Compare commits
16 Commits
Author | SHA1 | Date | |
---|---|---|---|
fe314b7c6c | |||
f033738d31 | |||
0401aa42ee | |||
62d6fa7459 | |||
04b6cddb39 | |||
1853c4d126 | |||
47ae350bcc | |||
1b0f9f8c50 | |||
f02669d601 | |||
e19262e818 | |||
3926d8d0c7 | |||
364590c563 | |||
79f0fc36fd | |||
c0d376cd5c | |||
8df24e2aa1 | |||
bff98d35a7 |
2
.idea/AlgoDatSoSe25.iml
generated
2
.idea/AlgoDatSoSe25.iml
generated
@ -5,7 +5,7 @@
|
||||
<excludeFolder url="file://$MODULE_DIR$/.venv" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/venv" />
|
||||
</content>
|
||||
<orderEntry type="jdk" jdkName="Python 3.12 (AlgoDatSoSe25)" jdkType="Python SDK" />
|
||||
<orderEntry type="jdk" jdkName="Python 3.12 (SoSe25)" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
24
activateEnv.srcme
Executable file
24
activateEnv.srcme
Executable file
@ -0,0 +1,24 @@
|
||||
#!/bin/bash -u
|
||||
|
||||
#
|
||||
# Source python venv (installed via curl https://pyenv.run | bash) to use specific python-version for this project without affecting system
|
||||
# For Algorithms and Datastructures Class
|
||||
#
|
||||
# For WSLg support for matplotlib export="DISPLAY:0" and
|
||||
# echo "backend: TkAgg" > ~/.config/matplotlib/matplotlibrc
|
||||
|
||||
export PYENV_ROOT="$HOME/.pyenv"
|
||||
export PATH="$PYENV_ROOT/bin:$PATH"
|
||||
export PYTHONPATH=".:$PYTHONPATH"
|
||||
eval "$(pyenv init --path)"
|
||||
eval "$(pyenv init -)"
|
||||
eval "$(pyenv virtualenv-init -)"
|
||||
|
||||
# Create virtualenv if it doesn't exist
|
||||
if ! pyenv versions | grep -q AUD; then
|
||||
echo "Creating Python environment..."
|
||||
pyenv install -s 3.12.0
|
||||
pyenv virtualenv 3.12.0 AUD
|
||||
fi
|
||||
|
||||
pyenv activate AUD
|
@ -1,5 +0,0 @@
|
||||
Sabqponm
|
||||
abcryxxl
|
||||
accszExk
|
||||
acctuvwj
|
||||
abdefghi
|
@ -1,15 +0,0 @@
|
||||
###############
|
||||
#.......#....E#
|
||||
#.#.###.#.###.#
|
||||
#.....#.#...#.#
|
||||
#.###.#####.#.#
|
||||
#.#.#.......#.#
|
||||
#.#.#####.###.#
|
||||
#...........#.#
|
||||
###.#.#####.#.#
|
||||
#...#.....#.#.#
|
||||
#.#.#.###.#.#.#
|
||||
#.....#...#.#.#
|
||||
#.###.#.#.#.#.#
|
||||
#S..#.....#...#
|
||||
###############
|
@ -1,8 +0,0 @@
|
||||
"Höhleneingang";"Ost/West-Passage";5
|
||||
"Höhleneingang";"Nord/Süd-Passage";3
|
||||
"Nord/Süd-Passage";"Nebelraum";7
|
||||
"Steiniger Pfad";"Ost/West-Passage";2
|
||||
"Ost/West-Passage";"Schwefelgewölbe";4
|
||||
"Schwefelgewölbe";"Steiniger Pfad";1
|
||||
"Schatzkammer";"Nebelraum";2
|
||||
"Steiniger Pfad";"Schatzkammer";6
|
@ -1,8 +0,0 @@
|
||||
"Höhleneingang" <> "Ost/West-Passage"
|
||||
"Höhleneingang" <> "Nord/Süd-Passage"
|
||||
"Nord/Süd-Passage" <> "Nebelraum"
|
||||
"Steiniger Pfad" > "Ost/West-Passage"
|
||||
"Ost/West-Passage" <> "Schwefelgewölbe"
|
||||
"Schwefelgewölbe" > "Steiniger Pfad"
|
||||
"Schatzkammer" > "Nebelraum"
|
||||
"Steiniger Pfad" > "Schatzkammer"
|
@ -1,9 +0,0 @@
|
||||
xxxxxxxxxxxxxxxxxxxxx
|
||||
x x
|
||||
x S x
|
||||
x x
|
||||
x xxxxxxxx x
|
||||
x x
|
||||
x x
|
||||
x A x
|
||||
xxxxxxxxxxxxxxxxxxxxx
|
@ -1,5 +0,0 @@
|
||||
xxxxxAxxxxxxxxx
|
||||
x xSx
|
||||
xxxxxxxxxx xx x
|
||||
x x
|
||||
xxxxxxxxxxxxxxx
|
13
myreqs.txt
Normal file
13
myreqs.txt
Normal file
@ -0,0 +1,13 @@
|
||||
contourpy==1.3.1
|
||||
cycler==0.12.1
|
||||
fonttools==4.56.0
|
||||
kiwisolver==1.4.8
|
||||
matplotlib==3.10.1
|
||||
numpy==2.2.4
|
||||
packaging==24.2
|
||||
pillow==11.1.0
|
||||
pygame==2.6.1
|
||||
pyparsing==3.2.3
|
||||
python-dateutil==2.9.0.post0
|
||||
six==1.17.0
|
||||
tk==0.1.0
|
@ -1,150 +0,0 @@
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.literal import Literal
|
||||
import random
|
||||
|
||||
class PriorityQueue:
|
||||
|
||||
def __init__(self, size: Literal):
|
||||
self.items = MemoryArray(size)
|
||||
self.heapsize = MemoryCell(0)
|
||||
|
||||
def __len__(self):
|
||||
return self.heapsize.value
|
||||
|
||||
def insert(self, item: MemoryCell):
|
||||
if self.heapsize == self.items.length():
|
||||
raise Exception("Queue is full")
|
||||
self.heapsize.set(self.heapsize.succ())
|
||||
self.items[adjust_index(self.heapsize)].set(item.value)
|
||||
heapyfy_up(self.items, self.heapsize)
|
||||
|
||||
|
||||
def pop(self) -> MemoryCell | None:
|
||||
if self.is_empty():
|
||||
return None
|
||||
result = MemoryCell(self.items[Literal(0)])
|
||||
self.heapsize.set(self.heapsize.pred())
|
||||
if self.heapsize > Literal(1):
|
||||
swap(self.items, 0, int(self.heapsize))
|
||||
max_heapyfy(self.items, Literal(1), self.heapsize)
|
||||
return result
|
||||
|
||||
def peek(self) -> MemoryCell | None:
|
||||
if self.is_empty():
|
||||
return None
|
||||
return MemoryCell(self.items[Literal(0)])
|
||||
|
||||
def is_empty(self) -> bool:
|
||||
return self.heapsize == Literal(0)
|
||||
|
||||
def __str__(self):
|
||||
result = "[ "
|
||||
for i, cell in enumerate(self.items.cells):
|
||||
if i == int(self.heapsize):
|
||||
result += "| "
|
||||
result += str(cell) + " "
|
||||
result += "]"
|
||||
return result
|
||||
|
||||
def left_child(i: Literal):
|
||||
return Literal(2 * int(i))
|
||||
|
||||
|
||||
def right_child(i: Literal):
|
||||
return Literal(2 * int(i) + 1)
|
||||
|
||||
|
||||
def adjust_index(i: Literal):
|
||||
return i.pred()
|
||||
|
||||
def heapyfy_up(z: MemoryArray, i: Literal):
|
||||
if i == Literal(1):
|
||||
return
|
||||
parent = Literal(int(i) // 2)
|
||||
if z[adjust_index(parent)] >= z[adjust_index(i)]:
|
||||
return
|
||||
swap(z, int(i)-1, int(parent)-1)
|
||||
heapyfy_up(z, parent)
|
||||
|
||||
|
||||
def max_heapyfy(z: MemoryArray, i: Literal, heapsize: Literal):
|
||||
l = left_child(i)
|
||||
r = right_child(i)
|
||||
with MemoryCell(i) as max_value:
|
||||
if l <= heapsize and z[adjust_index(l)] > z[adjust_index(i)]:
|
||||
max_value.set(l)
|
||||
if r <= heapsize and z[adjust_index(r)] > z[adjust_index(max_value)]:
|
||||
max_value.set(r)
|
||||
if max_value != i:
|
||||
swap(z, int(i)-1, int(max_value)-1)
|
||||
max_heapyfy(z, max_value, heapsize)
|
||||
|
||||
|
||||
def swap(z: MemoryArray, i: int, j: int):
|
||||
tmp = z[Literal(i)].value
|
||||
z[Literal(i)] = z[Literal(j)]
|
||||
z[Literal(j)].set(tmp)
|
||||
|
||||
|
||||
def analyze_complexity_insert(sizes, presorted=False):
|
||||
"""
|
||||
Analysiert die Komplexität der Insert-Funktion.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager().purge() # Speicher zurücksetzen
|
||||
pq = PriorityQueue(Literal(size))
|
||||
insert_list = [random.randint(-100, 100) for _ in range(size)]
|
||||
if presorted:
|
||||
insert_list.sort()
|
||||
for insert_value in insert_list[:-1]:
|
||||
pq.insert(MemoryCell(insert_value))
|
||||
MemoryManager().reset()
|
||||
pq.insert(MemoryCell(insert_list[-1]))
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "compares", "writes"])
|
||||
|
||||
|
||||
def analyze_complexity_pop(sizes, presorted=False):
|
||||
"""
|
||||
Analysiert die Komplexität der Pop-Funktion.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager().purge() # Speicher zurücksetzen
|
||||
pq = PriorityQueue(Literal(size))
|
||||
