12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455 |
- #!/usr/bin/env python
-
- # import the necessary packages
- from __future__ import print_function
- from imutils.object_detection import non_max_suppression
- from imutils import paths
- import numpy as np
- import argparse
- import imutils
- import cv2
-
- # construct the argument parse and parse the arguments
- ap = argparse.ArgumentParser()
- ap.add_argument("-i", "--images", required=True, help="path to images directory")
- args = vars(ap.parse_args())
-
- # initialize the HOG descriptor/person detector
- hog = cv2.HOGDescriptor()
- hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
-
- # loop over the image paths
- for imagePath in paths.list_images(args["images"]):
- # load the image and resize it to (1) reduce detection time
- # and (2) improve detection accuracy
- image = cv2.imread(imagePath)
- image = imutils.resize(image, width=min(400, image.shape[1]))
- orig = image.copy()
-
- # detect people in the image
- (rects, weights) = hog.detectMultiScale(image, winStride=(4, 4),
- padding=(8, 8), scale=1.05)
-
- # draw the original bounding boxes
- for (x, y, w, h) in rects:
- cv2.rectangle(orig, (x, y), (x + w, y + h), (0, 0, 255), 2)
-
- # apply non-maxima suppression to the bounding boxes using a
- # fairly large overlap threshold to try to maintain overlapping
- # boxes that are still people
- rects = np.array([[x, y, x + w, y + h] for (x, y, w, h) in rects])
- pick = non_max_suppression(rects, probs=None, overlapThresh=0.65)
-
- # draw the final bounding boxes
- for (xA, yA, xB, yB) in pick:
- cv2.rectangle(image, (xA, yA), (xB, yB), (0, 255, 0), 2)
-
- # show some information on the number of bounding boxes
- filename = imagePath[imagePath.rfind("/") + 1:]
- print("[INFO] {}: {} original boxes, {} after suppression".format(filename, len(rects), len(pick)))
-
- # show the output images
- if len(pick):
- #cv2.imshow("Before NMS", orig)
- cv2.imshow("After NMS", image)
- cv2.waitKey(0)
|