>0.0159051697701216</left_val>
- <right_val>-0.3205035030841827</right_val></_></_>
- <_>
- <!-- tree 139 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 4 3 9 -1.</_>
- <_>
- 12 7 1 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0388024896383286</threshold>
- <left_val>-0.0152452699840069</left_val>
- <right_val>0.0636296123266220</right_val></_></_>
- <_>
- <!-- tree 140 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 1 2 -1.</_>
- <_>
- 0 6 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.3351631979458034e-005</threshold>
- <left_val>0.0617886707186699</left_val>
- <right_val>-0.0717490166425705</right_val></_></_>
- <_>
- <!-- tree 141 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 10 8 2 -1.</_>
- <_>
- 11 10 4 1 2.</_>
- <_>
- 7 11 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0240201298147440</threshold>
- <left_val>0.2426270991563797</left_val>
- <right_val>-8.7506501004099846e-003</right_val></_></_>
- <_>
- <!-- tree 142 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 10 8 2 -1.</_>
- <_>
- 3 10 4 1 2.</_>
- <_>
- 7 11 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.7699998617172241e-003</threshold>
- <left_val>-0.0331209786236286</left_val>
- <right_val>0.1440421938896179</right_val></_></_>
- <_>
- <!-- tree 143 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 5 3 6 -1.</_>
- <_>
- 8 7 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.1688836067914963</threshold>
- <left_val>0.3515259027481079</left_val>
- <right_val>-7.1931672282516956e-003</right_val></_></_>
- <_>
- <!-- tree 144 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 6 3 -1.</_>
- <_>
- 10 7 2 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0675780624151230</threshold>
- <left_val>-0.2268631011247635</left_val>
- <right_val>0.0256022103130817</right_val></_></_>
- <_>
- <!-- tree 145 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 11 1 2 -1.</_>
- <_>
- 12 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0113558797165751</threshold>
- <left_val>-0.6245070099830627</left_val>
- <right_val>2.5642369873821735e-003</right_val></_></_>
- <_>
- <!-- tree 146 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 9 4 -1.</_>
- <_>
- 7 1 9 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0778802484273911</threshold>
- <left_val>7.9159401357173920e-003</left_val>
- <right_val>-0.5605946183204651</right_val></_></_>
- <_>
- <!-- tree 147 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 5 2 2 -1.</_>
- <_>
- 8 6 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.9031829908490181e-003</threshold>
- <left_val>0.0941536873579025</left_val>
- <right_val>-0.0496119000017643</right_val></_></_>
- <_>
- <!-- tree 148 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 1 10 6 -1.</_>
- <_>
- 4 3 10 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.4730090517550707e-003</threshold>
- <left_val>0.1085821017622948</left_val>
- <right_val>-0.0538938194513321</right_val></_></_>
- <_>
- <!-- tree 149 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 7 3 -1.</_>
- <_>
- 6 1 7 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8511860184371471e-003</threshold>
- <left_val>0.0234237797558308</left_val>
- <right_val>-0.1309089958667755</right_val></_></_>
- <_>
- <!-- tree 150 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 3 2 -1.</_>
- <_>
- 7 1 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2390179801732302e-003</threshold>
- <left_val>-0.2174324989318848</left_val>
- <right_val>0.0244357194751501</right_val></_></_>
- <_>
- <!-- tree 151 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 2 3 2 -1.</_>
- <_>
- 15 2 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.3695750907063484e-003</threshold>
- <left_val>-0.0247745793312788</left_val>
- <right_val>0.1158865988254547</right_val></_></_>
- <_>
- <!-- tree 152 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 2 3 -1.</_>
- <_>
- 3 2 1 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.6323970891535282e-003</threshold>
- <left_val>0.1298937946557999</left_val>
- <right_val>-0.0381496995687485</right_val></_></_>
- <_>
- <!-- tree 153 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 2 14 -1.</_>
- <_>
- 14 0 1 14 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0199226494878531</threshold>
- <left_val>0.0158690698444843</left_val>
- <right_val>-0.1856296062469482</right_val></_></_>
- <_>
- <!-- tree 154 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 12 6 -1.</_>
- <_>
- 7 5 4 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0167268496006727</threshold>
- <left_val>0.1692277044057846</left_val>
- <right_val>-0.0321176983416080</right_val></_></_>
- <_>
- <!-- tree 155 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 3 1 2 -1.</_>
- <_>
- 12 3 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.4559989795088768e-003</threshold>
- <left_val>0.0727108269929886</left_val>
- <right_val>-0.0531024895608425</right_val></_></_>
- <_>
- <!-- tree 156 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 9 6 -1.</_>
- <_>
- 8 0 9 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1436896026134491</threshold>
- <left_val>-0.1099907010793686</left_val>
- <right_val>0.0632115080952644</right_val></_></_>
- <_>
- <!-- tree 157 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 3 -1.</_>
- <_>
- 15 1 2 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-5.9681031852960587e-003</threshold>
- <left_val>0.0853514671325684</left_val>
- <right_val>-0.0319969989359379</right_val></_></_>
- <_>
- <!-- tree 158 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 3 2 -1.</_>
- <_>
- 3 1 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>8.6067931260913610e-004</threshold>
- <left_val>-0.0677398666739464</left_val>
- <right_val>0.0783357918262482</right_val></_></_>
- <_>
- <!-- tree 159 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 2 1 -1.</_>
- <_>
- 16 12 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.2462129127234221e-003</threshold>
- <left_val>0.0421381592750549</left_val>
- <right_val>-0.1537978053092957</right_val></_></_>
- <_>
- <!-- tree 160 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 12 12 2 -1.</_>
- <_>
- 3 13 12 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0231840107589960</threshold>
- <left_val>0.2355968058109283</left_val>
- <right_val>-0.0220876298844814</right_val></_></_>
- <_>
- <!-- tree 161 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 11 1 2 -1.</_>
- <_>
- 12 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3518847532104701e-005</threshold>
- <left_val>-0.0491336695849895</left_val>
- <right_val>0.0353255607187748</right_val></_></_>
- <_>
- <!-- tree 162 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 9 2 2 -1.</_>
- <_>
- 4 9 1 1 2.</_>
- <_>
- 5 10 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.2380428854376078e-003</threshold>
- <left_val>0.1797892004251480</left_val>
- <right_val>-0.0249581690877676</right_val></_></_>
- <_>
- <!-- tree 163 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 2 1 -1.</_>
- <_>
- 16 12 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.6487199831753969e-003</threshold>
- <left_val>-0.0488890595734119</left_val>
- <right_val>0.0157207604497671</right_val></_></_>
- <_>
- <!-- tree 164 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 1 2 -1.</_>
- <_>
- 2 12 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.4686430115252733e-003</threshold>
- <left_val>0.0342142805457115</left_val>
- <right_val>-0.1369293928146362</right_val></_></_>
- <_>
- <!-- tree 165 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 10 4 1 -1.</_>
- <_>
- 15 11 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0179013404995203</threshold>
- <left_val>0.2017021030187607</left_val>
- <right_val>-5.8616171590983868e-003</right_val></_></_>
- <_>
- <!-- tree 166 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 10 1 4 -1.</_>
- <_>
- 3 11 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.4372870363295078e-004</threshold>
- <left_val>-0.0817660167813301</left_val>
- <right_val>0.0578251294791698</right_val></_></_>
- <_>
- <!-- tree 167 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 9 2 1 -1.</_>
- <_>
- 16 9 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.2202371666207910e-004</threshold>
- <left_val>0.0245023705065250</left_val>
- <right_val>-0.0610220991075039</right_val></_></_>
- <_>
- <!-- tree 168 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 1 2 -1.</_>
- <_>
- 2 9 1 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.6474859807640314e-003</threshold>