insert_list = [random.randint(-100, 100) for _ in range(size)]
|
||||
if presorted:
|
||||
insert_list.sort()
|
||||
for insert_value in insert_list:
|
||||
pq.insert(MemoryCell(insert_value))
|
||||
MemoryManager().reset()
|
||||
pq.pop()
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "compares", "writes"])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
length = Literal(10)
|
||||
pq = PriorityQueue(length)
|
||||
for i in range(10):
|
||||
space_left = int(length) - len(pq)
|
||||
if space_left > 0:
|
||||
insert_count = random.randint(1, space_left)
|
||||
insert_sequence = [random.randint(1, int(length)) for _ in range(insert_count)]
|
||||
print(f"-> {insert_sequence}")
|
||||
for j in insert_sequence:
|
||||
pq.insert(MemoryCell(j))
|
||||
print(f"{pq}")
|
||||
if not pq.is_empty():
|
||||
pop_count = random.randint(1, len(pq))
|
||||
output_sequence = [int(pq.pop()) for _ in range(pop_count)]
|
||||
print(f"<- {output_sequence}")
|
||||
print(f"{pq}")
|
||||
|
||||
sizes = range(10, 501, 5)
|
||||
analyze_complexity_insert(sizes, presorted=True)
|
||||
analyze_complexity_pop(sizes, presorted=True)
|
||||
|
@ -1,93 +0,0 @@
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.literal import Literal
|
||||
|
||||
def quick_sort_stepwise(z: MemoryArray, l: Literal, r: Literal):
|
||||
if l < r:
|
||||
q = partition(z, l, r)
|
||||
yield z
|
||||
yield from quick_sort_stepwise(z, l, q.pred())
|
||||
yield from quick_sort_stepwise(z, q.succ(), r)
|
||||
yield z
|
||||
|
||||
|
||||
def partition(z: MemoryArray, l: Literal, r: Literal):
|
||||
p = mid_index(z, l, r, Literal((int(l)+int(r))//2))
|
||||
swap(z, p, r)
|
||||
with MemoryCell(z[r]) as pivot, MemoryCell(l) as i, MemoryCell(r.pred()) as j:
|
||||
while i < j:
|
||||
while z[i] < pivot:
|
||||
i.set(i.succ())
|
||||
while j > l and z[j] >= pivot:
|
||||
j.set(j.pred())
|
||||
if i < j:
|
||||
swap(z, int(i), int(j))
|
||||
i.set(i.succ())
|
||||
j.set(j.pred())
|
||||
if i == j and z[i] < pivot:
|
||||
i.set(i.succ())
|
||||
if z[i] != pivot:
|
||||
swap(z, int(i), int(r))
|
||||
return Literal(i)
|
||||
|
||||
def mid_index(z: MemoryArray, i1, i2, i3):
|
||||
if z[i1] < z[i2] < z[i3]:
|
||||
return i2
|
||||
elif z[i3] < z[i2] < z[i1]:
|
||||
return i2
|
||||
elif z[i2] < z[i1] < z[i3]:
|
||||
return i1
|
||||
elif z[i3] < z[i1] < z[i2]:
|
||||
return i1
|
||||
else:
|
||||
return i3
|
||||
|
||||
def quick_sort(z: MemoryArray, l: Literal = None, r: Literal = None):
|
||||
if l is None:
|
||||
l = Literal(0)
|
||||
if r is None:
|
||||
r = z.length().pred()
|
||||
sort_generator = quick_sort_stepwise(z, l, r)
|
||||
while True:
|
||||
try:
|
||||
next(sort_generator)
|
||||
except StopIteration:
|
||||
break
|
||||
|
||||
|
||||
def sort_file(filename, sort_func):
|
||||
z = MemoryArray.create_array_from_file(filename)
|
||||
sort_func(z)
|
||||
return z
|
||||
|
||||
|
||||
def analyze_complexity(sort_func, sizes, presorted=False):
|
||||
"""
|
||||
Analysiert die Komplexität einer Sortierfunktion.
|
||||
|
||||
:param sort_func: Die Funktion, die analysiert wird.
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
if presorted:
|
||||
random_array = MemoryArray.create_sorted_array(size)
|
||||
else:
|
||||
random_array = MemoryArray.create_random_array(size, -100, 100)
|
||||
sort_func(random_array)
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "compares", "writes"])
|
||||
|
||||
|
||||
def swap(z: MemoryArray, i: int, j: int):
|
||||
tmp = z[Literal(i)].value
|
||||
z[Literal(i)] = z[Literal(j)]
|
||||
z[Literal(j)].set(tmp)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
sizes = range(10, 101, 5)
|
||||
analyze_complexity(quick_sort, sizes)
|
||||
analyze_complexity(quick_sort, sizes, True)
|
@ -1,15 +0,0 @@
|
||||
from utils.memory_cell import MemoryCell
|
||||
|
||||
class BinaryTreeNode(MemoryCell):
|
||||
|
||||
def __init__(self, value):
|
||||
super().__init__(value)
|
||||
self.left = None
|
||||
self.right = None
|
||||
|
||||
def __repr__(self):
|
||||
return f"BinaryTreeNode(value={self.value}, left={self.left}, right={self.right})"
|
||||
|
||||
def __str__(self):
|
||||
return str(self.value)
|
||||
|
@ -1,12 +0,0 @@
|
||||
from utils.memory_array import MemoryArray
|
||||
from vorlesung.L05_binaere_baeume.avl_tree import AVLTree
|
||||
|
||||
if __name__ == "__main__":
|
||||
a = MemoryArray.create_array_from_file("data/seq0.txt")
|
||||
tree = AVLTree()
|
||||
|
||||
for cell in a:
|
||||
tree.insert(int(cell))
|
||||
|
||||
tree.graph_traversal()
|
||||
|
@ -1,12 +0,0 @@
|
||||
from utils.memory_array import MemoryArray
|
||||
from vorlesung.L05_binaere_baeume.bin_tree import BinaryTree
|
||||
|
||||
if __name__ == "__main__":
|
||||
a = MemoryArray.create_array_from_file("data/seq0.txt")
|
||||
tree = BinaryTree()
|
||||
|
||||
for cell in a:
|
||||
tree.insert(int(cell))
|
||||
|
||||
tree.graph_traversal()
|
||||
|
@ -1,106 +0,0 @@
|
||||
import math
|
||||
import unittest
|
||||
from utils.literal import Literal
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.memory_array import MemoryArray
|
||||
from vorlesung.L07_hashtable.hashtable import HashTableOpenAddressing
|
||||
|
||||
#Goldener Schnitt
|
||||
a = Literal((math.sqrt(5) - 1) / 2)
|
||||
|
||||
# Hashfunktion nach multiplikativer Methode
|
||||
def h(x: MemoryCell, m: Literal) -> Literal:
|
||||
with MemoryCell(int(x * a)) as integer_part, MemoryCell(x * a) as full_product:
|
||||
with MemoryCell(full_product - integer_part) as fractional_part:
|
||||
return Literal(abs(int(fractional_part * m)))
|
||||
|
||||
# Quadratische Sondierung
|
||||
def f(x: MemoryCell, i: Literal, m: Literal) -> Literal:
|
||||
c1 = 1
|
||||
c2 = 5
|
||||
with MemoryCell(h(x, m)) as initial_hash, MemoryCell(c2 * int(i) * int(i)) as quadratic_offset:
|
||||
with MemoryCell(initial_hash + quadratic_offset) as probe_position:
|
||||
probe_position += Literal(c1 * int(i)) # Linear component
|
||||
return probe_position % m
|
||||
|
||||
# Symmetrische quadratische Sondierung
|
||||
def fs(x: MemoryCell, i: Literal, m: Literal) -> Literal:
|
||||
with MemoryCell(h(x, m)) as base_hash, MemoryCell(int(i) * int(i)) as square:
|
||||
if int(i) % 2 == 0: # gerades i: Vorwärtssondierung
|
||||
with MemoryCell(base_hash + square) as position:
|
||||
return position % m
|
||||
else: # ungerades i: Rückwärtssondierung
|
||||
with MemoryCell(base_hash - square) as position:
|
||||
return position % m
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
print("*** Aufgabe 3 ***")
|
||||
size = Literal(20)
|
||||
print(f"Anlage einer Hash-Tabelle mit offener Adressierung mit Größe {size}")
|
||||
ht = HashTableOpenAddressing(size, f)
|
||||
print("Einfügen der Werte aus seq0.txt")
|
||||
for cell in MemoryArray.create_array_from_file("data/seq0.txt"):
|
||||
if not ht.insert(cell):
|
||||
print(f"Einfügen von {cell} nicht möglich")
|
||||
print(ht)
|
||||
print(f"Belegungsfaktor: {ht.alpha()}")
|
||||
|
||||
with MemoryCell(52) as cell:
|
||||
print(f"Suche nach {cell}")
|
||||
if ht.search(cell):
|
||||
print(f"{cell} gefunden, wird gelöscht.")
