rendeer maze

This commit is contained in:
Oliver Hofmann 2025-06-03 22:48:08 +02:00
parent 4d581a87de
commit 6868e089a4
5 changed files with 217 additions and 0 deletions

15
data/aoc2416test.txt Normal file
View File

@ -0,0 +1,15 @@
###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#.#.......#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S..#.....#...#
###############

View File

@ -0,0 +1,59 @@
from utils.project_dir import get_path
from vorlesung.L08_graphen.graph import AdjacencyListGraph
DIRECTIONS = [(1,0), (0, 1), (-1, 0), (0, -1)]
class D16Solution:
def __init__(self):
with open(get_path("data/aoc2416.txt"), "r") as file:
self.puzzle = [line.strip() for line in file]
self.cells = set()
self.start = None
self.end = None
def get_cells_start_end(self):
for row in range(len(self.puzzle)):
for col in range(len(self.puzzle[row])):
if self.puzzle[row][col] != '#':
self.cells.add((col, row))
if self.puzzle[row][col] == 'S':
self.start = (col, row)
if self.puzzle[row][col] == 'E':
self.end = (col, row)
def get_label(self, cell, direction):
"""Generate a label for a cell based on its coordinates and direction."""
return f"{cell[0]},{cell[1]}_{direction}"
def create_graph(self):
graph = AdjacencyListGraph()
for cell in self.cells:
for direction in DIRECTIONS:
label = self.get_label(cell, direction)
graph.insert_vertex(label)
for cell in self.cells:
for d, direction in enumerate(DIRECTIONS):
label = self.get_label(cell, direction)
dx, dy = direction
neighbor = (cell[0] + dx, cell[1] + dy)
if neighbor in self.cells:
graph.connect(label, self.get_label(neighbor, direction))
direction_left = DIRECTIONS[(d - 1) % 4]
direction_right = DIRECTIONS[(d + 1) % 4]
graph.connect(label, self.get_label(cell, direction_left), 1000)
graph.connect(label, self.get_label(cell, direction_right), 1000)
return graph
if __name__ == "__main__":
solution = D16Solution()
solution.get_cells_start_end()
graph = solution.create_graph()
start = solution.get_label(solution.start, DIRECTIONS[0])
print(f"Start: {start}")
distance_map, predecessor_map = graph.dijkstra(start)
end_labels = [solution.get_label(solution.end, direction) for direction in DIRECTIONS]
end_vertices = [graph.get_vertex(label) for label in end_labels]
min_weight = min([distance_map[vertex] for vertex in end_vertices])
print(f"Minimum distance to End {solution.end}: {min_weight}")

40
utils/priority_queue.py Normal file
View File

@ -0,0 +1,40 @@
import heapq
class PriorityQueue:
def __init__(self):
self.heap = []
self.entry_finder = {} # map: item -> [priority, item]
self.REMOVED = '<removed>'
self.counter = 0 # unique sequence count to break ties
def add_or_update(self, item, priority):
if item in self.entry_finder:
self.remove(item)
count = self.counter
entry = [priority, count, item]
self.entry_finder[item] = entry
heapq.heappush(self.heap, entry)
self.counter += 1
def remove(self, item):
entry = self.entry_finder.pop(item)
entry[-1] = self.REMOVED # mark as removed
def pop(self):
while self.heap:
priority, count, item = heapq.heappop(self.heap)
if item != self.REMOVED:
del self.entry_finder[item]
return item, priority
return None
if __name__ == "__main__":
pq = PriorityQueue()
pq.add_or_update('task1', 1)
pq.add_or_update('task2', float('inf'))
pq.add_or_update('task3', float('inf'))
print(pq.pop()) # Should print ('task1', 1)
pq.add_or_update('task2', 0) # Update priority of 'task1'
print(pq.pop()) # Should print ('task2', 0)
print(pq.pop()) # Should print ('task3', 3)