- <left_val>-0.1414107978343964</left_val>
- <right_val>0.0364049896597862</right_val></_></_>
- <_>
- <!-- tree 169 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 2 1 -1.</_>
- <_>
- 11 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3206011438742280e-004</threshold>
- <left_val>-0.0436596609652042</left_val>
- <right_val>0.0481952391564846</right_val></_></_>
- <_>
- <!-- tree 170 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 7 4 -1.</_>
- <_>
- 8 1 7 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0310860797762871</threshold>
- <left_val>0.0367696695029736</left_val>
- <right_val>-0.1427676975727081</right_val></_></_>
- <_>
- <!-- tree 171 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 4 2 2 -1.</_>
- <_>
- 11 4 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9447411224246025e-003</threshold>
- <left_val>0.3504368066787720</left_val>
- <right_val>-7.0687229745090008e-003</right_val></_></_>
- <_>
- <!-- tree 172 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 2 2 -1.</_>
- <_>
- 6 4 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0204358305782080e-005</threshold>
- <left_val>-0.1218914985656738</left_val>
- <right_val>0.0413166508078575</right_val></_></_>
- <_>
- <!-- tree 173 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 6 3 -1.</_>
- <_>
- 9 5 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0366099290549755</threshold>
- <left_val>0.0199259296059608</left_val>
- <right_val>-0.0984719917178154</right_val></_></_>
- <_>
- <!-- tree 174 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 4 7 -1.</_>
- <_>
- 6 4 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0109604299068451</threshold>
- <left_val>0.1281152069568634</left_val>
- <right_val>-0.0383881889283657</right_val></_></_>
- <_>
- <!-- tree 175 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 1 4 -1.</_>
- <_>
- 17 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.3295450955629349e-003</threshold>
- <left_val>0.0707607492804527</left_val>
- <right_val>-0.0289194602519274</right_val></_></_>
- <_>
- <!-- tree 176 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 8 4 -1.</_>
- <_>
- 4 3 8 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0618558302521706</threshold>
- <left_val>-0.0475871004164219</left_val>
- <right_val>0.0985863581299782</right_val></_></_>
- <_>
- <!-- tree 177 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 7 4 2 -1.</_>
- <_>
- 9 7 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0234752092510462</threshold>
- <left_val>0.0869645625352860</left_val>
- <right_val>-0.0122541096061468</right_val></_></_>
- <_>
- <!-- tree 178 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 8 3 2 -1.</_>
- <_>
- 7 8 3 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-9.3669712077826262e-004</threshold>
- <left_val>0.0812510773539543</left_val>
- <right_val>-0.0542218498885632</right_val></_></_>
- <_>
- <!-- tree 179 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 3 6 9 -1.</_>
- <_>
- 10 6 2 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1315189003944397</threshold>
- <left_val>-0.1539728045463562</left_val>
- <right_val>0.0100725498050451</right_val></_></_>
- <_>
- <!-- tree 180 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 4 6 -1.</_>
- <_>
- 7 4 2 3 2.</_>
- <_>
- 9 7 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8957380503416061e-003</threshold>
- <left_val>0.0319623500108719</left_val>
- <right_val>-0.1361542940139771</right_val></_></_>
- <_>
- <!-- tree 181 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 1 2 1 -1.</_>
- <_>
- 16 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-8.2765902334358543e-005</threshold>
- <left_val>0.0532807409763336</left_val>
- <right_val>-0.0550383105874062</right_val></_></_>
- <_>
- <!-- tree 182 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 1 3 -1.</_>
- <_>
- 2 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.0361710339784622e-003</threshold>
- <left_val>0.0354836508631706</left_val>
- <right_val>-0.1206891983747482</right_val></_></_>
- <_>
- <!-- tree 183 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 1 4 -1.</_>
- <_>
- 17 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8764940798282623e-003</threshold>
- <left_val>-0.0278693605214357</left_val>
- <right_val>0.1044073998928070</right_val></_></_>
- <_>
- <!-- tree 184 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 1 4 -1.</_>
- <_>
- 0 2 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.9125062115490437e-004</threshold>
- <left_val>0.0979837700724602</left_val>
- <right_val>-0.0593339614570141</right_val></_></_>
- <_>
- <!-- tree 185 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 4 10 -1.</_>
- <_>
- 13 3 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0300707891583443</threshold>
- <left_val>0.0164330396801233</left_val>
- <right_val>-0.0933536067605019</right_val></_></_>
- <_>
- <!-- tree 186 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 0 2 2 -1.</_>
- <_>
- 3 0 1 1 2.</_>
- <_>
- 4 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.2220391808077693e-005</threshold>
- <left_val>0.0752206817269325</left_val>
- <right_val>-0.0577298216521740</right_val></_></_>
- <_>
- <!-- tree 187 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 18 6 -1.</_>
- <_>
- 0 3 18 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1495593935251236</threshold>
- <left_val>-0.5717309117317200</left_val>
- <right_val>7.4865440838038921e-003</right_val></_></_>
- <_>
- <!-- tree 188 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 3 2 6 -1.</_>
- <_>
- 4 5 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0101018501445651</threshold>
- <left_val>0.1866167932748795</left_val>
- <right_val>-0.0265819206833839</right_val></_></_>
- <_>
- <!-- tree 189 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 3 1 6 -1.</_>
- <_>
- 12 5 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0235938206315041</threshold>
- <left_val>-0.3616523146629334</left_val>
- <right_val>8.6832279339432716e-003</right_val></_></_>
- <_>
- <!-- tree 190 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 8 4 -1.</_>
- <_>
- 11 2 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0562989898025990</threshold>
- <left_val>0.3809157013893127</left_val>
- <right_val>-0.0125403897836804</right_val></_></_>
- <_>
- <!-- tree 191 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 4 2 2 -1.</_>
- <_>
- 12 5 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.8374498874181882e-005</threshold>
- <left_val>-0.0372395589947701</left_val>
- <right_val>0.0435059703886509</right_val></_></_>
- <_>
- <!-- tree 192 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 2 2 -1.</_>
- <_>
- 6 7 1 1 2.</_>
- <_>
- 7 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3194838478229940e-005</threshold>
- <left_val>-0.0574802309274673</left_val>
- <right_val>0.0801668912172318</right_val></_></_>
- <_>
- <!-- tree 193 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 2 15 -1.</_>
- <_>
- 14 0 1 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0226483792066574</threshold>
- <left_val>-0.0914651080965996</left_val>
- <right_val>6.0311011038720608e-003</right_val></_></_>
- <_>
- <!-- tree 194 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 2 15 -1.</_>
- <_>
- 3 0 1 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.5446818955242634e-003</threshold>
- <left_val>0.0277416408061981</left_val>
- <right_val>-0.1718125045299530</right_val></_></_>
- <_>
- <!-- tree 195 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 1 6 6 -1.</_>
- <_>
- 11 1 3 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1057740971446037</threshold>
- <left_val>0.5344142913818359</left_val>
- <right_val>-5.1590129733085632e-003</right_val></_></_>
- <_>
- <!-- tree 196 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 7 3 1 -1.</_>
- <_>
- 9 8 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.4444771483540535e-003</threshold>
- <left_val>0.0343015491962433</left_val>
- <right_val>-0.1451483964920044</right_val></_></_>
- <_>
- <!-- tree 197 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 9 3 3 -1.</_>
- <_>
- 14 10 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.6781400926411152e-003</threshold>
- <left_val>-0.0430911704897881</left_val>
- <right_val>0.1463333964347839</right_val></_></_>
- <_>
- <!-- tree 198 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 16 6 -1.</_>
- <_>
- 4 5 8 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1010930985212326</threshold>
- <left_val>-0.1747801005840302</left_val>