|
||||
ht.delete(cell)
|
||||
else:
|
||||
print(f"{cell} nicht gefunden")
|
||||
print(ht)
|
||||
print(f"Belegungsfaktor: {ht.alpha()}")
|
||||
print("Einfügen von 24")
|
||||
with MemoryCell(24) as cell:
|
||||
if not ht.insert(cell):
|
||||
print(f"Einfügen von {cell} nicht möglich")
|
||||
print(ht)
|
||||
print(f"Belegungsfaktor: {ht.alpha()}")
|
||||
print()
|
||||
|
||||
print("*** Aufgabe 4 ***")
|
||||
size = Literal(90)
|
||||
print(f"Anlage einer Hash-Tabelle mit offener Adressierung mit Größe {size}")
|
||||
ht = HashTableOpenAddressing(size, f)
|
||||
print("Einfügen der Werte aus seq1.txt")
|
||||
for cell in MemoryArray.create_array_from_file("data/seq1.txt"):
|
||||
if not ht.insert(cell):
|
||||
print(f"Einfügen von {cell} nicht möglich")
|
||||
print(ht)
|
||||
print(f"Belegungsfaktor: {ht.alpha()}")
|
||||
print()
|
||||
|
||||
print("*** Aufgabe 5 ***")
|
||||
size = Literal(89)
|
||||
print(f"Anlage einer Hash-Tabelle mit offener Adressierung mit Größe {size}")
|
||||
ht = HashTableOpenAddressing(size, f)
|
||||
print("Einfügen der Werte aus seq1.txt")
|
||||
for cell in MemoryArray.create_array_from_file("data/seq1.txt"):
|
||||
if not ht.insert(cell):
|
||||
print(f"Einfügen von {cell} nicht möglich")
|
||||
print(ht)
|
||||
print(f"Belegungsfaktor: {ht.alpha()}")
|
||||
print()
|
||||
|
||||
print("*** Aufgabe 6 ***")
|
||||
size = Literal(90)
|
||||
print(f"Anlage einer Hash-Tabelle mit offener Adressierung mit Größe {size}")
|
||||
print("Verwendung der symmetrischen quadratischen Sondierung")
|
||||
ht = HashTableOpenAddressing(size, fs)
|
||||
print("Einfügen der Werte aus seq1.txt")
|
||||
for cell in MemoryArray.create_array_from_file("data/seq1.txt"):
|
||||
if not ht.insert(cell):
|
||||
print(f"Einfügen von {cell} nicht möglich")
|
||||
print(ht)
|
||||
print(f"Belegungsfaktor: {ht.alpha()}")
|
||||
print()
|
||||
|
||||
|
@ -1,37 +0,0 @@
|
||||
import re
|
||||
from utils.project_dir import get_path
|
||||
from vorlesung.L08_graphen.graph import Graph, AdjacencyListGraph, AdjacencyMatrixGraph
|
||||
|
||||
|
||||
def read_cave_into_graph(graph: Graph, filename: str):
|
||||
"""Read a cave description from a file and insert it into the given graph."""
|
||||
filename = get_path(filename)
|
||||
with open(filename, "r") as file:
|
||||
lines = file.readlines()
|
||||
for line in lines:
|
||||
# match a line with two node names and an optional direction
|
||||
m = re.match(r"(^\s*\"(.*)\"\s*([<>]*)\s*\"(.*)\"\s*)", line)
|
||||
if m:
|
||||
startnode = m.group(2)
|
||||
endnode = m.group(4)
|
||||
opcode = m.group(3)
|
||||
graph.insert_vertex(startnode)
|
||||
graph.insert_vertex(endnode)
|
||||
if '>' in opcode:
|
||||
graph.connect(startnode, endnode)
|
||||
if '<' in opcode:
|
||||
graph.connect(endnode, startnode)
|
||||
|
||||
|
||||
graph = AdjacencyListGraph()
|
||||
# graph = AdjacencyMatrixGraph()
|
||||
read_cave_into_graph(graph, "data/hoehle.txt")
|
||||
_, predecessor_map = graph.bfs('Höhleneingang')
|
||||
path = graph.path('Schatzkammer', predecessor_map)
|
||||
print(path)
|
||||
_, predecessor_map = graph.bfs('Schatzkammer')
|
||||
path = graph.path('Höhleneingang', predecessor_map)
|
||||
print(path)
|
||||
graph.graph("Höhle")
|
||||
|
||||
|
@ -1,59 +0,0 @@
|
||||
from utils.project_dir import get_path
|
||||
from vorlesung.L08_graphen.graph import AdjacencyListGraph
|
||||
|
||||
DIRECTIONS = [(1,0), (0, 1), (-1, 0), (0, -1)]
|
||||
|
||||
class D16Solution:
|
||||
|
||||
def __init__(self):
|
||||
with open(get_path("data/aoc2416.txt"), "r") as file:
|
||||
self.puzzle = [line.strip() for line in file]
|
||||
self.cells = set()
|
||||
self.start = None
|
||||
self.end = None
|
||||
|
||||
def get_cells_start_end(self):
|
||||
for row in range(len(self.puzzle)):
|
||||
for col in range(len(self.puzzle[row])):
|
||||
if self.puzzle[row][col] != '#':
|
||||
self.cells.add((col, row))
|
||||
if self.puzzle[row][col] == 'S':
|
||||
self.start = (col, row)
|
||||
if self.puzzle[row][col] == 'E':
|
||||
self.end = (col, row)
|
||||
|
||||
def get_label(self, cell, direction):
|
||||
"""Generate a label for a cell based on its coordinates and direction."""
|
||||
return f"{cell[0]},{cell[1]}_{direction}"
|
||||
|
||||
def create_graph(self):
|
||||
graph = AdjacencyListGraph()
|
||||
for cell in self.cells:
|
||||
for direction in DIRECTIONS:
|
||||
label = self.get_label(cell, direction)
|
||||
graph.insert_vertex(label)
|
||||
for cell in self.cells:
|
||||
for d, direction in enumerate(DIRECTIONS):
|
||||
label = self.get_label(cell, direction)
|
||||
dx, dy = direction
|
||||
neighbor = (cell[0] + dx, cell[1] + dy)
|
||||
if neighbor in self.cells:
|
||||
graph.connect(label, self.get_label(neighbor, direction))
|
||||
direction_left = DIRECTIONS[(d - 1) % 4]
|
||||
direction_right = DIRECTIONS[(d + 1) % 4]
|
||||
graph.connect(label, self.get_label(cell, direction_left), 1000)
|
||||
graph.connect(label, self.get_label(cell, direction_right), 1000)
|
||||
return graph
|
||||
|
||||
if __name__ == "__main__":
|
||||
solution = D16Solution()
|
||||
solution.get_cells_start_end()
|
||||
graph = solution.create_graph()
|
||||
start = solution.get_label(solution.start, DIRECTIONS[0])
|
||||
print(f"Start: {start}")
|
||||
distance_map, predecessor_map = graph.dijkstra(start)
|
||||
end_labels = [solution.get_label(solution.end, direction) for direction in DIRECTIONS]
|
||||
end_vertices = [graph.get_vertex(label) for label in end_labels]
|
||||
min_weight = min([distance_map[vertex] for vertex in end_vertices])
|
||||
print(f"Minimum distance to End {solution.end}: {min_weight}")
|
||||
|
@ -1,32 +0,0 @@
|
||||
from vorlesung.L08_graphen.graph import Graph, AdjacencyMatrixGraph
|
||||
from utils.project_dir import get_path
|
||||
import re
|
||||
|
||||
def read_elektro_into_graph(graph: Graph, filename: str):
|
||||
pattern = re.compile(r'"([^"]+)";"([^"]+)";(\d+)')
|
||||
with (open(filename, "r") as file):
|
||||
for line in file:
|
||||
m = pattern.match(line)
|
||||
if m:
|
||||
start_name = m.group(1)
|
||||
end_name = m.group(2)
|
||||
cost = int(m.group(3))
|
||||
graph.insert_vertex(start_name)
|
||||
graph.insert_vertex(end_name)
|
||||
graph.connect(start_name, end_name, cost)
|
||||
graph.connect(end_name, start_name, cost)
|
||||
|
||||
if __name__ == "__main__":
|
||||
graph = AdjacencyMatrixGraph()
|
||||
read_elektro_into_graph(graph, get_path("data/elektro.txt"))
|
||||
|
||||
parents, cost = graph.mst_prim()
|
||||
print(f"Kosten nach Prim: {cost}")
|
||||
for node, parent in parents.items():
|
||||
if parent is not None:
|
||||
print(f"{node} - {parent}")
|
||||
|
||||
edges, cost = graph.mst_kruskal()
|
||||
print(f"Kosten nach Kruskal: {cost}")
|
||||
for start_name, end_name, _ in edges:
|
||||
print(f"{start_name} - {end_name}")
|
@ -1,4 +1,3 @@
|
||||
matplotlib
|
||||
numpy
|
||||
pygame
|
||||
graphviz
|
||||
|
165
schoeffelbe/pr01.py
Normal file
165
schoeffelbe/pr01.py
Normal file
@ -0,0 +1,165 @@
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.literal import Literal
|
||||
from utils.constants import MIN_VALUE
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.memory_range import mrange
|
||||
|
||||
def max_sequence_1(z: MemoryArray):
|
||||
n = z.length()
|
||||
m = MemoryCell(MIN_VALUE)
|
||||
s = MemoryCell()
|
||||
l = MemoryCell()
|
||||
r = MemoryCell()
|
||||
for i in mrange(n):
|
||||
for j in mrange(i, n):
|
||||
s.set(0)
|
||||
for k in mrange(i, j):
|
||||
s += z[k]
|
||||
if s > m:
|
||||
m.set(s)
|
||||
l.set(i)
|
||||
r.set(j)
|
||||
return m, l, r
|
||||
|
||||
def max_sequence_2(z: MemoryArray):
|
||||
n = z.length()
|
||||
m = MemoryCell(MIN_VALUE)
|
||||
s = MemoryCell()
|
||||
l = MemoryCell()
|
||||
r = MemoryCell()
|
||||
for i in mrange(n):
|
||||
s.set(0)
|
||||
for j in mrange(i, n):
|
||||
s += z[j]
|
||||
if s > m:
|
||||
m.set(s)
|
||||
l.set(i)
|
||||
r.set(j)
|
||||
return m, l, r
|
||||
|
||||
def _max_sequence_3_sub(z: MemoryArray, l: Literal, m: Literal, r: Literal):
|
||||
# find max-sum from Middle to left
|
||||
linksMax = MemoryCell(MIN_VALUE)
|
||||
sum = MemoryCell(0)
|
||||
links = MemoryCell(l)
