AlgoDatSoSe24/SoSe24/lec06_graph/astar.py
Oliver Hofmann 4bad896096 Lecture 7
2024-06-06 13:32:50 +02:00

141 lines
5.2 KiB
Python

import math
from typing import Callable
import re
from graph import Graph, AdjacencyListGraph, AdjacencyMatrixGraph, NodeColor, Vertex
import heapq
def a_star(self, start_name: str, end_name: str, heuristic: Callable[[Vertex], float]):
color_map = {} # maps vertices to their color
distance_map = {} # maps vertices to their distance from the start vertex
predecessor_map = {} # maps vertices to their predecessor in the traversal tree
def cost(vertex: Vertex) -> float:
"""Compute the cost of the path to the given vertex."""
if distance_map[vertex] is None:
return math.inf
return distance_map[vertex] + heuristic(vertex)
Vertex.__lt__ = lambda self, other: cost(self) < cost(other)
# Initialize the maps
for vertex in self.all_vertices():
color_map[vertex] = NodeColor.WHITE
distance_map[vertex] = None
predecessor_map[vertex] = None
# Start at the given vertex
start_node = self.get_vertex(start_name)
color_map[start_node] = NodeColor.GRAY
distance_map[start_node] = 0
# Initialize the queue with the start vertex
queue = [] # Use a list instead of a deque, because we need to sort it with
heapq.heappush(queue, start_node)
# Process the queue
while len(queue) > 0:
vertex = heapq.heappop(queue)
if color_map[vertex] == NodeColor.BLACK:
# Skip already processed vertices (possibly with a higher cost)
continue
if vertex.value == end_name:
# Return the distance and predecessor maps
return distance_map, predecessor_map
for dest, weight in self.get_adjacent_vertices_with_weight(vertex.value):
if color_map[dest] == NodeColor.BLACK:
continue
f = distance_map[vertex] + weight + heuristic(dest)
if color_map[dest] == NodeColor.GRAY and f > cost(dest):
continue
predecessor_map[dest] = vertex
distance_map[dest] = distance_map[vertex] + weight
heapq.heappush(queue, dest)
if color_map[dest] == NodeColor.WHITE:
color_map[dest] = NodeColor.GRAY
color_map[vertex] = NodeColor.BLACK
# Return the distance and predecessor maps if no path was found
return None, None
# Add the a_star method to the Graph classes
AdjacencyListGraph.a_star = a_star
AdjacencyMatrixGraph.a_star = a_star
if __name__ == "__main__":
def read_labyrinth_into_graph(graph: Graph, filename: str):
"""Read a labyrinth from a file into a graph. The file format is a grid of characters:"""
start = None
end = None
with open(filename, "r") as file:
nodes = []
lines = file.readlines()
for y, line in enumerate(lines):
for x, char in enumerate(line):
if char in ' AS':
name = pos_to_nodename((x, y))
graph.insert_vertex(name)
nodes.append((x, y))
if char == 'A':
end = (x, y)
if char == 'S':
start = (x, y)
for x, y in nodes:
name1 = f"x{x}y{y}"
for neighbor in [(x - 1, y), (x, y - 1), (x, y + 1), (x + 1, y)]:
if neighbor in nodes:
name_neighbor = pos_to_nodename(neighbor)
graph.connect(name1, name_neighbor, 1)
return start, end, lines
def nodename_to_pos(nodename):
"""Convert a node name to a position (x, y)."""
m = re.match(r"(^x(\d*)y(\d*))", nodename)
if m:
return (int(m.group(2)), int(m.group(3)))
return None
def pos_to_nodename(pos):
"""Convert a position (x, y) to a node name."""
x, y = pos
return f"x{x}y{y}"
def get_heuristic(end) -> Callable[[Vertex], float]:
"""Return a heuristic function for the given end position."""
def heuristic(v: Vertex) -> float:
x, y = nodename_to_pos(v.value)
x1, y1 = end
# Euclidean distance
return math.sqrt(abs(x - x1)**2 + abs(y - y1)**2)
return heuristic
def update_lines(lines, distance_map, path):
"""Update the lines with the path found by the A* algorithm."""
def replace_at(x, y, replacement):
if lines[y][x] not in " .":
return
lines[y] = lines[y][:x] + replacement + lines[y][x+1:]
for node in distance_map.keys():
if distance_map[node] is not None:
x, y = nodename_to_pos(node.value)
replace_at(x, y, ".")
for node in path:
x, y = nodename_to_pos(node)
replace_at(x, y, "*")
return lines
graph = AdjacencyListGraph()
#graph = AdjacencyMatrixGraph()
start, end, lines = read_labyrinth_into_graph(graph, "../../labyrinth.txt")
distance_map, predecessor_map = graph.a_star(pos_to_nodename(start), pos_to_nodename(end), get_heuristic(end))
endname = pos_to_nodename(end)
lines = update_lines(lines, distance_map, graph.path(endname, predecessor_map))
for line in lines:
print(line, end="")