- <right_val>0.0280684307217598</right_val></_></_>
- <_>
- <!-- tree 199 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 12 15 -1.</_>
- <_>
- 7 0 6 15 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0473572388291359</threshold>
- <left_val>0.1670453995466232</left_val>
- <right_val>-0.0158186703920364</right_val></_></_>
- <_>
- <!-- tree 200 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 16 10 -1.</_>
- <_>
- 8 5 8 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.5767403244972229</threshold>
- <left_val>-0.6224312782287598</left_val>
- <right_val>7.9542007297277451e-003</right_val></_></_>
- <_>
- <!-- tree 201 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 9 1 3 -1.</_>
- <_>
- 8 10 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.8059749854728580e-003</threshold>
- <left_val>-0.0164429899305105</left_val>
- <right_val>0.0462612397968769</right_val></_></_>
- <_>
- <!-- tree 202 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 9 3 1 -1.</_>
- <_>
- 10 10 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0146800400689244</threshold>
- <left_val>8.1173582002520561e-003</left_val>
- <right_val>-0.5566685795783997</right_val></_></_>
- <_>
- <!-- tree 203 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 5 10 -1.</_>
- <_>
- 13 5 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1689784973859787</threshold>
- <left_val>-0.3140147924423218</left_val>
- <right_val>0.0125729897990823</right_val></_></_>
- <_>
- <!-- tree 204 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 6 14 3 -1.</_>
- <_>
- 2 7 14 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0193899292498827</threshold>
- <left_val>0.1551029980182648</left_val>
- <right_val>-0.0279963091015816</right_val></_></_>
- <_>
- <!-- tree 205 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 6 6 3 -1.</_>
- <_>
- 8 7 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0264466702938080</threshold>
- <left_val>-0.3146206140518189</left_val>
- <right_val>0.0173935592174530</right_val></_></_>
- <_>
- <!-- tree 206 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 3 4 -1.</_>
- <_>
- 0 7 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.5732469297945499e-003</threshold>
- <left_val>-0.1358314007520676</left_val>
- <right_val>0.0376659594476223</right_val></_></_>
- <_>
- <!-- tree 207 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 11 1 2 -1.</_>
- <_>
- 12 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.8531084582209587e-003</threshold>
- <left_val>-3.6102959420531988e-003</left_val>
- <right_val>0.1896488964557648</right_val></_></_>
- <_>
- <!-- tree 208 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 11 1 2 -1.</_>
- <_>
- 5 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7107769710710272e-005</threshold>
- <left_val>-0.0843098610639572</left_val>
- <right_val>0.0545401610434055</right_val></_></_>
- <_>
- <!-- tree 209 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 9 3 3 -1.</_>
- <_>
- 14 10 1 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0203770492225885</threshold>
- <left_val>0.1165964007377625</left_val>
- <right_val>-0.0136959999799728</right_val></_></_>
- <_>
- <!-- tree 210 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 12 11 -1.</_>
- <_>
- 3 3 6 11 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1735146939754486</threshold>
- <left_val>-0.0126557499170303</left_val>
- <right_val>0.3574686050415039</right_val></_></_>
- <_>
- <!-- tree 211 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 12 9 3 -1.</_>
- <_>
- 10 12 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0542285591363907</threshold>
- <left_val>9.2725036665797234e-003</left_val>
- <right_val>-0.1769926995038986</right_val></_></_>
- <_>
- <!-- tree 212 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 8 2 6 -1.</_>
- <_>
- 3 10 2 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4582608863711357e-003</threshold>
- <left_val>-0.0437470003962517</left_val>
- <right_val>0.1033746972680092</right_val></_></_>
- <_>
- <!-- tree 213 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 3 6 12 -1.</_>
- <_>
- 12 9 6 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0637689232826233</threshold>
- <left_val>0.0219606403261423</left_val>
- <right_val>-0.2052810937166214</right_val></_></_>
- <_>
- <!-- tree 214 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 13 12 2 -1.</_>
- <_>
- 8 13 6 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0112160202115774</threshold>
- <left_val>-0.0601588003337383</left_val>
- <right_val>0.0776893869042397</right_val></_></_>
- <_>
- <!-- tree 215 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 12 8 3 -1.</_>
- <_>
- 8 12 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0393657200038433</threshold>
- <left_val>-0.0201384108513594</left_val>
- <right_val>0.1276084035634995</right_val></_></_>
- <_>
- <!-- tree 216 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 8 3 -1.</_>
- <_>
- 6 12 4 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0161337107419968</threshold>
- <left_val>0.1127976030111313</left_val>
- <right_val>-0.0601407214999199</right_val></_></_>
- <_>
- <!-- tree 217 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 2 -1.</_>
- <_>
- 9 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.6923110233619809e-003</threshold>
- <left_val>0.0280561596155167</left_val>
- <right_val>-0.0492299310863018</right_val></_></_>
- <_>
- <!-- tree 218 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 4 2 2 -1.</_>
- <_>
- 5 4 1 1 2.</_>
- <_>
- 6 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9907790526049212e-005</threshold>
- <left_val>0.0722095370292664</left_val>
- <right_val>-0.0577128715813160</right_val></_></_>
- <_>
- <!-- tree 219 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 2 4 -1.</_>
- <_>
- 11 1 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.3856992423534393e-003</threshold>
- <left_val>4.2978320270776749e-003</left_val>
- <right_val>-0.4872570931911469</right_val></_></_>
- <_>
- <!-- tree 220 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 2 2 -1.</_>
- <_>
- 8 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-6.8764640018343925e-003</threshold>
- <left_val>-0.3555175065994263</left_val>
- <right_val>0.0109930103644729</right_val></_></_>
- <_>
- <!-- tree 221 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 8 4 -1.</_>
- <_>
- 7 0 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.4763470329344273e-003</threshold>
- <left_val>0.1619573980569840</left_val>
- <right_val>-0.0268841590732336</right_val></_></_>
- <_>
- <!-- tree 222 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 12 1 -1.</_>
- <_>
- 6 1 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.8878160994499922e-003</threshold>
- <left_val>-0.1101962998509407</left_val>
- <right_val>0.0409429408609867</right_val></_></_>
- <_>
- <!-- tree 223 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 3 6 4 -1.</_>
- <_>
- 10 3 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0632312968373299</threshold>
- <left_val>0.4909915924072266</left_val>
- <right_val>-5.1781800575554371e-003</right_val></_></_>
- <_>
- <!-- tree 224 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 6 4 -1.</_>
- <_>
- 5 3 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0566077493131161</threshold>
- <left_val>0.3793733119964600</left_val>
- <right_val>-0.0108209000900388</right_val></_></_>
- <_>
- <!-- tree 225 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 2 16 13 -1.</_>
- <_>
- 5 2 8 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2626726925373077</threshold>
- <left_val>-0.4480285942554474</left_val>
- <right_val>0.0105561902746558</right_val></_></_>
- <_>
- <!-- tree 226 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 2 2 -1.</_>
- <_>
- 1 0 1 1 2.</_>
- <_>
- 2 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.4856478527653962e-005</threshold>
- <left_val>0.0653926804661751</left_val>
- <right_val>-0.0620450004935265</right_val></_></_>
- <_>
- <!-- tree 227 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 15 0 2 2 -1.</_>
- <_>
- 16 0 1 1 2.</_>
- <_>
- 15 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.7022080252645537e-005</threshold>
- <left_val>-0.0353392213582993</left_val>
- <right_val>0.0484495908021927</right_val></_></_>
- <_>
- <!-- tree 228 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 2 2 -1.</_>
- <_>
- 1 0 1 1 2.</_>
- <_>
- 2 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.6384996646083891e-005</threshold>
- <left_val>-0.0554682798683643</left_val>