|
||||
rechts = MemoryCell(l)
|
||||
for i in mrange(m, MemoryCell(l)-Literal(1), -1):
|
||||
sum += z[i]
|
||||
if sum > linksMax :
|
||||
linksMax.set(sum)
|
||||
links.set(i)
|
||||
|
||||
# find max-sum from Middle to right
|
||||
rechtsMax = MemoryCell(MIN_VALUE)
|
||||
sum.set(0);
|
||||
# MRange is exclusive
|
||||
startRight = MemoryCell(1) + m
|
||||
for i in mrange(startRight, MemoryCell(1) + r):
|
||||
sum += z[i]
|
||||
if sum > rechtsMax:
|
||||
rechtsMax.set(sum)
|
||||
rechts.set(i)
|
||||
return (linksMax + rechtsMax), links, rechts
|
||||
|
||||
def _max_sequence_3(z: MemoryArray, l: Literal, r: Literal):
|
||||
# Calc-Vars -> illegal to use Literal(0) here? Probably
|
||||
# CAN ALLLL BE LITERALS
|
||||
linksMax = MemoryCell()
|
||||
linksL = MemoryCell()
|
||||
linksR = MemoryCell()
|
||||
rechtsMax = MemoryCell()
|
||||
rechtsL = MemoryCell()
|
||||
rechtsR = MemoryCell()
|
||||
zwiMax = MemoryCell()
|
||||
zwiL = MemoryCell()
|
||||
zwiR = MemoryCell()
|
||||
# Middle
|
||||
m = MemoryCell()
|
||||
# Rec-Term - Reached subarray of size 1
|
||||
if l == r:
|
||||
return (z[l], l, r)
|
||||
# calc middle
|
||||
m.set(MemoryCell(l) + r)
|
||||
# Use cutoff/floor here, did not check
|
||||
m //= Literal(2);
|
||||
# get maxLeft, then maxRight and then cross them (rec)
|
||||
(linksMax, linksL, linksR) = _max_sequence_3(z, l, m)
|
||||
startRight = MemoryCell(1) + m
|
||||
(rechtsMax, rechtsL, rechtsR) = _max_sequence_3(z, startRight, r)
|
||||
(zwiMax, zwiL, zwiR) = _max_sequence_3_sub(z, l, m, r)
|
||||
|
||||
if linksMax >= rechtsMax and linksMax >= zwiMax:
|
||||
return (linksMax, linksL, linksR)
|
||||
|
||||
if rechtsMax >= linksMax and rechtsMax >= zwiMax:
|
||||
return (rechtsMax, rechtsL, rechtsR)
|
||||
|
||||
return (zwiMax, zwiL, zwiR)
|
||||
|
||||
# Wrapper for Seq DivAndConquer to keep call/teststructure possible
|
||||
def max_sequence_3(z: MemoryArray):
|
||||
# Start with full range
|
||||
lstart = Literal(0)
|
||||
rend = Literal(len(z) - 1)
|
||||
return _max_sequence_3(z, lstart, rend)
|
||||
|
||||
def max_sequence_4(z: MemoryArray):
|
||||
n = z.length()
|
||||
max = MemoryCell(MIN_VALUE)
|
||||
aktLinks = MemoryCell()
|
||||
links = MemoryCell()
|
||||
rechts = MemoryCell()
|
||||
aktSum = MemoryCell()
|
||||
for i in mrange(n):
|
||||
aktSum += z[i]
|
||||
if aktSum > max:
|
||||
max.set(aktSum)
|
||||
links.set(aktLinks)
|
||||
rechts.set(i)
|
||||
# if negative we start new Sum -> Restart must be better than continue
|
||||
if aktSum < Literal(0):
|
||||
aktSum.set(0)
|
||||
aktLinks.set(MemoryCell(1) + i)
|
||||
return (max, links, rechts)
|
||||
|
||||
def example(max_sequence_func):
|
||||
l = [-59, 52, 46, 14, -50, 58, -87, -77, 34, 15]
|
||||
print(l)
|
||||
z = MemoryArray(l)
|
||||
m, l, r = max_sequence_func(z)
|
||||
print(m, l, r)
|
||||
assert(m == Literal(120))
|
||||
|
||||
|
||||
def seq(filename, max_sequence_func):
|
||||
z = MemoryArray.create_array_from_file(filename)
|
||||
m, l, r = max_sequence_func(z)
|
||||
print(m, l, r)
|
||||
|
||||
|
||||
def analyze_complexity(max_sequence_func, sizes):
|
||||
"""
|
||||
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
|
||||
|
||||
:param max_sequence_func: Die Funktion, die analysiert wird.
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
random_array = MemoryArray.create_random_array(size, -100, 100)
|
||||
max_sequence_func(random_array)
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "adds"])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# fn = max_sequence_4
|
||||
for fn in [max_sequence_1, max_sequence_2, max_sequence_3, max_sequence_4]:
|
||||
example(fn)
|
||||
# for filename in ["data/seq0.txt", "data/seq1.txt", "data/seq2.txt", "data/seq3.txt"]:
|
||||
for filename in ["data/seq0.txt", "data/seq1.txt"]:
|
||||
print(filename)
|
||||
seq(filename, fn)
|
||||
analyze_complexity(fn, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
|
125
schoeffelbe/pr02.py
Normal file
125
schoeffelbe/pr02.py
Normal file
@ -0,0 +1,125 @@
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
# logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
import time
|
||||
|
||||
def timeMS(func, *args, **kwargs):
|
||||
startTime = time.perf_counter()
|
||||
result = func(*args, **kwargs)
|
||||
endTime = time.perf_counter()
|
||||
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
|
||||
print(f"{func.__name__} took {elapsedMS:.2f} ms")
|
||||
return result
|
||||
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.literal import Literal
|
||||
from utils.constants import MIN_VALUE
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.memory_range import mrange
|
||||
|
||||
def example():
|
||||
initial = [6, 5, 3, 8, 1, 7, 2, 4]
|
||||
# initial = [-6, -5, -3, -8, 1, 7, 2, 4]
|
||||
toSort = MemoryArray(initial)
|
||||
# init_from_size not accessible?
|
||||
sorted = MemoryArray([-1] * len(initial))
|
||||
mergeSort(toSort, sorted)
|
||||
logger.debug(f"sorted {sorted} vs initial {initial}")
|
||||
assert all(sorted[Literal(i)] == Literal(i+1) for i in range(len(initial))), "Array not sorted correctly"
|
||||
|
||||
analyze_complexity(mergeSort, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
|
||||
|
||||
def merge(left: MemoryArray, right: MemoryArray, sort: MemoryArray):
|
||||
pointerLeft = MemoryCell(0)
|
||||
pointerRight = MemoryCell(0)
|
||||
pointerSort = MemoryCell(0)
|
||||
|
||||
compare = lambda x, y: x <= y
|
||||
|
||||
logger.debug(f"Merging left {left} with right {right} in sort {sort}")
|
||||
|
||||
while pointerLeft < left.length() and pointerRight < right.length():
|
||||
if compare(left[pointerLeft], right[pointerRight]):
|
||||
sort[pointerSort] = left[pointerLeft]
|
||||
pointerLeft += Literal(1)
|
||||
else:
|
||||
sort[pointerSort] = right[pointerRight]
|
||||
pointerRight += Literal(1)
|
||||
|
||||
logger.debug(f"Now are at sort {sort} with {pointerLeft} (l) and {pointerRight} (r)")
|
||||
pointerSort += Literal(1)
|
||||
|
||||
# Consume remaining elements
|
||||
while pointerLeft < left.length():
|
||||
logger.debug(f"Consuming left {left} from {pointerSort} at {pointerLeft}")
|
||||
sort[pointerSort] = left[pointerLeft]
|
||||
pointerLeft += Literal(1)
|
||||
pointerSort += Literal(1)
|
||||
|
||||
while pointerRight < right.length():
|
||||
logger.debug(f"Consuming right {right} from {pointerSort} at {pointerRight}")
|
||||
sort[pointerSort] = right[pointerRight]
|
||||
pointerRight += Literal(1)
|
||||
pointerSort += Literal(1)
|
||||
|
||||
# Sort the array passed as "toSort" and place the result in array "sort"
|
||||
# Does not change the original Array
|
||||
def mergeSort(toSort: MemoryArray, sort: MemoryArray):
|
||||
logger.debug(toSort)
|
||||
toSortLength = MemoryCell(toSort.length())
|
||||
|
||||
# Splitting
|
||||
# Rec-Term -> Reached single Element. Single Element is already sorted so we place it!
|
||||
if toSortLength <= Literal(1):
|
||||
# still working for empty array
|
||||
if toSortLength == Literal(1):
|
||||
sort[Literal(0)] = toSort[Literal(0)]
|
||||
return
|
||||
|
||||
# TODO - Use a global var or a reference to an array passed as argument for this
|
||||
# TODO - Tried non-temp-array approach with alternating Work-Arrays passed to the function, but made code really unreadable. Decided not worth it for now
|
||||
# Temporary Arrays to hold the split arrays
|
||||
mid : Literal = toSortLength // Literal(2)
|
||||
left : MemoryArray = MemoryArray([toSort[i] for i in mrange(mid)])
|
||||
right : MemoryArray = MemoryArray([toSort[i] for i in mrange(mid, toSortLength)])
|
||||
|
||||
# Temporary arrays for sorted halves
|
||||
leftSort = MemoryArray([-1] * mid.get())
|
||||
rightSort = MemoryArray([-1] * (toSortLength - mid).get())
|
||||
|
||||
# Split further
|
||||
mergeSort(left, leftSort)
|
||||
mergeSort(right, rightSort)
|
||||
|
||||
# Recreate the array from the seperated parts
|
||||
merge(leftSort, rightSort, sort)
|
||||
|
||||
def analyze_complexity(fn, sizes):
|
||||
"""
|
||||
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
|
||||
|
||||
:param max_sequence_func: Die Funktion, die analysiert wird.
