|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248 |
- #!/usr/bin/env python
-
- from imutils.video import VideoStream
- from imutils.video import FPS
- import argparse
- import imutils
- import time
- import cv2
- from datetime import datetime, time
- import numpy as np
- import time as time2
-
- VISUAL_DEBUG=True
-
- """ Arguments """
- ap = argparse.ArgumentParser()
- ap.add_argument("-v", "--video", help="path to the video file")
- ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size")
- ap.add_argument("-t", "--tracker", type=str, default="csrt", help="OpenCV object tracker type")
- args = vars(ap.parse_args())
-
- """ Determine opencv version and select tracker """
- # extract the OpenCV version info
- (major, minor) = cv2.__version__.split(".")[:2]
- # if we are using OpenCV 3.2 or an earlier version, we can use a special factory
- # function to create the entity that tracks objects
- if int(major) == 3 and int(minor) < 3:
- tracker = cv2.Tracker_create(args["tracker"].upper())
- #tracker = cv2.TrackerGOTURN_create()
- # otherwise, for OpenCV 3.3 or newer,
- # we need to explicity call the respective constructor that contains the tracker object:
- else:
- # initialize a dictionary that maps strings to their corresponding
- # OpenCV object tracker implementations
- OPENCV_OBJECT_TRACKERS = {
- "csrt": cv2.TrackerCSRT_create,
- "kcf": cv2.TrackerKCF_create,
- "boosting": cv2.TrackerBoosting_create,
- "mil": cv2.TrackerMIL_create,
- "tld": cv2.TrackerTLD_create,
- "medianflow": cv2.TrackerMedianFlow_create,
- "mosse": cv2.TrackerMOSSE_create
- }
- # grab the appropriate object tracker using our dictionary of
- # OpenCV object tracker objects
- tracker = OPENCV_OBJECT_TRACKERS[args["tracker"]]()
- #tracker = cv2.TrackerGOTURN_create()
- # if the video argument is None, then the code will read from webcam (work in progress)
- if args.get("video", None) is None:
- vs = VideoStream(src=0).start()
- time2.sleep(2.0)
- # otherwise, we are reading from a video file
- else:
- vs = cv2.VideoCapture(args["video"])
-
- """" Analyzing video frames """
- # loop over the frames of the video, and store corresponding information from each frame
- firstFrame = None
- initBB2 = None
- fps = None
- differ = None
- now = ''
- framecounter = 0
- trackeron = 0
- people_count_total = 0
-
- cv2.namedWindow('Video stream', cv2.WINDOW_NORMAL)
- if VISUAL_DEBUG:
- cv2.namedWindow('debug image', cv2.WINDOW_NORMAL)
-
- while True:
- if VISUAL_DEBUG:
- print("Frame {}".format(framecounter))
- people_count_per_frame = 0
- frame = vs.read()
- frame = frame if args.get("video", None) is None else frame[1]
- # if the frame can not be grabbed, then we have reached the end of the video
- if frame is None:
- break
-
- # resize the frame to 500
- frame = imutils.resize(frame, width=500)
-
- framecounter = framecounter+1
- if framecounter > 1:
-
- (H, W) = frame.shape[:2]
- gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
- gray = cv2.GaussianBlur(gray, (21, 21), 0)
-
- # if the first frame is None, initialize it
- if firstFrame is None:
- firstFrame = gray
- continue
-
- # compute the absolute difference between the current frame and first frame
- frameDelta = cv2.absdiff(firstFrame, gray)
- thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
-
- #debug
- if VISUAL_DEBUG:
- cv2.imshow("debug image", thresh)
- cv2.waitKey(0)
- #cv2.destroyWindow("threshhold image")
-
- # dilate the thresholded image to fill in holes
- thresh = cv2.dilate(thresh, None, iterations=2)
-
- # find contours on thresholded image
- thresh = np.uint8(thresh)
- cnts, im2 = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
-
- if VISUAL_DEBUG:
- """img = cv2.drawContours(thresh.copy(), cnts, -1, (0,255,0), 3)
- cv2.imshow("debug image", img)
- cv2.waitKey(0)"""
-
- print(len(cnts))
-
- # loop over the contours identified
- contourcount = 0
- for c in cnts:
- contourcount = contourcount + 1
-
- # if the contour is too small, ignore it