- <right_val>0.0811991393566132</right_val></_></_>
- <_>
- <!-- tree 229 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 8 8 7 -1.</_>
- <_>
- 12 8 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1349100023508072</threshold>
- <left_val>-0.5649768114089966</left_val>
- <right_val>5.8416058309376240e-003</right_val></_></_>
- <_>
- <!-- tree 230 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 8 8 7 -1.</_>
- <_>
- 2 8 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0173286907374859</threshold>
- <left_val>0.0686116516590118</left_val>
- <right_val>-0.0624860487878323</right_val></_></_>
- <_>
- <!-- tree 231 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 8 6 3 -1.</_>
- <_>
- 13 9 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1159003973007202</threshold>
- <left_val>0.3599152863025665</left_val>
- <right_val>-7.0457011461257935e-003</right_val></_></_>
- <_>
- <!-- tree 232 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 8 6 3 -1.</_>
- <_>
- 3 9 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.5972709991037846e-003</threshold>
- <left_val>-0.0610489808022976</left_val>
- <right_val>0.0729080066084862</right_val></_></_>
- <_>
- <!-- tree 233 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 0 16 12 -1.</_>
- <_>
- 1 6 16 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.5851712226867676</threshold>
- <left_val>0.1706732064485550</left_val>
- <right_val>-0.0274902693927288</right_val></_></_>
- <_>
- <!-- tree 234 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 5 4 -1.</_>
- <_>
- 9 0 5 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0164765398949385</threshold>
- <left_val>0.1303893029689789</left_val>
- <right_val>-0.0331927388906479</right_val></_></_>
- <_>
- <!-- tree 235 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 4 10 -1.</_>
- <_>
- 7 0 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0474574081599712</threshold>
- <left_val>0.0938887968659401</left_val>
- <right_val>-0.0477792508900166</right_val></_></_>
- <_>
- <!-- tree 236 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 4 3 2 -1.</_>
- <_>
- 8 5 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.1776830591261387e-003</threshold>
- <left_val>-0.1972271949052811</left_val>
- <right_val>0.0238158907741308</right_val></_></_>
- <_>
- <!-- tree 237 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 2 2 -1.</_>
- <_>
- 13 7 1 1 2.</_>
- <_>
- 12 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.9368229964748025e-004</threshold>
- <left_val>-0.0385106988251209</left_val>
- <right_val>0.1253774017095566</right_val></_></_>
- <_>
- <!-- tree 238 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 6 9 3 -1.</_>
- <_>
- 3 7 3 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1589708030223846</threshold>
- <left_val>0.4269199967384338</left_val>
- <right_val>-0.0113530196249485</right_val></_></_>
- <_>
- <!-- tree 239 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 7 2 2 -1.</_>
- <_>
- 13 7 1 1 2.</_>
- <_>
- 12 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.5724339755252004e-003</threshold>
- <left_val>0.1303405016660690</left_val>
- <right_val>-0.0292303599417210</right_val></_></_>
- <_>
- <!-- tree 240 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 7 2 2 -1.</_>
- <_>
- 4 7 1 1 2.</_>
- <_>
- 5 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.2912302382756025e-005</threshold>
- <left_val>-0.0539115294814110</left_val>
- <right_val>0.0894209668040276</right_val></_></_>
- <_>
- <!-- tree 241 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 7 8 2 -1.</_>
- <_>
- 9 7 4 1 2.</_>
- <_>
- 5 8 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.9537890851497650e-003</threshold>
- <left_val>0.0292203202843666</left_val>
- <right_val>-0.1614741981029511</right_val></_></_>
- <_>
- <!-- tree 242 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 3 9 -1.</_>
- <_>
- 7 4 1 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0278543103486300</threshold>
- <left_val>8.1461891531944275e-003</left_val>
- <right_val>-0.5010797977447510</right_val></_></_>
- <_>
- <!-- tree 243 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 4 3 7 -1.</_>
- <_>
- 13 4 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0307268109172583</threshold>
- <left_val>-0.3919588029384613</left_val>
- <right_val>6.9215041585266590e-003</right_val></_></_>
- <_>
- <!-- tree 244 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 4 3 7 -1.</_>
- <_>
- 4 4 1 7 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0356646999716759</threshold>
- <left_val>-0.7585719227790833</left_val>
- <right_val>5.3641172125935555e-003</right_val></_></_>
- <_>
- <!-- tree 245 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 12 10 3 -1.</_>
- <_>
- 4 13 10 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0360276810824871</threshold>
- <left_val>-0.0191031396389008</left_val>
- <right_val>0.2439292967319489</right_val></_></_>
- <_>
- <!-- tree 246 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 13 8 2 -1.</_>
- <_>
- 4 14 8 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.5820151939988136e-004</threshold>
- <left_val>-0.0886877924203873</left_val>
- <right_val>0.0565083399415016</right_val></_></_>
- <_>
- <!-- tree 247 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 5 12 -1.</_>
- <_>
- 13 6 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1285891979932785</threshold>
- <left_val>-0.1347049027681351</left_val>
- <right_val>0.0150261903181672</right_val></_></_>
- <_>
- <!-- tree 248 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 6 8 -1.</_>
- <_>
- 0 2 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0254423692822456</threshold>
- <left_val>-0.1902146935462952</left_val>
- <right_val>0.0212604906409979</right_val></_></_>
- <_>
- <!-- tree 249 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 5 3 3 -1.</_>
- <_>
- 13 6 3 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0512643307447433</threshold>
- <left_val>-3.6050491034984589e-003</left_val>
- <right_val>0.3700175881385803</right_val></_></_>
- <_>
- <!-- tree 250 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 5 3 3 -1.</_>
- <_>
- 5 6 1 3 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0326501503586769</threshold>
- <left_val>-0.0135911498218775</left_val>
- <right_val>0.3276687860488892</right_val></_></_>
- <_>
- <!-- tree 251 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 17 0 1 3 -1.</_>
- <_>
- 16 1 1 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.5878241546452045e-003</threshold>
- <left_val>-8.4945466369390488e-003</left_val>
- <right_val>0.0897279679775238</right_val></_></_>
- <_>
- <!-- tree 252 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 4 3 4 -1.</_>
- <_>
- 8 5 3 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0458750911056995</threshold>
- <left_val>0.4126788973808289</left_val>
- <right_val>-9.8934909328818321e-003</right_val></_></_>
- <_>
- <!-- tree 253 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 6 2 -1.</_>
- <_>
- 7 3 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.4674488492310047e-003</threshold>
- <left_val>-0.0308022703975439</left_val>
- <right_val>0.0607560500502586</right_val></_></_>
- <_>
- <!-- tree 254 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 9 2 -1.</_>
- <_>
- 12 3 3 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1069127991795540</threshold>
- <left_val>-0.0305466204881668</left_val>
- <right_val>0.1470393985509872</right_val></_></_>
- <_>
- <!-- tree 255 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 6 2 -1.</_>
- <_>
- 7 3 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0582343190908432</threshold>
- <left_val>1.7207229975610971e-003</left_val>
- <right_val>-0.6001799702644348</right_val></_></_>
- <_>
- <!-- tree 256 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 3 6 2 -1.</_>
- <_>
- 8 3 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0541815198957920</threshold>
- <left_val>0.0111133400350809</left_val>
- <right_val>-0.4260107874870300</right_val></_></_>
- <_>
- <!-- tree 257 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 5 12 -1.</_>
- <_>
- 13 6 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1989209949970245</threshold>
- <left_val>1.5127729857340455e-003</left_val>
- <right_val>-0.6666517853736877</right_val></_></_>
- <_>
- <!-- tree 258 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 5 12 -1.</_>
- <_>
- 0 6 5 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0836698114871979</threshold>
