/* * The MySensors Arduino library handles the wireless radio link and protocol * between your home built sensors/actuators and HA controller of choice. * The sensors forms a self healing radio network with optional repeaters. Each * repeater and gateway builds a routing tables in EEPROM which keeps track of the * network topology allowing messages to be routed to nodes. * * Created by Henrik Ekblad * Copyright (C) 2013-2018 Sensnology AB * Full contributor list: https://github.com/mysensors/MySensors/graphs/contributors * * Documentation: http://www.mysensors.org * Support Forum: http://forum.mysensors.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. */ #include "RPi.h" #include #include #include #include #include "log.h" const static int phys_to_gpio_rev1[41] = {-1, -1, -1, 0, -1, 1, -1, 4, 14, -1, 15, 17, 18, 21, -1, 22, 23, -1, 24, 10, -1, 9, 25, 11, 8, -1, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}; const static int phys_to_gpio_rev2[41] = {-1, -1, -1, 2, -1, 3, -1, 4, 14, -1, 15, 17, 18, 27, -1, 22, 23, -1, 24, 10, -1, 9, 25, 11, 8, -1, 7, -1, -1, 5, -1, 6, 12, 13, -1, 19, 16, 26, 20, -1, 21}; // Declare a single default instance RPiClass RPi = RPiClass(); const int* RPiClass::phys_to_gpio = NULL; void RPiClass::pinMode(uint8_t physPin, uint8_t mode) { uint8_t gpioPin; if (physToGPIO(physPin, &gpioPin) != 0) { logError("pinMode: invalid pin: %d\n", physPin); return; } BCM.pinMode(gpioPin, mode); } void RPiClass::digitalWrite(uint8_t physPin, uint8_t value) { uint8_t gpioPin; if (physToGPIO(physPin, &gpioPin) != 0) { logError("digitalWrite: invalid pin: %d\n", physPin); return; } BCM.digitalWrite(gpioPin, value); } uint8_t RPiClass::digitalRead(uint8_t physPin) { uint8_t gpioPin; if (physToGPIO(physPin, &gpioPin) != 0) { logError("digitalRead: invalid pin: %d\n", physPin); return 0; } return BCM.digitalRead(gpioPin); } uint8_t RPiClass::digitalPinToInterrupt(uint8_t physPin) { uint8_t gpioPin; if (physToGPIO(physPin, &gpioPin) != 0) { logError("digitalPinToInterrupt: invalid pin: %d\n", physPin); return 0; } return gpioPin; } int RPiClass::rpiGpioLayout() { /* * Based on wiringPi Copyright (c) 2012 Gordon Henderson. */ FILE *fd; char line[120]; char *c; if ((fd = fopen("/proc/cpuinfo", "r")) == NULL) { return -1; } while (fgets(line, 120, fd) != NULL) { if (strncmp(line, "Revision", 8) == 0) { fclose(fd); // Chop trailing CR/NL for (c = &line[strlen(line) - 1]; (*c == '\n') || (*c == '\r'); --c) { *c = 0; } // Scan to the first character of the revision number for (c = line; *c; ++c) { if (*c == ':') { // Chop spaces ++c; while (isspace(*c)) { ++c; } // Check hex digit at start if (!isxdigit(*c)) { return -1; } // Check bogus revision line (too small) if (strlen(c) < 4) { return -1; } // Isolate last 4 characters: (in-case of overvolting or new encoding scheme) c = c + strlen(c) - 4; if ((strcmp(c, "0002") == 0) || (strcmp(c, "0003") == 0) || (strcmp(c, "0004") == 0) || (strcmp(c, "0005") == 0) || (strcmp(c, "0006") == 0) || (strcmp(c, "0007") == 0) || (strcmp(c, "0008") == 0) || (strcmp(c, "0009") == 0) || (strcmp(c, "000d") == 0) || (strcmp(c, "000e") == 0) || (strcmp(c, "000f") == 0)) { return 1; } else { return 2; } } } } } fclose(fd); return -1; } int RPiClass::physToGPIO(uint8_t physPin, uint8_t *gpio) { if (phys_to_gpio == NULL) { if (rpiGpioLayout() == 1) { // A, B, Rev 1, 1.1 phys_to_gpio = &phys_to_gpio_rev1[0]; } else { // A2, B2, A+, B+, CM, Pi2, Pi3, Zero phys_to_gpio = &phys_to_gpio_rev2[0]; } } if (gpio == NULL || physPin > 40) { return -1; } int pin = *(phys_to_gpio+physPin); if (pin == -1) { return -1; } else { *gpio = pin; } return 0; }