View File

@ -0,0 +1,45 @@
from vorlesung.L08_graphen.graph import Graph, AdjacencyMatrixGraph
from utils.project_dir import get_path
graph = AdjacencyMatrixGraph()
start = ""
end = ""
def read_file(filename: str = "data/aoc2212.txt"):
"""Read a file and return the content as a string."""
def adjust_char(char):
"""Adjust character for comparison."""
if char == 'S':
return 'a'
elif char == 'E':
return 'z'
return char
global start, end
with open(get_path(filename), "r") as file:
quest = file.read().strip().splitlines()
for row, line in enumerate(quest):
for col, char in enumerate(line):
label = f"{row},{col}"
graph.insert_vertex(label)
if char == "S":
start = label
if char == "E":
end = label
for row, line in enumerate(quest):
for col, char in enumerate(line):
for neighbor in [(row - 1, col), (row, col - 1), (row + 1, col), (row, col + 1)]:
if 0 <= neighbor[0] < len(quest) and 0 <= neighbor[1] < len(line):
if ord(adjust_char(quest[neighbor[0]][neighbor[1]])) <= ord(adjust_char(char)) + 1:
label1 = f"{row},{col}"
label2 = f"{neighbor[0]},{neighbor[1]}"
graph.connect(label1, label2)
# Lösung des Adventskalenders 2022, Tag 12
read_file("data/aoc2212test.txt")
graph.graph()
distance_map, predecessor_map = graph.bfs(start)
print(distance_map[graph.get_vertex(end)])
print(graph.path(end, predecessor_map))

View File

@ -4,6 +4,7 @@ from enum import Enum
import graphviz import graphviz
from datetime import datetime from datetime import datetime
from utils.project_dir import get_path from utils.project_dir import get_path
from utils.priority_queue import PriorityQueue
class NodeColor(Enum): class NodeColor(Enum):
@ -18,6 +19,13 @@ class Vertex:
def __init__(self, value): def __init__(self, value):
self.value = value self.value = value
def __str__(self):
return str(self.value)
def __repr__(self):
return f"Vertex({self.value})"
class Graph: class Graph:
"""A graph.""" """A graph."""
@ -147,6 +155,56 @@ class Graph:
filename = get_path(filename) filename = get_path(filename)
dot.render(filename) dot.render(filename)
def dijkstra(self, start_name: str) -> tuple[dict[Vertex, float], dict[Vertex, Vertex | None]]:
"""
Führt den Dijkstra-Algorithmus für kürzeste Pfade durch, implementiert mit Knotenfarben.
Args:
start_name: Name des Startknotens
Returns:
Ein Tupel aus zwei Dictionaries:
- distance_map: Abbildung von Knoten auf ihre kürzeste Distanz vom Startknoten
- predecessor_map: Abbildung von Knoten auf ihre Vorgänger im kürzesten Pfad
"""
def relax(vertex, dest, weight):
"""
Entspannt die Kante zwischen vertex und dest.
Aktualisiert die Distanz und den Vorgänger, wenn ein kürzerer Pfad gefunden wird.
"""
if distance_map[vertex] + weight < distance_map[dest]:
distance_map[dest] = distance_map[vertex] + weight
predecessor_map[dest] = vertex
queue.add_or_update(dest, distance_map[dest])
# Initialisierung der Maps
distance_map = {} # Speichert kürzeste Distanzen
predecessor_map = {} # Speichert Vorgänger
# Initialisiere alle Knoten
queue = PriorityQueue()
for vertex in self.all_vertices():
distance_map[vertex] = float('inf') # Initiale Distanz unendlich
predecessor_map[vertex] = None # Initialer Vorgänger None
queue.add_or_update(vertex, distance_map[vertex]) # Füge Knoten zur Prioritätswarteschlange hinzu
# Setze Startknoten
start_node = self.get_vertex(start_name)
distance_map[start_node] = 0
queue.add_or_update(start_node, distance_map[start_node])
while True:
entry = queue.pop()
if entry is None:
break
vertex = entry[0]
for dest, weight in self.get_adjacent_vertices_with_weight(vertex.value):
relax(vertex, dest, weight)
return distance_map, predecessor_map
class AdjacencyListGraph(Graph): class AdjacencyListGraph(Graph):
"""A graph implemented as an adjacency list.""" """A graph implemented as an adjacency list."""