- <left_val>-0.1597495973110199</left_val>
- <right_val>0.0258307307958603</right_val></_></_>
- <_>
- <!-- tree 259 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 14 10 1 -1.</_>
- <_>
- 4 14 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0383935607969761</threshold>
- <left_val>-0.4158290028572083</left_val>
- <right_val>9.7704501822590828e-003</right_val></_></_>
- <_>
- <!-- tree 260 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 12 9 3 -1.</_>
- <_>
- 5 12 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0576191917061806</threshold>
- <left_val>9.3507859855890274e-003</left_val>
- <right_val>-0.4187014102935791</right_val></_></_>
- <_>
- <!-- tree 261 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 9 14 4 -1.</_>
- <_>
- 2 11 14 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0440335609018803</threshold>
- <left_val>-0.0463782697916031</left_val>
- <right_val>0.0919744595885277</right_val></_></_>
- <_>
- <!-- tree 262 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 2 18 8 -1.</_>
- <_>
- 0 4 18 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2660895884037018</threshold>
- <left_val>0.0100852102041245</left_val>
- <right_val>-0.3897384107112885</right_val></_></_>
- <_>
- <!-- tree 263 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 6 3 -1.</_>
- <_>
- 9 7 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0536184795200825</threshold>
- <left_val>-0.5088896155357361</left_val>
- <right_val>4.0682330727577209e-003</right_val></_></_>
- <_>
- <!-- tree 264 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 2 2 -1.</_>
- <_>
- 7 0 1 1 2.</_>
- <_>
- 8 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6047519794665277e-005</threshold>
- <left_val>0.0691266432404518</left_val>
- <right_val>-0.0591945089399815</right_val></_></_>
- <_>
- <!-- tree 265 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 2 2 -1.</_>
- <_>
- 10 0 1 1 2.</_>
- <_>
- 9 1 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.5685410188743845e-005</threshold>
- <left_val>-0.0400558486580849</left_val>
- <right_val>0.0543046407401562</right_val></_></_>
- <_>
- <!-- tree 266 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 1 3 -1.</_>
- <_>
- 7 1 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-5.3049330745125189e-005</threshold>
- <left_val>0.0731744170188904</left_val>
- <right_val>-0.0598583295941353</right_val></_></_>
- <_>
- <!-- tree 267 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 11 3 -1.</_>
- <_>
- 4 1 11 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0124693904072046</threshold>
- <left_val>-0.3152252137660980</left_val>
- <right_val>0.0117351301014423</right_val></_></_>
- <_>
- <!-- tree 268 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 10 6 -1.</_>
- <_>
- 0 9 5 3 2.</_>
- <_>
- 5 12 5 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0927336066961288</threshold>
- <left_val>0.3232898116111755</left_val>
- <right_val>-0.0127641502767801</right_val></_></_>
- <_>
- <!-- tree 269 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 18 9 -1.</_>
- <_>
- 6 4 6 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5954974293708801</threshold>
- <left_val>8.3142714574933052e-003</left_val>
- <right_val>-0.5672199130058289</right_val></_></_>
- <_>
- <!-- tree 270 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 4 12 9 -1.</_>
- <_>
- 6 7 4 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.5378745198249817</threshold>
- <left_val>-0.0141389099881053</left_val>
- <right_val>0.3267138004302979</right_val></_></_>
- <_>
- <!-- tree 271 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 6 6 -1.</_>
- <_>
- 6 10 6 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1902792006731033</threshold>
- <left_val>-0.6616215705871582</left_val>
- <right_val>7.4805710464715958e-003</right_val></_></_>
- <_>
- <!-- tree 272 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 9 3 6 -1.</_>
- <_>
- 0 12 3 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0674360468983650</threshold>
- <left_val>5.3405929356813431e-003</left_val>
- <right_val>-0.5753700733184815</right_val></_></_>
- <_>
- <!-- tree 273 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 8 3 2 -1.</_>
- <_>
- 8 9 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7849049763754010e-003</threshold>
- <left_val>0.0343016088008881</left_val>
- <right_val>-0.1244985982775688</right_val></_></_>
- <_>
- <!-- tree 274 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 10 2 -1.</_>
- <_>
- 4 5 10 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0179164893925190</threshold>
- <left_val>0.2131116986274719</left_val>
- <right_val>-0.0218786392360926</right_val></_></_>
- <_>
- <!-- tree 275 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 2 5 3 -1.</_>
- <_>
- 8 3 5 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>3.4813389647752047e-003</threshold>
- <left_val>0.0268206801265478</left_val>
- <right_val>-0.1016602963209152</right_val></_></_>
- <_>
- <!-- tree 276 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 13 2 2 -1.</_>
- <_>
- 8 13 1 1 2.</_>
- <_>
- 9 14 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.6392209799960256e-003</threshold>
- <left_val>-0.0226296707987785</left_val>
- <right_val>0.1679535061120987</right_val></_></_>
- <_>
- <!-- tree 277 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 2 2 -1.</_>
- <_>
- 14 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>5.8717228966997936e-005</threshold>
- <left_val>-0.0969148203730583</left_val>
- <right_val>0.0540798194706440</right_val></_></_>
- <_>
- <!-- tree 278 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 4 3 2 -1.</_>
- <_>
- 4 5 3 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.1430910089984536e-003</threshold>
- <left_val>-0.0913046523928642</left_val>
- <right_val>0.0478410087525845</right_val></_></_>
- <_>
- <!-- tree 279 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 5 16 4 -1.</_>
- <_>
- 1 7 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1274714022874832</threshold>
- <left_val>0.1231575012207031</left_val>
- <right_val>-0.0393226295709610</right_val></_></_>
- <_>
- <!-- tree 280 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 1 2 -1.</_>
- <_>
- 4 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0409889809088781e-005</threshold>
- <left_val>-0.0465187989175320</left_val>
- <right_val>0.0935849994421005</right_val></_></_>
- <_>
- <!-- tree 281 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 11 2 2 -1.</_>
- <_>
- 17 11 1 1 2.</_>
- <_>
- 16 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-7.7158221974968910e-003</threshold>
- <left_val>-0.6546670794487000</left_val>
- <right_val>3.9967028424143791e-003</right_val></_></_>
- <_>
- <!-- tree 282 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 2 2 -1.</_>
- <_>
- 0 11 1 1 2.</_>
- <_>
- 1 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.7107769710710272e-005</threshold>
- <left_val>-0.0640250220894814</left_val>
- <right_val>0.0632654428482056</right_val></_></_>
- <_>
- <!-- tree 283 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 12 2 1 -1.</_>
- <_>
- 16 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.5383179998025298e-003</threshold>
- <left_val>0.0226351507008076</left_val>
- <right_val>-0.1935117989778519</right_val></_></_>
- <_>
- <!-- tree 284 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 12 2 1 -1.</_>
- <_>
- 1 12 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.4936917624436319e-005</threshold>
- <left_val>0.0578822083771229</left_val>
- <right_val>-0.0738588199019432</right_val></_></_>
- <_>
- <!-- tree 285 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 18 6 -1.</_>
- <_>
- 0 9 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1365308016538620</threshold>
- <left_val>-0.0149675700813532</left_val>
- <right_val>0.2666974067687988</right_val></_></_>
- <_>
- <!-- tree 286 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 7 12 -1.</_>
- <_>
- 4 5 7 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.1899372041225433</threshold>
- <left_val>0.0125067904591560</left_val>
- <right_val>-0.3534477949142456</right_val></_></_>
- <_>
- <!-- tree 287 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 6 3 -1.</_>
- <_>
- 9 7 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0314559191465378</threshold>
- <left_val>0.0183809790760279</left_val>
- <right_val>-0.0603883489966393</right_val></_></_>
- <_>
- <!-- tree 288 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 6 6 3 -1.</_>
- <_>