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
random_array = MemoryArray.create_random_array(size, -100, 100)
|
||||
other_array = MemoryArray([-1] * size)
|
||||
fn(random_array, other_array)
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "adds", "compares"])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# For debug, assert if working and complexity-analysis
|
||||
# example()
|
||||
|
||||
for filename in ["data/seq0.txt", "data/seq1.txt", "data/seq2.txt", "data/seq3.txt"]:
|
||||
print(filename)
|
||||
toSort = MemoryArray.create_array_from_file(filename)
|
||||
sorted = MemoryArray([-1] * toSort.length().get())
|
||||
timeMS(mergeSort, toSort, sorted)
|
||||
# print(sorted)
|
190
schoeffelbe/pr03.py
Normal file
190
schoeffelbe/pr03.py
Normal file
@ -0,0 +1,190 @@
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
# logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
import time
|
||||
|
||||
def timeMS(func, *args, **kwargs):
|
||||
startTime = time.perf_counter()
|
||||
result = func(*args, **kwargs)
|
||||
endTime = time.perf_counter()
|
||||
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
|
||||
print(f"{func.__name__} took {elapsedMS:.2f} ms")
|
||||
return result
|
||||
|
||||
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.literal import Literal
|
||||
from utils.constants import MIN_VALUE
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.memory_range import mrange
|
||||
|
||||
def example():
|
||||
initial = [6, 5, 3, 8, 1, 7, 2, 4]
|
||||
# initial = [-6, -5, -3, -8, 1, 7, 2, 4]
|
||||
toSort = MemoryArray(initial)
|
||||
quickSortIterative(toSort, Literal(0), toSort.length().pred())
|
||||
logger.debug(f"sorted {toSort} vs initial {initial}")
|
||||
assert all(toSort[Literal(i)] == Literal(i+1) for i in range(len(initial))), "Array not sorted correctly"
|
||||
|
||||
# analyze_complexity(quickSort, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
|
||||
|
||||
def getPivot(z: MemoryArray, l: Literal, r: Literal, mode) -> Literal:
|
||||
if mode == 0:
|
||||
return r
|
||||
else:
|
||||
mid_offset = r.value - l.value
|
||||
mid_offset = mid_offset // 2
|
||||
mid = Literal(l.value + mid_offset)
|
||||
|
||||
# Return median of left, middle, and right elements
|
||||
if ((z[l] <= z[mid] and z[mid] <= z[r]) or
|
||||
(z[r] <= z[mid] and z[mid] <= z[l])):
|
||||
return mid
|
||||
elif ((z[mid] <= z[l] and z[l] <= z[r]) or
|
||||
(z[r] <= z[l] and z[l] <= z[mid])):
|
||||
return l
|
||||
else:
|
||||
return r
|
||||
|
||||
|
||||
def swap(z: MemoryArray, i: int, j: int):
|
||||
tmp = z[Literal(i)].value
|
||||
z[Literal(i)] = z[Literal(j)]
|
||||
z[Literal(j)].set(tmp)
|
||||
|
||||
# toSort[] --> Array to be sorted,
|
||||
# left --> Starting index,
|
||||
# right --> Ending index
|
||||
# adapted from https://stackoverflow.com/questions/68524038/is-there-a-python-implementation-of-quicksort-without-recursion
|
||||
def quickSortIterative(toSort : MemoryArray, left : Literal, right : Literal, mode=0):
|
||||
# Create a manually managed stack and avoid pythons recursion-limit
|
||||
size = right.value - left.value + 1
|
||||
stack : MemoryArray = MemoryArray([0] * size)
|
||||
top : MemoryCell = MemoryCell(-1)
|
||||
|
||||
# push initial values of l and h to stack
|
||||
top += Literal(1)
|
||||
stack[top] = left
|
||||
top += Literal(1)
|
||||
stack[top] = right
|
||||
|
||||
# Keep popping from stack until its empty
|
||||
while top >= Literal(0):
|
||||
logger.debug(f"size {size}, stack {stack}, right {right} and left {left}, top {top}")
|
||||
|
||||
# Pop h and l - Ensure we are not getting them by Ref, this will produce weird "JUST A LITTLE OF" Results
|
||||
right = Literal(stack[top].get())
|
||||
top -= Literal(1)
|
||||
left = Literal(stack[top].get())
|
||||
top -= Literal(1)
|
||||
|
||||
# Set pivot element at its correct position in sorted array
|
||||
p = partitionIterative(toSort, left, right, mode)
|
||||
|
||||
# If there are elements on left side of pivot, then push left side to stack
|
||||
if p.pred() > left:
|
||||
top += Literal(1)
|
||||
stack[top] = left
|
||||
top += Literal(1)
|
||||
stack[top] = p.pred()
|
||||
|
||||
# If there are elements on right side of pivot, then push right side to stack
|
||||
if p.succ() < right:
|
||||
top += Literal(1)
|
||||
stack[top] = p.succ()
|
||||
top += Literal(1)
|
||||
stack[top] = right
|
||||
|
||||
def partitionIterative(arr : MemoryArray, l : Literal, h : Literal, mode=0):
|
||||
logger.debug(f"Partitioning {arr}, {l} and {h}")
|
||||
pivot_idx : Literal = getPivot(arr, l, h, mode)
|
||||
|
||||
# If pivot isn't at the high end, swap it there
|
||||
if pivot_idx != h:
|
||||
swap(arr, int(pivot_idx), int(h))
|
||||
|
||||
# Carefull that we do not use a reference. I suppose python would return one here if we just assign without value>Literal cast.
|
||||
# At least this helped fix weird issue
|
||||
pivotValue : Literal = Literal(arr[h].value)
|
||||
i : MemoryCell = MemoryCell(l.pred())
|
||||
|
||||
for j in mrange(l, h):
|
||||
if arr[j] <= pivotValue:
|
||||
i += Literal(1) # increment index of smaller element
|
||||
swap(arr, int(i), int(j))
|
||||
|
||||
swap(arr, int(i.succ()), int(h))
|
||||
return i.succ()
|
||||
|
||||
def LEGACY_quickSort(z: MemoryArray, l: Literal = Literal(0), r: Literal = Literal(-1), mode=0):
|
||||
if r == Literal(-1):
|
||||
r = z.length().pred();
|
||||
if l < r:
|
||||
q = LEGACY_partition(z, l, r, mode)
|
||||
LEGACY_quickSort(z, l, q.pred())
|
||||
LEGACY_quickSort(z, q.succ(), r)
|
||||
|
||||
def LEGACY_partition(z: MemoryArray, l: Literal, r: Literal, mode):
|
||||
# Get pivot
|
||||
pivot_idx = getPivot(z, l, r, mode)
|
||||
|
||||
# If pivot is not already at the right end, swap it there
|
||||
if pivot_idx != r:
|
||||
swap(z, int(pivot_idx), int(r))
|
||||
|
||||
with MemoryCell(z[r]) as pivot, MemoryCell(l) as i, MemoryCell(r.pred()) as j:
|
||||
while i < j:
|
||||
while z[i] < pivot:
|
||||
i.set(i.succ())
|
||||
while j > l and z[j] >= pivot:
|
||||
j.set(j.pred())
|
||||
if i < j:
|
||||
swap(z, int(i), int(j))
|
||||
i.set(i.succ())
|
||||
j.set(j.pred())
|
||||
if i == j and z[i] < pivot:
|
||||
i.set(i.succ())
|
||||
if z[i] != pivot:
|
||||
swap(z, int(i), int(r))
|
||||
return Literal(i)
|
||||
|
||||
|
||||
def analyze_complexity(fn, sizes):
|
||||
"""
|
||||
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
|
||||
|
||||
:param max_sequence_func: Die Funktion, die analysiert wird.
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
random_array = MemoryArray.create_random_array(size, -100, 100)
|
||||
fn(random_array, Literal(0), random_array.length().pred())
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "adds", "compares", "reads", "writes"])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# For debug, assert if working and complexity-analysis
|
||||
example()
|
||||
|
||||
print("I ran into a MaxRecursionDepth Error. From what I read on the Internet python does not do Tailcall Optimizations")
|
||||
print("Increasing recursion-limit seems like a poor Idea, therefore tried an iterative approach with manual stack-keeping")
|
||||
|
||||
toSort = MemoryArray.create_array_from_file("data/seq0.txt")
|
||||
print(toSort)
|
||||
quickSortIterative(toSort, Literal(0), toSort.length().pred())
|
||||
print(toSort)
|
||||
|
||||
# analyze_complexity(quickSortIterative, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
|
||||
for filename in ["data/seq0.txt", "data/seq1.txt", "data/seq2.txt" ,"data/seq3.txt"]:
|
||||
# for filename in [ "data/seq1.txt"]:
|
||||
print(filename)
|
||||
toSort = MemoryArray.create_array_from_file(filename)
|
||||
timeMS(quickSortIterative, toSort, Literal(0), toSort.length().pred(), mode=1)
|
||||
# print(toSort)
|
||||
|
||||
print("Kann durch die Modifikation eine besser Laufzeit als nlog(n) erreicht werden? Nein! nlog(n) ist das Minimum. Durch die Änderung kann aber der Worst-Case fall von n^2 für z.B. bereits vorsortierte Arrays oder Arrays mit vielen Duplikaten vermieden werden.")
