diff --git a/camera/.vscode/launch.json b/camera/.vscode/launch.json index fa170e0..1f6f73a 100644 --- a/camera/.vscode/launch.json +++ b/camera/.vscode/launch.json @@ -1,6 +1,7 @@ { "version": "0.2.0", "configurations": [ + { "name": "Python: Current File", "type": "python", @@ -15,7 +16,7 @@ "request": "launch", "program": "${file}", "console": "integratedTerminal", - "args": ["-v", "~/Videos/video.h264"] + "args": ["-v", "run.mp4"] } ] } \ No newline at end of file diff --git a/camera/person_detection.py b/camera/person_detection.py new file mode 100755 index 0000000..6543c75 --- /dev/null +++ b/camera/person_detection.py @@ -0,0 +1,168 @@ +#!/usr/bin/env python + +from imutils.video import VideoStream +from imutils.video import FPS +import argparse +import imutils +import cv2 +from datetime import datetime, time +import numpy as np +import time as time2 + +VISUAL_DEBUG=True + +def getArgs(): + """ Arguments """ + ap = argparse.ArgumentParser() + ap.add_argument("-v", "--video", help="path to the video file") + ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size") + ap.add_argument("-t", "--tracker", type=str, default="csrt", help="OpenCV object tracker type") + return vars(ap.parse_args()) + + +def main(): + args = getArgs() + + # if the video argument is None, then the code will read from webcam (work in progress) + if args.get("video", None) is None: + vs = VideoStream(src=0).start() + time2.sleep(2.0) + # otherwise, we are reading from a video file + else: + vs = cv2.VideoCapture(args["video"]) + + cv2.namedWindow('Video stream', cv2.WINDOW_NORMAL) + detector = DetectionFromFrame(args["min_area"], 0.8) + while True: + detector.currentFrame = vs.read() + detector.currentFrame = detector.currentFrame if args.get("video", None) is None else detector.currentFrame[1] + # if the frame can not be grabbed, then we have reached the end of the video + if detector.currentFrame is None: + break + + # resize the frame to 500 + detector.currentFrame = imutils.resize(detector.currentFrame, width=500) + detector.framecounter+=1 + if detector.framecounter > 1: + cnts = detector.prepareFrame() + + for c in cnts: + boundRect = cv2.boundingRect(c) + #(x, y, w, h) = cv2.boundingRect(c) + #initBB2 =(x,y,w,h) + + prott1 = r'ML-Models/MobileNetSSD_deploy.prototxt' + prott2 = r'ML-Models/MobileNetSSD_deploy.caffemodel' + net = cv2.dnn.readNetFromCaffe(prott1, prott2) + + #trackbox = detector.currentFrame[y:y+h, x:x+w]boundRect[1] + trackbox = detector.currentFrame[boundRect[1]:boundRect[1]+boundRect[3], + boundRect[0]:boundRect[0]+boundRect[2]] + trackbox = cv2.resize(trackbox, (224, 224)) + #cv2.imshow('image',trackbox) + + blob = cv2.dnn.blobFromImage(cv2.resize(trackbox, (300, 300)),0.007843, (300, 300), 127.5) + net.setInput(blob) + detections = net.forward() + + for i in np.arange(0, detections.shape[2]): + detector.detectConfidentiallyPeople(i, detections, boundRect) + cv2.rectangle(detector.currentFrame, (boundRect[0], boundRect[1]), + (boundRect[0] + boundRect[2], boundRect[1] + boundRect[3]), (255, 255, 0), 1) + + + # show the frame and record if the user presses a key + cv2.imshow("Video stream", detector.currentFrame) + key = cv2.waitKey(1) & 0xFF + + # if the `q` key is pressed, break from the lop + if key == ord("q"): + break + if key == ord("d"): + detector.firstFrame = None + #detector.lastFrame = detector.currentFrame + + # finally, stop the camera/stream and close any open windows + vs.stop() if args.get("video", None) is None else vs.release() + cv2.destroyAllWindows() + + +class DetectionFromFrame: + def __init__(self, min_size, confidence): + self.min_size = min_size + self.confidence_level = confidence + + self.firstFrame = None + self.currentFrame = None + + self.initBB2 = None + self.fps = None + self.differ = None + self.now = '' + self.framecounter = 0 + self.people_count_total = 0 + + + def prepareFrame(self): + gray = cv2.cvtColor(self.currentFrame, cv2.COLOR_BGR2GRAY) + gray = cv2.GaussianBlur(gray, (21, 21), 0) + + # if the first frame is None, initialize it + if self.firstFrame is None: + self.firstFrame = gray + return [] + + # compute the absolute difference between the current frame and first frame + frameDelta = cv2.absdiff(self.firstFrame, gray) + thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1] + + #debug + """if VISUAL_DEBUG: + cv2.imshow("debug image", thresh) + cv2.waitKey(0) + cv2.destroyWindow("debug image") + #cv2.destroyWindow("threshhold image")""" + + # dilate the thresholded image to fill in holes + thresh = cv2.dilate(thresh, None, iterations=2) + + # find contours on thresholded image + thresh = np.uint8(thresh) + cnts, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) + + return cnts + + def detectConfidentiallyPeople(self, i, detections, boundRect): + CLASSES = ["person"] + + COLORS = [0,255,0] + #COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) + + confidence = detections[0, 0, i, 2] + + if confidence > self.confidence_level: + # extract the index of the class label from the `detections`, then compute the (x, y)-coordinates of + # the bounding box for the object + #idx = int(detections[0, 0, i, 1]) + box = detections[0, 0, i, 3:7] * np.array([boundRect[2], boundRect[3], boundRect[2], boundRect[3]]) + (startX, startY, endX, endY) = box.astype("int") + # draw the prediction on the frame + + #label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100) + label = "{}: {:.2f}%".format(CLASSES[0], confidence * 100) + + #cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2) + cv2.rectangle(self.currentFrame, (boundRect[0], boundRect[1]), + (boundRect[0] + boundRect[2], boundRect[1] + boundRect[3]), (0,255, 0), 3) + + y = boundRect[1] - 15 if boundRect[1] - 15 > 15 else boundRect[1] + 15 + + #cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) + cv2.putText(self.currentFrame, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1) + #cv2.imshow("Video stream", self.currentFrame) + #print("Person found") + + + +if __name__ == "__main__": + main() diff --git a/camera/video_stream/zmq_video_server.py b/camera/video_stream/zmq_video_server.py index 3c06787..4882210 100644 --- a/camera/video_stream/zmq_video_server.py +++ b/camera/video_stream/zmq_video_server.py @@ -7,4 +7,5 @@ while True: # show streamed images until Ctrl-C rpi_name, image = image_hub.recv_image() cv2.imshow(rpi_name, image) # 1 window for each RPi cv2.waitKey(1) - image_hub.send_reply(b'OK') \ No newline at end of file + image_hub.send_reply(b'OK') + \ No newline at end of file