- 7 7 2 1 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0269035492092371</threshold>
- <left_val>-0.2218240946531296</left_val>
- <right_val>0.0186347793787718</right_val></_></_>
- <_>
- <!-- tree 289 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 3 6 6 -1.</_>
- <_>
- 12 3 6 3 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.2581453025341034</threshold>
- <left_val>-0.8018553853034973</left_val>
- <right_val>3.8440190837718546e-004</right_val></_></_>
- <_>
- <!-- tree 290 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 3 6 6 -1.</_>
- <_>
- 6 3 3 6 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1513974070549011</threshold>
- <left_val>0.0267061796039343</left_val>
- <right_val>-0.1536087989807129</right_val></_></_>
- <_>
- <!-- tree 291 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 2 12 9 -1.</_>
- <_>
- 8 2 4 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0440951585769653</threshold>
- <left_val>0.0494831092655659</left_val>
- <right_val>-0.0132203595712781</right_val></_></_>
- <_>
- <!-- tree 292 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 7 3 1 -1.</_>
- <_>
- 2 7 1 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7376670148223639e-003</threshold>
- <left_val>-0.0296104997396469</left_val>
- <right_val>0.1274116039276123</right_val></_></_>
- <_>
- <!-- tree 293 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 2 2 -1.</_>
- <_>
- 14 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.7472518421709538e-003</threshold>
- <left_val>0.0369098298251629</left_val>
- <right_val>-0.1863466948270798</right_val></_></_>
- <_>
- <!-- tree 294 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 12 9 -1.</_>
- <_>
- 6 2 4 9 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2713251113891602</threshold>
- <left_val>0.4345330893993378</left_val>
- <right_val>-9.0847145766019821e-003</right_val></_></_>
- <_>
- <!-- tree 295 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 1 4 -1.</_>
- <_>
- 8 2 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.7428919933736324e-003</threshold>
- <left_val>0.0166457295417786</left_val>
- <right_val>-0.0998101606965065</right_val></_></_>
- <_>
- <!-- tree 296 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 0 12 1 -1.</_>
- <_>
- 5 0 6 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>9.8173134028911591e-003</threshold>
- <left_val>-0.0557747483253479</left_val>
- <right_val>0.0711958929896355</right_val></_></_>
- <_>
- <!-- tree 297 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 4 1 -1.</_>
- <_>
- 11 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>1.1679739691317081e-003</threshold>
- <left_val>-0.0676950290799141</left_val>
- <right_val>0.0412361510097981</right_val></_></_>
- <_>
- <!-- tree 298 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 0 4 1 -1.</_>
- <_>
- 9 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-3.1285739969462156e-003</threshold>
- <left_val>0.0793463066220284</left_val>
- <right_val>-0.0644870027899742</right_val></_></_>
- <_>
- <!-- tree 299 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 3 2 1 -1.</_>
- <_>
- 9 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.1147250663489103e-003</threshold>
- <left_val>-0.1048358008265495</left_val>
- <right_val>0.0149682499468327</right_val></_></_>
- <_>
- <!-- tree 300 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 3 2 1 -1.</_>
- <_>
- 8 3 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7796000465750694e-003</threshold>
- <left_val>0.2892560958862305</left_val>
- <right_val>-0.0134435798972845</right_val></_></_>
- <_>
- <!-- tree 301 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 8 4 -1.</_>
- <_>
- 9 2 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.2185384035110474</threshold>
- <left_val>-0.5621880292892456</left_val>
- <right_val>2.4572419933974743e-003</right_val></_></_>
- <_>
- <!-- tree 302 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 3 18 1 -1.</_>
- <_>
- 9 3 9 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0542420297861099</threshold>
- <left_val>-0.2120805978775024</left_val>
- <right_val>0.0192837398499250</right_val></_></_>
- <_>
- <!-- tree 303 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 13 2 2 -1.</_>
- <_>
- 13 13 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2505840752273798e-003</threshold>
- <left_val>8.7050450965762138e-003</left_val>
- <right_val>-0.0469894893467426</right_val></_></_>
- <_>
- <!-- tree 304 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 0 1 4 -1.</_>
- <_>
- 7 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0273687392473221</threshold>
- <left_val>5.3823711350560188e-003</left_val>
- <right_val>-0.7339485287666321</right_val></_></_>
- <_>
- <!-- tree 305 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 7 2 4 -1.</_>
- <_>
- 16 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0171208307147026</threshold>
- <left_val>0.1783629953861237</left_val>
- <right_val>-7.9886056482791901e-003</right_val></_></_>
- <_>
- <!-- tree 306 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 2 4 -1.</_>
- <_>
- 0 8 2 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.8321221731603146e-003</threshold>
- <left_val>0.0193902608007193</left_val>
- <right_val>-0.2057818025350571</right_val></_></_>
- <_>
- <!-- tree 307 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 13 3 2 -1.</_>
- <_>
- 10 13 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.9258757866919041e-004</threshold>
- <left_val>0.0525361597537994</left_val>
- <right_val>-0.0348935909569263</right_val></_></_>
- <_>
- <!-- tree 308 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 13 3 2 -1.</_>
- <_>
- 7 13 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1873079240322113e-003</threshold>
- <left_val>-0.0308929309248924</left_val>
- <right_val>0.1182458028197289</right_val></_></_>
- <_>
- <!-- tree 309 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 13 2 2 -1.</_>
- <_>
- 13 13 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.6870400179177523e-003</threshold>
- <left_val>-0.0478884391486645</left_val>
- <right_val>0.0109662897884846</right_val></_></_>
- <_>
- <!-- tree 310 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 13 2 2 -1.</_>
- <_>
- 4 13 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.7761799972504377e-003</threshold>
- <left_val>0.0283233094960451</left_val>
- <right_val>-0.1357100009918213</right_val></_></_>
- <_>
- <!-- tree 311 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 11 6 4 -1.</_>
- <_>
- 12 11 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0268767699599266</threshold>
- <left_val>0.0109366700053215</left_val>
- <right_val>-0.1321447044610977</right_val></_></_>
- <_>
- <!-- tree 312 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 11 6 4 -1.</_>
- <_>
- 4 11 2 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0397437512874603</threshold>
- <left_val>-0.2774949073791504</left_val>
- <right_val>0.0147927999496460</right_val></_></_>
- <_>
- <!-- tree 313 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 18 3 -1.</_>
- <_>
- 6 11 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0519120208919048</threshold>
- <left_val>-0.0306210797280073</left_val>
- <right_val>0.1386394947767258</right_val></_></_>
- <_>
- <!-- tree 314 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 13 4 1 -1.</_>
- <_>
- 7 13 2 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.9659938667900860e-005</threshold>
- <left_val>0.0652230083942413</left_val>
- <right_val>-0.0611205287277699</right_val></_></_>
- <_>
- <!-- tree 315 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 9 4 3 -1.</_>
- <_>
- 7 10 4 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0208992697298527</threshold>
- <left_val>0.0100139798596501</left_val>
- <right_val>-0.3789927065372467</right_val></_></_>
- <_>
- <!-- tree 316 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 4 9 -1.</_>
- <_>
- 5 8 4 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0346408486366272</threshold>
- <left_val>-0.0236316304653883</left_val>
- <right_val>0.1669196039438248</right_val></_></_>
- <_>
- <!-- tree 317 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 5 2 8 -1.</_>
- <_>
- 11 7 2 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>2.8383019380271435e-003</threshold>
- <left_val>0.0228540804237127</left_val>
- <right_val>-0.0597838684916496</right_val></_></_>
- <_>
- <!-- tree 318 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 8 2 2 -1.</_>
- <_>
- 6 8 1 1 2.</_>
- <_>
- 7 9 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.1739569492638111e-003</threshold>