|
158
schoeffelbe/priorityQueue.py
Normal file
158
schoeffelbe/priorityQueue.py
Normal file
@ -0,0 +1,158 @@
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.literal import Literal
|
||||
from utils.constants import MAX_VALUE
|
||||
from utils.memory_range import mrange
|
||||
|
||||
# Impl of MemoryArray says we cant add our own Datatypes beside Literal and List
|
||||
# BUUUUT we can just wrap our Datatype in a List :-)
|
||||
# We store them in a MemoryArray internaly tho anyhow so we increment our Counters for the RAM
|
||||
class HeapEntry:
|
||||
def __init__(self, item, priority=1):
|
||||
self.data = MemoryArray(Literal(2))
|
||||
# 0: Content, 1: Prio
|
||||
self.data[Literal(0)] = Literal(item)
|
||||
self.data[Literal(1)] = Literal(priority)
|
||||
|
||||
def getItem(self):
|
||||
return self.data[Literal(0)]
|
||||
|
||||
def getPriority(self):
|
||||
return self.data[Literal(1)]
|
||||
|
||||
def setPriority(self, priority):
|
||||
self.data[Literal(1)] = Literal(priority)
|
||||
|
||||
def __lt__(self, other):
|
||||
if other is None:
|
||||
return True
|
||||
if isinstance(other, (int, float)):
|
||||
return self.getPriority().value > other
|
||||
return self.getPriority() > other.getPriority()
|
||||
|
||||
def __gt__(self, other):
|
||||
if other is None:
|
||||
return False
|
||||
if isinstance(other, (int, float)):
|
||||
return self.getPriority().value < other
|
||||
return self.getPriority() < other.getPriority()
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.getPriority() == other.getPriority()
|
||||
|
||||
def __str__(self):
|
||||
return f"({self.getItem()}, prio={self.getPriority()})"
|
||||
|
||||
class PriorityQueue:
|
||||
def __init__(self, max_size : Literal = Literal(100)):
|
||||
self.heap = MemoryArray(max_size)
|
||||
# Add uninitialized HeapEntry Values so the Adds/Compares do not fail on emtpy stack.
|
||||
# Would have to switch to MIN_VALUE if we switch what is a "Higher" Prio
|
||||
for i in mrange(max_size.value):
|
||||
self.heap[i].set([HeapEntry(MAX_VALUE, MAX_VALUE)])
|
||||
self.size = MemoryCell(0)
|
||||
|
||||
def parent(self, i: Literal) -> Literal:
|
||||
return MemoryCell(i.pred()) // Literal(2)
|
||||
|
||||
def leftChild(self, i: Literal) -> Literal:
|
||||
return MemoryCell(MemoryCell(2) * i) + Literal(1)
|
||||
|
||||
def rightChild(self, i: Literal) -> Literal:
|
||||
return MemoryCell(MemoryCell(2) * i) + Literal(2)
|
||||
|
||||
# Swap the Lists -> Therefore get the value which is the List and then Set it again
|
||||
def swap(self, i: Literal, j: Literal):
|
||||
tmp_i = self.heap[i].value
|
||||
tmp_j = self.heap[j].value
|
||||
self.heap[i].set(tmp_j)
|
||||
self.heap[j].set(tmp_i)
|
||||
|
||||
def maxHeapify(self, i: Literal):
|
||||
left = self.leftChild(i)
|
||||
right = self.rightChild(i)
|
||||
largest = i
|
||||
|
||||
if left < Literal(self.size.value) and self.heap[left].value[0] > self.heap[largest].value[0]:
|
||||
largest = left
|
||||
|
||||
if right < Literal(self.size.value) and self.heap[right].value[0] > self.heap[largest].value[0]:
|
||||
largest = right
|
||||
|
||||
if largest != i:
|
||||
self.swap(i, largest)
|
||||
self.maxHeapify(largest)
|
||||
|
||||
def insert(self, entry : HeapEntry):
|
||||
if self.size >= self.heap.length():
|
||||
raise IndexError("Heap full")
|
||||
|
||||
i = self.size
|
||||
self.heap[i].set([entry])
|
||||
self.size += Literal(1)
|
||||
|
||||
while i > Literal(0) and self.heap[self.parent(i)].value[0] < self.heap[i].value[0]:
|
||||
self.swap(i, self.parent(i))
|
||||
i = self.parent(i)
|
||||
|
||||
def pop(self):
|
||||
if self.isEmpty():
|
||||
raise IndexError("Queue is empty!")
|
||||
|
||||
max_item = self.heap[Literal(0)].value[0]
|
||||
|
||||
self.heap[Literal(0)] = self.heap[self.size - Literal(1)]
|
||||
self.size -= Literal(1)
|
||||
|
||||
self.maxHeapify(Literal(0))
|
||||
|
||||
return max_item
|
||||
|
||||
def peek(self):
|
||||
if self.isEmpty():
|
||||
raise IndexError("Queue is empty")
|
||||
return self.heap[Literal(0)].value[0]
|
||||
|
||||
def isEmpty(self):
|
||||
return self.size == Literal(0)
|
||||
|
||||
def __len__(self):
|
||||
return self.size
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Proof of Concept
|
||||
testEntry = HeapEntry("A", 2)
|
||||
print(testEntry)
|
||||
testArray = MemoryArray([testEntry])
|
||||
print(testArray)
|
||||
print(testArray[Literal(0)])
|
||||
|
||||
# Queue Testing
|
||||
pq = PriorityQueue()
|
||||
try:
|
||||
pq.pop()
|
||||
assert False, "Queue should be empty"
|
||||
except IndexError:
|
||||
pass
|
||||
assert(pq.isEmpty() and pq.size == Literal(0))
|
||||
entry = HeapEntry("A", 1)
|
||||
pq.insert(entry)
|
||||
assert(not pq.isEmpty() and pq.size == Literal(1))
|
||||
pq.peek()
|
||||
assert(not pq.isEmpty())
|
||||
assert(pq.pop() == HeapEntry("A", 1))
|
||||
assert(pq.isEmpty())
|
||||
pq.insert(HeapEntry("A", 1))
|
||||
pq.insert(HeapEntry("C", 3))
|
||||
pq.insert(HeapEntry("B", 2))
|
||||
assert(pq.size == Literal(3))
|
||||
assert(pq.pop() == HeapEntry("A", 1))
|
||||
assert(pq.pop() == HeapEntry("B", 2))
|
||||
assert(pq.pop() == HeapEntry("C", 3))
|
||||
pq.insert(HeapEntry("A", 1))
|
||||
pq.insert(HeapEntry("C", 3))
|
||||
pq.insert(HeapEntry("B", 2))
|
||||
print(pq.pop())
|
||||
print(pq.pop())
|
||||
print(pq.pop())
|
@ -21,8 +21,6 @@ class Literal:
|
||||
|
||||
def __eq__(self, other):
|
||||
"""Vergleicht den Wert mit einem anderen Wert."""
|
||||
if other is None:
|
||||
return False
|
||||
assert isinstance(other, Literal), "Can only compare with Literal or MemoryCell"
|
||||
self.compare_count += 1
|
||||
self.read_count += 1
|
||||
@ -31,8 +29,6 @@ class Literal:
|
||||
|
||||
def __ne__(self, other):
|
||||
"""Vergleicht den Wert der Speicherzelle mit einem anderen Wert."""
|
||||
if other is None:
|
||||
return True
|
||||
assert isinstance(other, Literal), "Can only compare with Literal or MemoryCell"
|
||||
self.compare_count += 1
|
||||
self.read_count += 1
|
||||
|
@ -1,7 +1,7 @@
|
||||
from utils.literal import Literal
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.project_dir import get_path
|
||||
from pathlib import Path
|
||||
from random import randint
|
||||
|
||||
class MemoryArray:
|
||||
@ -88,7 +88,9 @@ class MemoryArray:
|
||||
@staticmethod
|
||||
def create_array_from_file(filename, limit=None):
|
||||
"""Erzeugt ein Speicherarray aus einer Datei."""
|
||||
filename = get_path(filename)
|
||||
this_dir = Path(__file__).resolve().parent
|
||||
project_dir = this_dir.parent
|
||||
filename = project_dir / filename
|
||||
with open(filename) as f:
|
||||
lines = f.readlines()
|
||||
if limit is not None:
|
||||
@ -100,13 +102,6 @@ class MemoryArray:
|
||||
a.reset_counters()
|
||||
return a
|
||||
|
||||
def __str__(self):
|
||||
result = "[ "
|
||||
for cell in self.cells:
|
||||
result += str(cell) + ", "
|
||||
result += "]"
|
||||
return result
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import random
|
||||
@ -120,7 +115,3 @@ if __name__ == "__main__":
|
||||
s += cell
|
||||
print(s)
|
||||
print(f"Anzahl der Additionen: {MemoryManager.count_adds()}")
|
||||
|
||||
a = MemoryArray.create_array_from_file("data/seq0.txt")
|
||||
print(a)
|
||||
|
||||
|
@ -1,40 +0,0 @@
|
||||
import heapq
|
||||
|
||||
class PriorityQueue:
|
||||
def __init__(self):
|
||||
self.heap = []
|
||||
self.entry_finder = {} # map: item -> [priority, item]
|
||||
self.REMOVED = '<removed>'
|
||||
self.counter = 0 # unique sequence count to break ties
|
||||
|
||||
def add_or_update(self, item, priority):
|
||||
if item in self.entry_finder:
|
||||
self.remove(item)
|
||||
count = self.counter
|
||||
entry = [priority, count, item]
|
||||
self.entry_finder[item] = entry
|
||||
heapq.heappush(self.heap, entry)
|
||||
self.counter += 1
|
||||
|
||||
def remove(self, item):
|
||||
entry = self.entry_finder.pop(item)
|
||||
entry[-1] = self.REMOVED # mark as removed
|
||||
|
||||
def pop(self):
|
||||
while self.heap:
|
||||
priority, count, item = heapq.heappop(self.heap)
|
||||
if item != self.REMOVED:
|
||||
del self.entry_finder[item]
|
||||
return item, priority
|
||||
return None
|
||||
|
||||
if __name__ == "__main__":
|
||||
pq = PriorityQueue()
|
||||
pq.add_or_update('task1', 1)
|
||||
pq.add_or_update('task2', float('inf'))
|
||||
pq.add_or_update('task3', float('inf'))
|
||||
|
||||
print(pq.pop()) # Should print ('task1', 1)
|
||||
pq.add_or_update('task2', 0) # Update priority of 'task1'
|
||||
print(pq.pop()) # Should print ('task2', 0)
|
||||
print(pq.pop()) # Should print ('task3', 3)
|
@ -1,13 +0,0 @@
|
||||
from pathlib import Path
|
||||
|
||||
def get_path(filename) -> Path:
|
||||
this_dir = Path(__file__).resolve().parent
|
||||
project_dir = this_dir.parent
|
||||
return project_dir / filename
|
||||
|
||||
if __name__ == "__main__":
|
||||
filename = get_path("data/seq0.txt")
|
||||
print(filename)
|
||||
print(filename.resolve())
|
||||
print(filename.is_file())
|
||||
print(filename.exists())
|
@ -5,6 +5,7 @@ from utils.memory_range import mrange
|
||||
from utils.literal import Literal
|
||||
|
||||
def quick_sort_stepwise(z: MemoryArray, l: Literal, r: Literal):
|
||||
n = z.length()
|
||||
if l < r:
|
||||
q = partition(z, l, r)
|
||||
yield z
|
||||
@ -76,6 +77,6 @@ def swap(z: MemoryArray, i: int, j: int):
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
sizes = range(10, 101, 5)
|
||||
#analyze_complexity(quick_sort, sizes)
|
||||
analyze_complexity(quick_sort, sizes, True)
|
||||
sizes = range(10, 101, 10)
|
||||
analyze_complexity(quick_sort, sizes)
|
||||
# analyze_complexity(quick_sort, sizes, True)
|
@ -1,60 +0,0 @@
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.memory_range import mrange
|
||||
from utils.literal import Literal
|
||||
|
||||
|
||||
|
||||
def count_sort(a: MemoryArray, b: MemoryArray, k: int):
|
||||
c = MemoryArray(Literal(k + 1))
|
||||
for i in mrange(Literal(k + 1)):
|
||||
c[i].set(Literal(0))
|
||||
|
||||
for j in mrange(a.length()):
|
||||
c[a[j]].set(c[a[j]].succ())
|
||||
|
||||
for i in mrange(Literal(1), Literal(k + 1)):
|
||||
c[i].set(int(c[i]) + int(c[i.pred()]))
|
||||
|
||||
for j in mrange(a.length().pred(), Literal(-1), Literal(-1)):
|
||||
b[c[a[j]].pred()].set(a[j])
|
||||
c[a[j]].set(c[a[j]].pred())
|
||||
|
||||
|
||||
|
||||
def analyze_complexity(sizes, presorted=False):
|
||||
"""
|
||||
Analysiert die Komplexität einer Sortierfunktion.