- if cv2.contourArea(c) < args["min_area"]:
- continue
-
- # compute the bounding box for the contour, draw it on the frame,
- (x, y, w, h) = cv2.boundingRect(c)
- initBB2 =(x,y,w,h)
-
- prott1 = r'ML-Models/MobileNetSSD_deploy.prototxt'
- prott2 = r'ML-Models/MobileNetSSD_deploy.caffemodel'
- net = cv2.dnn.readNetFromCaffe(prott1, prott2)
-
- CLASSES = ["person"]
- COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
-
- trackbox = frame[y:y+h, x:x+w]
- trackbox = cv2.resize(trackbox, (224, 224))
- #cv2.imshow('image',trackbox)
-
- """if VISUAL_DEBUG:
- trackbox2 = thresh[y:y+h, x:x+w]
- trackbox2 = cv2.resize(trackbox2, (224, 224))
- cv2.imshow('debug image',trackbox2)
- cv2.waitKey(0)"""
-
- blob = cv2.dnn.blobFromImage(cv2.resize(trackbox, (300, 300)),0.007843, (300, 300), 127.5)
- net.setInput(blob)
- detections = net.forward()
-
- for i in np.arange(0, detections.shape[2]):
- confidence = detections[0, 0, i, 2]
-
- confidence_level = 0.95
-
- if confidence > confidence_level:
- people_count_per_frame+=1
- people_count_total+=1
- # extract the index of the class label from the `detections`, then compute the (x, y)-coordinates of
- # the bounding box for the object
- idx = int(detections[0, 0, i, 1])
- box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
- (startX, startY, endX, endY) = box.astype("int")
- # draw the prediction on the frame
-
- #label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
- label = "{}: {:.2f}%".format(CLASSES[0], confidence * 100)
-
- #cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2)
- cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[0], 2)
-
- y = startY - 15 if startY - 15 > 15 else startY + 15
-
- #cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
- cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[0], 2)
-
- if VISUAL_DEBUG:
- print("person found")
- cv2.imshow("debug image", frame)
- key = cv2.waitKey(0)
-
- cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 255, 0), 2)
- # Start tracker
- now = datetime.now()
- if differ == None or differ > 9:
- tracker.init(frame, initBB2)
- fps = FPS().start()
-
-
- # check to see if we are currently tracking an object, if so, ignore other boxes
- # this code is relevant if we want to identify particular persons
- """if initBB2 is not None:
-
- # grab the new bounding box coordinates of the object
- (success, box) = tracker.update(frame)
-
- # check to see if the tracking was a success
- differ = 10
- if success:
- (x, y, w, h) = [int(v) for v in box]
- cv2.rectangle(frame, (x, y), (x + w, y + h),(0, 255, 0), 2)
- differ = abs(initBB2[0]-box[0]) + abs(initBB2[1]-box[1])
- i = tracker.update(lastframe)
- if i[0] != True:
- time2.sleep(4000)
- else:
- trackeron = 1
-
- # update the FPS counter
- fps.update()
- fps.stop()
-
- # initialize the set of information we'll be displaying on
- # the frame
- info = [
- ("Success", "Yes" if success else "No"),
- ("FPS", "{:.2f}".format(fps.fps())),
- ("People Frame", "{}".format(people_count_per_frame)),
- ("People Total", "{}".format(people_count_total))
- ]
-
- # loop over the info tuples and draw them on our frame
- for (i, (k, v)) in enumerate(info):
- text = "{}: {}".format(k, v)
- cv2.putText(frame, text, (10, H - ((i * 20) + 20)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
-
- # draw the text and timestamp on the frame
- now2 = datetime.now()
- time_passed_seconds = str((now2-now).seconds)
- cv2.putText(frame, 'Detecting persons',(10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)"""
-
- # show the frame and record if the user presses a key
- cv2.imshow("Video stream", frame)
- key = cv2.waitKey(1) & 0xFF
-
- # if the `q` key is pressed, break from the lop
- if key == ord("q"):
- break
- if key == ord("d"):
- firstFrame = None
- lastframe = frame
-
- # finally, stop the camera/stream and close any open windows
- vs.stop() if args.get("video", None) is None else vs.release()
- cv2.destroyAllWindows()
|