- <left_val>-0.0186796691268682</left_val>
- <right_val>0.1997753977775574</right_val></_></_>
- <_>
- <!-- tree 319 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 1 4 -1.</_>
- <_>
- 8 2 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0150487199425697</threshold>
- <left_val>-0.3185037970542908</left_val>
- <right_val>3.2470070291310549e-003</right_val></_></_>
- <_>
- <!-- tree 320 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 1 4 1 -1.</_>
- <_>
- 10 2 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-7.0679760538041592e-003</threshold>
- <left_val>-0.3494650125503540</left_val>
- <right_val>0.0113516096025705</right_val></_></_>
- <_>
- <!-- tree 321 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 2 6 9 -1.</_>
- <_>
- 6 5 6 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.2012647986412048</threshold>
- <left_val>-0.0153439603745937</left_val>
- <right_val>0.2706956863403320</right_val></_></_>
- <_>
- <!-- tree 322 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 6 1 6 -1.</_>
- <_>
- 7 8 1 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0454341918230057</threshold>
- <left_val>-0.1544011980295181</left_val>
- <right_val>0.0267359893769026</right_val></_></_>
- <_>
- <!-- tree 323 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 6 2 2 -1.</_>
- <_>
- 11 6 1 1 2.</_>
- <_>
- 10 7 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>5.0224931328557432e-005</threshold>
- <left_val>-0.0454120188951492</left_val>
- <right_val>0.0583584196865559</right_val></_></_>
- <_>
- <!-- tree 324 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 7 3 2 -1.</_>
- <_>
- 7 7 1 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.8120330534875393e-003</threshold>
- <left_val>-0.0352263003587723</left_val>
- <right_val>0.1206099987030029</right_val></_></_>
- <_>
- <!-- tree 325 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 4 2 6 -1.</_>
- <_>
- 10 6 2 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.1098996996879578</threshold>
- <left_val>-8.2655288279056549e-003</left_val>
- <right_val>0.2711330056190491</right_val></_></_>
- <_>
- <!-- tree 326 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 4 6 2 -1.</_>
- <_>
- 8 6 2 2 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0350026711821556</threshold>
- <left_val>0.0418249294161797</left_val>
- <right_val>-0.1444368064403534</right_val></_></_>
- <_>
- <!-- tree 327 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 18 6 -1.</_>
- <_>
- 0 7 18 2 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0569862984120846</threshold>
- <left_val>-0.0448646917939186</left_val>
- <right_val>0.0947646573185921</right_val></_></_>
- <_>
- <!-- tree 328 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 6 4 2 -1.</_>
- <_>
- 7 7 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.9248030148446560e-003</threshold>
- <left_val>0.0438571982085705</left_val>
- <right_val>-0.1155669018626213</right_val></_></_>
- <_>
- <!-- tree 329 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 6 6 9 -1.</_>
- <_>
- 14 9 2 3 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0364132300019264</threshold>
- <left_val>-0.0259249694645405</left_val>
- <right_val>0.0877993777394295</right_val></_></_>
- <_>
- <!-- tree 330 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 6 10 3 -1.</_>
- <_>
- 4 7 10 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>4.9817138351500034e-003</threshold>
- <left_val>-0.0624991990625858</left_val>
- <right_val>0.0629830136895180</right_val></_></_>
- <_>
- <!-- tree 331 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 3 4 8 -1.</_>
- <_>
- 13 5 4 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0157324392348528</threshold>
- <left_val>0.1091820001602173</left_val>
- <right_val>-0.0354424603283405</right_val></_></_>
- <_>
- <!-- tree 332 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 4 11 2 -1.</_>
- <_>
- 0 5 11 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0323861613869667</threshold>
- <left_val>-0.6141089797019959</left_val>
- <right_val>6.1990139074623585e-003</right_val></_></_>
- <_>
- <!-- tree 333 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 5 2 2 -1.</_>
- <_>
- 16 5 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0191630292683840</threshold>
- <left_val>-3.0063120648264885e-003</left_val>
- <right_val>0.4802902936935425</right_val></_></_>
- <_>
- <!-- tree 334 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 5 2 2 -1.</_>
- <_>
- 1 5 1 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.6093212808482349e-005</threshold>
- <left_val>0.0573367811739445</left_val>
- <right_val>-0.0716157332062721</right_val></_></_>
- <_>
- <!-- tree 335 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 16 0 2 13 -1.</_>
- <_>
- 16 0 1 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.1779610067605972e-003</threshold>
- <left_val>0.0471811406314373</left_val>
- <right_val>-0.0946075767278671</right_val></_></_>
- <_>
- <!-- tree 336 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 0 2 13 -1.</_>
- <_>
- 1 0 1 13 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0148553596809506</threshold>
- <left_val>-0.1387726068496704</left_val>
- <right_val>0.0338439010083675</right_val></_></_>
- <_>
- <!-- tree 337 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 9 3 -1.</_>
- <_>
- 9 1 3 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0238599907606840</threshold>
- <left_val>0.1998057067394257</left_val>
- <right_val>-0.0122430603951216</right_val></_></_>
- <_>
- <!-- tree 338 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 9 2 4 8 -1.</_>
- <_>
- 9 2 4 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0785807296633720</threshold>
- <left_val>-0.4961810111999512</left_val>
- <right_val>9.5836250111460686e-003</right_val></_></_>
- <_>
- <!-- tree 339 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 1 12 9 -1.</_>
- <_>
- 3 4 12 3 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0289697498083115</threshold>
- <left_val>0.2014721035957336</left_val>
- <right_val>-0.0211850497871637</right_val></_></_>
- <_>
- <!-- tree 340 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 10 8 3 -1.</_>
- <_>
- 0 11 8 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0450992509722710</threshold>
- <left_val>7.2327218949794769e-003</left_val>
- <right_val>-0.5757725238800049</right_val></_></_>
- <_>
- <!-- tree 341 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 11 18 4 -1.</_>
- <_>
- 9 11 9 2 2.</_>
- <_>
- 0 13 9 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0393024682998657</threshold>
- <left_val>0.0255729109048843</left_val>
- <right_val>-0.1493856012821198</right_val></_></_>
- <_>
- <!-- tree 342 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 5 2 4 -1.</_>
- <_>
- 4 6 2 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0384178198873997</threshold>
- <left_val>4.3327999301254749e-003</left_val>
- <right_val>-0.8469793796539307</right_val></_></_>
- <_>
- <!-- tree 343 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 8 0 3 6 -1.</_>
- <_>
- 9 2 1 2 9.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0157523807138205</threshold>
- <left_val>0.0215584896504879</left_val>
- <right_val>-0.0945848673582077</right_val></_></_>
- <_>
- <!-- tree 344 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 1 4 2 -1.</_>
- <_>
- 6 1 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>6.5488961990922689e-004</threshold>
- <left_val>-0.1137140020728111</left_val>
- <right_val>0.0342830009758472</right_val></_></_>
- <_>
- <!-- tree 345 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 12 2 3 -1.</_>
- <_>
- 13 13 2 1 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>6.0493252240121365e-003</threshold>
- <left_val>-0.0153995295986533</left_val>
- <right_val>0.1082850024104118</right_val></_></_>
- <_>
- <!-- tree 346 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 6 0 4 8 -1.</_>
- <_>
- 6 0 2 4 2.</_>
- <_>
- 8 4 2 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0380066595971584</threshold>
- <left_val>8.7194433435797691e-003</left_val>
- <right_val>-0.4566295146942139</right_val></_></_>
- <_>
- <!-- tree 347 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 10 2 6 2 -1.</_>
- <_>
- 10 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>2.2284449078142643e-003</threshold>
- <left_val>-0.0540577992796898</left_val>
- <right_val>0.0205975491553545</right_val></_></_>
- <_>
- <!-- tree 348 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 2 6 2 -1.</_>
- <_>