|
||||
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
if presorted:
|
||||
random_array = MemoryArray.create_sorted_array(size, 0, 100)
|
||||
else:
|
||||
random_array = MemoryArray.create_random_array(size, 0, 100)
|
||||
dest_array = MemoryArray(Literal(size))
|
||||
count_sort(random_array, dest_array, 100)
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "compares", "writes"])
|
||||
|
||||
|
||||
def swap(z: MemoryArray, i: int, j: int):
|
||||
tmp = z[Literal(i)].value
|
||||
z[Literal(i)] = z[Literal(j)]
|
||||
z[Literal(j)].set(tmp)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Test the count_sort function
|
||||
a = MemoryArray([2, 5, 3, 0, 2, 3, 0, 3])
|
||||
b = MemoryArray(Literal(len(a)))
|
||||
count_sort(a, b, 5)
|
||||
|
||||
sizes = range(10, 101, 10)
|
||||
analyze_complexity(sizes)
|
||||
# analyze_complexity(sizes, True)
|
@ -1 +0,0 @@
|
||||
from vorlesung.L05_binaere_baeume.bin_tree import BinaryTree
|
@ -1,26 +0,0 @@
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.literal import Literal
|
||||
from vorlesung.L05_binaere_baeume.avl_tree import AVLTree
|
||||
|
||||
def analyze_complexity(sizes):
|
||||
"""
|
||||
Analysiert die Komplexität
|
||||
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
tree = AVLTree()
|
||||
random_array = MemoryArray.create_random_array(size, -100, 100)
|
||||
for i in range(size-1):
|
||||
tree.insert(int(random_array[Literal(i)]))
|
||||
MemoryManager.reset()
|
||||
tree.insert(int(random_array[Literal(size-1)]))
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "compares"])
|
||||
|
||||
if __name__ == "__main__":
|
||||
sizes = range(1, 1001, 2)
|
||||
analyze_complexity(sizes)
|
@ -1,26 +0,0 @@
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.literal import Literal
|
||||
from vorlesung.L05_binaere_baeume.bin_tree import BinaryTree
|
||||
|
||||
def analyze_complexity(sizes):
|
||||
"""
|
||||
Analysiert die Komplexität
|
||||
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
tree = BinaryTree()
|
||||
random_array = MemoryArray.create_random_array(size, -100, 100)
|
||||
for i in range(size-1):
|
||||
tree.insert(int(random_array[Literal(i)]))
|
||||
MemoryManager.reset()
|
||||
tree.insert(int(random_array[Literal(size-1)]))
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "compares"])
|
||||
|
||||
if __name__ == "__main__":
|
||||
sizes = range(1, 1001, 2)
|
||||
analyze_complexity(sizes)
|
@ -1,94 +0,0 @@
|
||||
from utils.memory_array import MemoryArray
|
||||
from vorlesung.L05_binaere_baeume.avl_tree_node import AVLTreeNode
|
||||
from vorlesung.L05_binaere_baeume.bin_tree import BinaryTree
|
||||
import logging
|
||||
|
||||
class AVLTree(BinaryTree):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def new_node(self, value):
|
||||
return AVLTreeNode(value)
|
||||
|
||||
|
||||
def balance(self, node: AVLTreeNode):
|
||||
node.update_balance()
|
||||
if node.balance == -2:
|
||||
if node.left.balance <= 0:
|
||||
node = node.right_rotate()
|
||||
else:
|
||||
node = node.left_right_rotate()
|
||||
elif node.balance == 2:
|
||||
if node.right.balance >= 0:
|
||||
node = node.left_rotate()
|
||||
else:
|
||||
node = node.right_left_rotate()
|
||||
if node.parent:
|
||||
self.balance(node.parent)
|
||||
else:
|
||||
self.root = node
|
||||
|
||||
def insert(self, value):
|
||||
insert_generator = self.insert_stepwise(value)
|
||||
node, parent = None, None
|
||||
while True:
|
||||
try:
|
||||
node, parent = next(insert_generator)
|
||||
except StopIteration:
|
||||
break
|
||||
return node, parent
|
||||
|
||||
def insert_stepwise(self, value):
|
||||
node, parent = super().insert(value)
|
||||
yield None, None
|
||||
node.parent = parent
|
||||
if parent:
|
||||
self.balance(parent)
|
||||
return node, parent
|
||||
|
||||
|
||||
def delete(self, value):
|
||||
node, parent = super().delete(value)
|
||||
if node:
|
||||
node.parent = parent
|
||||
if parent:
|
||||
self.balance(parent)
|
||||
|
||||
def graph_filename(self):
|
||||
return "AVLTree"
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
def print_node(node, indent=0, level=0):
|
||||
print((indent * 3) * " ", node.value)
|
||||
|
||||
tree = AVLTree()
|
||||
#values = [5, 3, 7, 2, 4, 6, 5, 8]
|
||||
values = MemoryArray.create_array_from_file("data/seq2.txt")
|
||||
|
||||
for value in values:
|
||||
tree.insert(value)
|
||||
|
||||
|
||||
print("In-order traversal:")
|
||||
tree.in_order_traversal(print_node)
|
||||
print("\nLevel-order traversal:")
|
||||
tree.level_order_traversal(print_node)
|
||||
print("\nTree structure traversal:")
|
||||
tree.tree_structure_traversal(print_node)
|
||||
print("\nGraph traversal:")
|
||||
tree.graph_traversal()
|
||||
|
||||
tree.insert(9)
|
||||
tree.graph_traversal()
|
||||
|
||||
print("\nDeleting 5:")
|
||||
tree.delete(5)
|
||||
|
||||
print("In-order traversal after deletion:")
|
||||
tree.in_order_traversal(print_node)
|
||||
print("\nLevel-order traversal after deletion:")
|
||||
tree.level_order_traversal(print_node)
|
||||
print("\nTree structure traversal after deletion:")
|
||||
tree.tree_structure_traversal(print_node)
|
@ -1,59 +0,0 @@
|
||||
import random
|
||||
import pygame
|
||||
from utils.game import Game
|
||||
from avl_tree import AVLTree
|
||||
|
||||
WHITE = (255, 255, 255)
|
||||
BLUE = (0, 0, 255)
|
||||
BLACK = (0, 0, 0)
|
||||
WIDTH = 800
|
||||
HEIGHT = 400
|
||||
MARGIN = 20
|
||||
|
||||
class AVLTreeGame(Game):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__("AVLTree Game", fps=10, size=(WIDTH, HEIGHT))
|
||||
random.seed()
|
||||
self.z = list(range(1, 501))
|
||||
random.shuffle(self.z)
|
||||
self.finished = False
|
||||
self.tree = AVLTree()
|
||||
self.tree.get_height = lambda node: 0 if node is None else 1 + max(self.tree.get_height(node.left), self.tree.get_height(node.right))
|
||||
self.height = self.tree.get_height(self.tree.root)
|
||||
self.generator = None
|
||||
|
||||
def update_game(self):
|
||||
if not self.finished:
|
||||
if self.generator is None:
|
||||
self.generator = self.tree.insert_stepwise(self.z.pop())
|
||||
try:
|
||||
next(self.generator)
|
||||
except StopIteration:
|
||||
self.generator = None
|
||||
if self.generator is None and len(self.z) == 0:
|
||||
self.finished = True
|
||||
self.height = self.tree.get_height(self.tree.root)
|
||||
return True
|
||||
|
||||
def draw_game(self):
|
||||
self.screen.fill(WHITE)
|
||||
if self.height > 0:
|
||||
self.draw_tree(self.tree.root, WIDTH // 2, MARGIN, WIDTH // 4 - MARGIN)
|
||||
super().draw_game()
|
||||
|
||||
def draw_tree(self, node, x, y, x_offset):
|
||||
y_offset = (HEIGHT - (2 * MARGIN)) / self.height
|
||||
if node is not None:
|
||||
pygame.draw.circle(self.screen, BLUE, (x, y), 2)
|
||||
if node.left is not None:
|
||||
pygame.draw.line(self.screen, BLACK, (x, y), (x - x_offset, y + y_offset))
|
||||
self.draw_tree(node.left, x - x_offset, y + y_offset, x_offset // 2)
|
||||
if node.right is not None:
|
||||
pygame.draw.line(self.screen, BLACK, (x, y), (x + x_offset, y + y_offset))
|
||||
self.draw_tree(node.right, x + x_offset, y + y_offset, x_offset // 2)
|
||||
|
||||
if __name__ == "__main__":
|
||||
tree_game = AVLTreeGame()
|
||||
tree_game.run()
|
||||
|
@ -1,61 +0,0 @@
|
||||
from vorlesung.L05_binaere_baeume.bin_tree_node import BinaryTreeNode
|
||||
|
||||
class AVLTreeNode(BinaryTreeNode):
|
||||
def __init__(self, value):
|
||||
super().__init__(value)
|
||||
self.parent = None
|
||||
self.balance = 0
|
||||
|
||||
def __repr__(self):
|
||||
return f"TreeNode(id={id(self)} value={self.value}, left={self.left}, right={self.right})"
|
||||
|
||||
def graphviz_rep(self, row, col, dot):
|
||||
dot.node(str(id(self)), label=str(self.value), pos=f"{col},{-row}!", xlabel=str(self.balance))
|
||||
|
||||
def update_balance(self):
|
||||
