This commit is contained in:
Oliver Hofmann 2025-06-11 09:14:53 +02:00
parent 6868e089a4
commit add4091b5d
4 changed files with 115 additions and 2 deletions

View File

@ -0,0 +1,32 @@
from vorlesung.L08_graphen.graph import Graph, AdjacencyMatrixGraph
from utils.project_dir import get_path
import re
def read_elektro_into_graph(graph: Graph, filename: str):
pattern = re.compile(r'"([^"]+)";"([^"]+)";(\d+)')
with (open(filename, "r") as file):
for line in file:
m = pattern.match(line)
if m:
start_name = m.group(1)
end_name = m.group(2)
cost = int(m.group(3))
graph.insert_vertex(start_name)
graph.insert_vertex(end_name)
graph.connect(start_name, end_name, cost)
graph.connect(end_name, start_name, cost)
if __name__ == "__main__":
graph = AdjacencyMatrixGraph()
read_elektro_into_graph(graph, get_path("data/elektro.txt"))
parents, cost = graph.mst_prim()
print(f"Kosten nach Prim: {cost}")
for node, parent in parents.items():
if parent is not None:
print(f"{node} - {parent}")
edges, cost = graph.mst_kruskal()
print(f"Kosten nach Kruskal: {cost}")
for start_name, end_name, _ in edges:
print(f"{start_name} - {end_name}")

View File

@ -2,9 +2,12 @@ from collections import deque
from typing import List from typing import List
from enum import Enum from enum import Enum
import graphviz import graphviz
import math
import heapq
from datetime import datetime from datetime import datetime
from utils.project_dir import get_path from utils.project_dir import get_path
from utils.priority_queue import PriorityQueue from utils.priority_queue import PriorityQueue
from vorlesung.L09_mst.disjoint import DisjointValue
class NodeColor(Enum): class NodeColor(Enum):
@ -205,6 +208,68 @@ class Graph:
relax(vertex, dest, weight) relax(vertex, dest, weight)
return distance_map, predecessor_map return distance_map, predecessor_map
def mst_prim(self, start_name: str = None):
""" Compute the minimum spanning tree of the graph using Prim's algorithm. """
distance_map = {} # maps vertices to their current distance from the spanning tree
parent_map = {} # maps vertices to their predecessor in the spanning tree
Vertex.__lt__ = lambda self, other: distance_map[self] < distance_map[other]
queue = []
if start_name is None:
start_name = self.all_vertices()[0].value
# Initialize the maps
for vertex in self.all_vertices():
distance_map[vertex] = 0 if vertex.value == start_name else math.inf
parent_map[vertex] = None
queue.append(vertex)
heapq.heapify(queue) # Convert the list into a heap
# Process the queue
cost = 0 # The cost of the minimum spanning tree
while len(queue) > 0:
vertex = heapq.heappop(queue)
cost += distance_map[vertex] # Add the cost of the edge to the minimum spanning tree
for (dest, w) in self.get_adjacent_vertices_with_weight(vertex.value):
if dest in queue and distance_map[dest] > w:
# Update the distance and parent maps
queue.remove(dest)
distance_map[dest] = w
parent_map[dest] = vertex
queue.append(dest) # Add the vertex back to the queue
heapq.heapify(queue) # Re-heapify the queue
# Return the distance and predecessor maps
return parent_map, cost
def mst_kruskal(self, start_name: str = None):
""" Compute the minimum spanning tree of the graph using Kruskal's algorithm. """
cost = 0
result = []
edges = self.all_edges()
# Create a disjoint set for each vertex
vertex_map = {v.value: DisjointValue(v) for v in self.all_vertices()}
# Sort the edges by weight
edges.sort(key=lambda edge: edge[2])
# Process the edges
for edge in edges:
start_name, end_name, weight = edge
# Check if the edge creates a cycle
if not vertex_map[start_name].same_set(vertex_map[end_name]):
result.append(edge)
vertex_map[start_name].union(vertex_map[end_name])
cost += weight
return result, cost
class AdjacencyListGraph(Graph): class AdjacencyListGraph(Graph):
"""A graph implemented as an adjacency list.""" """A graph implemented as an adjacency list."""
@ -243,8 +308,6 @@ class AdjacencyListGraph(Graph):
return result return result
class AdjacencyMatrixGraph(Graph): class AdjacencyMatrixGraph(Graph):
"""A graph implemented as an adjacency matrix.""" """A graph implemented as an adjacency matrix."""
def __init__(self): def __init__(self):

View File

View File

@ -0,0 +1,18 @@
class DisjointValue():
def __init__(self, value):
self.value = value
self.parent = None
def canonical(self):
if self.parent:
return self.parent.canonical()
return self
def same_set(self, other):
return self.canonical() == other.canonical()
def union(self, other):
self.canonical().parent = other.canonical()