- 5 2 3 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0116986101493239</threshold>
- <left_val>0.1834432035684586</left_val>
- <right_val>-0.0235534105449915</right_val></_></_>
- <_>
- <!-- tree 349 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 4 3 -1.</_>
- <_>
- 14 0 2 3 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0235775094479322</threshold>
- <left_val>-0.3377870023250580</left_val>
- <right_val>4.2076371610164642e-003</right_val></_></_>
- <_>
- <!-- tree 350 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 2 3 5 2 -1.</_>
- <_>
- 2 4 5 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.7685960046947002e-003</threshold>
- <left_val>-0.1034085005521774</left_val>
- <right_val>0.0397500097751617</right_val></_></_>
- <_>
- <!-- tree 351 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 3 11 -1.</_>
- <_>
- 14 1 1 11 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0626740828156471</threshold>
- <left_val>0.2563458979129791</left_val>
- <right_val>-2.6633420493453741e-003</right_val></_></_>
- <_>
- <!-- tree 352 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 11 3 -1.</_>
- <_>
- 4 1 11 1 3.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>4.9983179196715355e-003</threshold>
- <left_val>-0.0596107505261898</left_val>
- <right_val>0.0683519020676613</right_val></_></_>
- <_>
- <!-- tree 353 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 0 2 12 -1.</_>
- <_>
- 12 0 1 6 2.</_>
- <_>
- 11 6 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0137960799038410</threshold>
- <left_val>-0.1292528063058853</left_val>
- <right_val>0.0131471604108810</right_val></_></_>
- <_>
- <!-- tree 354 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 0 2 12 -1.</_>
- <_>
- 5 0 1 6 2.</_>
- <_>
- 6 6 1 6 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>7.3155229911208153e-003</threshold>
- <left_val>0.0236708596348763</left_val>
- <right_val>-0.1731462031602860</right_val></_></_>
- <_>
- <!-- tree 355 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 2 4 -1.</_>
- <_>
- 11 5 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>0.0160576999187469</threshold>
- <left_val>0.0210999101400375</left_val>
- <right_val>-0.0365347005426884</right_val></_></_>
- <_>
- <!-- tree 356 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 3 12 -1.</_>
- <_>
- 1 7 3 4 3.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.1364033967256546</threshold>
- <left_val>0.3252066969871521</left_val>
- <right_val>-0.0125922495499253</right_val></_></_>
- <_>
- <!-- tree 357 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 5 2 4 -1.</_>
- <_>
- 11 5 1 4 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-4.3760128319263458e-003</threshold>
- <left_val>-0.0689269527792931</left_val>
- <right_val>0.0126556698232889</right_val></_></_>
- <_>
- <!-- tree 358 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 7 5 4 2 -1.</_>
- <_>
- 7 5 4 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-0.0251937098801136</threshold>
- <left_val>0.6360712051391602</left_val>
- <right_val>-6.9624311290681362e-003</right_val></_></_>
- <_>
- <!-- tree 359 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 5 10 -1.</_>
- <_>
- 13 5 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0992545634508133</threshold>
- <left_val>-0.1638306975364685</left_val>
- <right_val>0.0402428992092609</right_val></_></_>
- <_>
- <!-- tree 360 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 1 6 8 -1.</_>
- <_>
- 0 5 6 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.1403169743716717e-003</threshold>
- <left_val>0.0453241616487503</left_val>
- <right_val>-0.0904397219419479</right_val></_></_>
- <_>
- <!-- tree 361 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 7 4 2 -1.</_>
- <_>
- 14 8 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-9.2972591519355774e-003</threshold>
- <left_val>0.0730063766241074</left_val>
- <right_val>-0.0215709600597620</right_val></_></_>
- <_>
- <!-- tree 362 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 0 7 4 2 -1.</_>
- <_>
- 0 8 4 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.5849390812218189e-003</threshold>
- <left_val>-0.1413342058658600</left_val>
- <right_val>0.0347219407558441</right_val></_></_>
- <_>
- <!-- tree 363 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 3 3 8 -1.</_>
- <_>
- 14 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0825936570763588</threshold>
- <left_val>2.2461370099335909e-003</left_val>
- <right_val>-0.3325017094612122</right_val></_></_>
- <_>
- <!-- tree 364 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 3 3 8 -1.</_>
- <_>
- 1 5 3 4 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0447855107486248</threshold>
- <left_val>-0.0163932293653488</left_val>
- <right_val>0.3196890950202942</right_val></_></_>
- <_>
- <!-- tree 365 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 3 4 10 -1.</_>
- <_>
- 12 3 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0149416103959084</threshold>
- <left_val>-0.0136180296540260</left_val>
- <right_val>0.0911836773157120</right_val></_></_>
- <_>
- <!-- tree 366 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 3 4 10 -1.</_>
- <_>
- 4 3 2 10 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-4.8578871064819396e-004</threshold>
- <left_val>0.0450273416936398</left_val>
- <right_val>-0.0991435274481773</right_val></_></_>
- <_>
- <!-- tree 367 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 11 2 4 7 -1.</_>
- <_>
- 12 2 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-1.0591340251266956e-003</threshold>
- <left_val>0.0437940806150436</left_val>
- <right_val>-0.0463229306042194</right_val></_></_>
- <_>
- <!-- tree 368 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 2 4 7 -1.</_>
- <_>
- 4 2 2 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.0124091897159815</threshold>
- <left_val>-0.1189147979021072</left_val>
- <right_val>0.0417256988584995</right_val></_></_>
- <_>
- <!-- tree 369 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 7 2 2 -1.</_>
- <_>
- 14 7 1 1 2.</_>
- <_>
- 13 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-2.0622629672288895e-003</threshold>
- <left_val>0.1331578940153122</left_val>
- <right_val>-0.0239935107529163</right_val></_></_>
- <_>
- <!-- tree 370 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 3 7 2 2 -1.</_>
- <_>
- 3 7 1 1 2.</_>
- <_>
- 4 8 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>8.8945101015269756e-004</threshold>
- <left_val>-0.0329415686428547</left_val>
- <right_val>0.1312008947134018</right_val></_></_>
- <_>
- <!-- tree 371 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 14 0 2 2 -1.</_>
- <_>
- 14 0 1 2 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>-1.6302269650623202e-003</threshold>
- <left_val>-0.0539117492735386</left_val>
- <right_val>0.0144488299265504</right_val></_></_>
- <_>
- <!-- tree 372 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 4 0 2 2 -1.</_>
- <_>
- 4 0 2 1 2.</_></rects>
- <tilted>1</tilted></feature>
- <threshold>7.9654958099126816e-003</threshold>
- <left_val>0.0144072799012065</left_val>
- <right_val>-0.2618730962276459</right_val></_></_>
- <_>
- <!-- tree 373 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 12 4 2 2 -1.</_>
- <_>
- 13 4 1 1 2.</_>
- <_>
- 12 5 1 1 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-6.1501268646679819e-005</threshold>
- <left_val>0.0330021195113659</left_val>
- <right_val>-0.0297673903405666</right_val></_></_>
- <_>
- <!-- tree 374 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 5 1 8 14 -1.</_>
- <_>
- 5 1 4 7 2.</_>
- <_>
- 9 8 4 7 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>-0.2012939006090164</threshold>
- <left_val>-0.4931235909461975</left_val>
- <right_val>7.3236711323261261e-003</right_val></_></_>
- <_>
- <!-- tree 375 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 13 0 5 10 -1.</_>
- <_>
- 13 5 5 5 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>1.2285460252314806e-003</threshold>
- <left_val>0.0346601791679859</left_val>
- <right_val>-0.0940746665000916</right_val></_></_>
- <_>
- <!-- tree 376 -->
- <_>
- <!-- root node -->
- <feature>
- <rects>
- <_>
- 1 4 16 4 -1.</_>
- <_>
- 1 6 16 2 2.</_></rects>
- <tilted>0</tilted></feature>
- <threshold>0.0104913795366883</threshold>
- <left_val>-0.0389849282801151</left_val>
- <right_val>0.1268351972103119</right_val></_></_></trees>
- <stage_threshold>-1.0771520137786865</stage_threshold>
- <parent>18</parent>
- <next>-1</next></_></stages></classifier_Nariz_20stages>
- </opencv_storage>
|