left_height = self.left.height() if self.left else 0
|
||||
right_height = self.right.height() if self.right else 0
|
||||
self.balance = right_height - left_height
|
||||
|
||||
def right_rotate(self):
|
||||
new_root = self.left
|
||||
new_root.parent = self.parent
|
||||
self.left = new_root.right
|
||||
if self.left:
|
||||
self.left.parent = self
|
||||
new_root.right = self
|
||||
self.parent = new_root
|
||||
if new_root.parent:
|
||||
if new_root.parent.left is self:
|
||||
new_root.parent.left = new_root
|
||||
else:
|
||||
new_root.parent.right = new_root
|
||||
self.update_balance()
|
||||
new_root.update_balance()
|
||||
return new_root
|
||||
|
||||
def left_rotate(self):
|
||||
new_root = self.right
|
||||
new_root.parent = self.parent
|
||||
self.right = new_root.left
|
||||
if self.right:
|
||||
self.right.parent = self
|
||||
new_root.left = self
|
||||
self.parent = new_root
|
||||
if new_root.parent:
|
||||
if new_root.parent.left is self:
|
||||
new_root.parent.left = new_root
|
||||
else:
|
||||
new_root.parent.right = new_root
|
||||
self.update_balance()
|
||||
new_root.update_balance()
|
||||
return new_root
|
||||
|
||||
def right_left_rotate(self):
|
||||
self.right = self.right.right_rotate()
|
||||
return self.left_rotate()
|
||||
|
||||
def left_right_rotate(self):
|
||||
self.left = self.left.left_rotate()
|
||||
return self.right_rotate()
|
||||
|
@ -1,61 +0,0 @@
|
||||
import random
|
||||
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.memory_range import mrange
|
||||
from utils.literal import Literal
|
||||
|
||||
|
||||
def binary_search(z: MemoryArray, s: MemoryCell, l: Literal = None, r: Literal = None):
|
||||
"""
|
||||
Perform a binary search on the sorted array z for the value x.
|
||||
"""
|
||||
if l is None:
|
||||
l = Literal(0)
|
||||
if r is None:
|
||||
r = Literal(z.length().pred())
|
||||
if l > r:
|
||||
return None
|
||||
with MemoryCell(l) as m:
|
||||
m += r
|
||||
m //= Literal(2)
|
||||
if s < z[m]:
|
||||
return binary_search(z, s, l, m.pred())
|
||||
elif s > z[m]:
|
||||
return binary_search(z, s, m.succ(), r)
|
||||
else:
|
||||
return m
|
||||
|
||||
|
||||
def analyze_complexity(sizes):
|
||||
"""
|
||||
Analysiert die Komplexität
|
||||
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
random_array = MemoryArray.create_sorted_array(size)
|
||||
search_value = random.randint(-100, 100)
|
||||
binary_search(random_array, MemoryCell(search_value))
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "compares", "adds"])
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Example usage
|
||||
arr = MemoryArray([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
|
||||
search_value = MemoryCell(8)
|
||||
result = binary_search(arr, search_value)
|
||||
if result is not None:
|
||||
print(f"Value {search_value} found at index {result}.")
|
||||
else:
|
||||
print(f"Value {search_value} not found in the array.")
|
||||
|
||||
|
||||
sizes = range(1, 1001, 2)
|
||||
analyze_complexity(sizes)
|
@ -1,206 +0,0 @@
|
||||
from vorlesung.L05_binaere_baeume.bin_tree_node import BinaryTreeNode
|
||||
from utils.project_dir import get_path
|
||||
from datetime import datetime
|
||||
import graphviz
|
||||
|
||||
|
||||
class BinaryTree:
|
||||
|
||||
def __init__(self):
|
||||
self.root = None
|
||||
self.size = 0
|
||||
|
||||
def new_node(self, value):
|
||||
return BinaryTreeNode(value)
|
||||
|
||||
def insert(self, value):
|
||||
self.size += 1
|
||||
value = self.new_node(value)
|
||||
if self.root is None:
|
||||
self.root = value
|
||||
return self.root, None
|
||||
else:
|
||||
current = self.root
|
||||
while True:
|
||||
if value < current:
|
||||
if current.left:
|
||||
current = current.left
|
||||
else:
|
||||
current.left = value
|
||||
return current.left, current
|
||||
elif value >= current:
|
||||
if current.right:
|
||||
current = current.right
|
||||
else:
|
||||
current.right = value
|
||||
return current.right, current
|
||||
else:
|
||||
return None, None
|
||||
|
||||
def search(self, value):
|
||||
current = self.root
|
||||
value = self.new_node(value)
|
||||
while current:
|
||||
if value < current:
|
||||
current = current.left
|
||||
elif value > current:
|
||||
current = current.right
|
||||
else:
|
||||
return current
|
||||
return None
|
||||
|
||||
def delete(self, value):
|
||||
# Der Wert wird im Baum gesucht und der erste Treffer gelöscht
|
||||
# Rückgabe falls der Wert gefunden wird:
|
||||
# der Knoten, der den zu löschenden Knoten ersetzt und der Elternknoten des gelöschten Knotens
|
||||
parent = None
|
||||
current = self.root
|
||||
value = self.new_node(value)
|
||||
while current:
|
||||
if value < current:
|
||||
parent = current
|
||||
current = current.left
|
||||
elif value > current:
|
||||
parent = current
|
||||
current = current.right
|
||||
else:
|
||||
# Knoten gefunden
|
||||
break
|
||||
else:
|
||||
# Wert nicht gefunden
|
||||
return None, None
|
||||
return self.delete_node(current, parent)
|
||||
|
||||
def delete_node(self, current, parent):
|
||||
# Der übergebene Knoten wird
|
||||
# Rückgabe ist ein Tupel:
|
||||
# der Knoten, der den zu löschenden Knoten ersetzt und der Elternknoten des gelöschten Knotens
|
||||
self.size -= 1
|
||||
# Fall 3: Es gibt zwei Kinder: wir suchen den Nachfolger
|
||||
if current.left and current.right:
|
||||
parent = current
|
||||
successor = current.right
|
||||
while successor.left:
|
||||
parent = successor
|
||||
successor = successor.left
|
||||
# Wert des Nachfolgers wird in den Knoten geschrieben, der gelöscht werden soll
|
||||
current.value = successor.value
|
||||
# Ab jetzt muss successor gelöscht werden; parent ist bereits richtig gesetzt
|
||||
current = successor
|
||||
|
||||
# Ermitteln des einen Kindes (falls es eines gibt), sonst None
|
||||
# Das eine Kind ist der Ersatz für den Knoten, der gelöscht werden soll
|
||||
if current.left:
|
||||
child = current.left
|
||||
else:
|
||||
child = current.right
|
||||
|
||||
# Falls es keinen Elternknoten gibt, ist der Ersatzknoten die Wurzel
|
||||
if not parent:
|
||||
self.root = child
|
||||
return child, None
|
||||
elif parent.left is current:
|
||||
parent.left = child
|
||||
return child, parent
|
||||
else:
|
||||
parent.right = child
|
||||
return child, parent
|
||||
|
||||
|
||||
def in_order_traversal(self, callback):
|
||||
|
||||
def in_order_traversal_recursive(callback, current):
|
||||
if current is not None:
|
||||
in_order_traversal_recursive(callback, current.left)
|
||||
callback(current)
|
||||
in_order_traversal_recursive(callback, current.right)
|
||||
|
||||
in_order_traversal_recursive(callback, self.root)
|
||||
|
||||
|
||||
def level_order_traversal(self, callback):
|
||||
if self.root is None:
|
||||
return
|
||||
queue = [(self.root, 0)]
|
||||
while queue:
|
||||
current, level = queue.pop(0)
|
||||
callback(current, level)
|
||||
if current.left is not None:
|
||||
queue.append((current.left, level + 1))
|
||||
if current.right is not None:
|
||||
queue.append((current.right, level + 1))
|
||||
|
||||
def tree_structure_traversal(self, callback):
|
||||
|
||||
def tree_structure_traversal_recursive(callback, current, level):
|
||||
nonlocal line
|
||||
if current:
|
||||
tree_structure_traversal_recursive(callback, current.left, level + 1)
|
||||
callback(current, level, line)
|
||||
line += 1
|
||||
tree_structure_traversal_recursive(callback, current.right, level + 1)
|
||||
|
||||
line = 0
|
||||
tree_structure_traversal_recursive(callback, self.root, 0)
|
||||
|
||||
def graph_filename(self):
|
||||
return "BinaryTree"
|
||||
|
||||
def graph_traversal(self):
|
||||
def define_node(node, level, line):
|
||||
nonlocal dot
|
||||
if node is not None:
|
||||
node.graphviz_rep(level, line, dot)
|
||||
|
||||
def graph_traversal_recursive(current):
|
||||
nonlocal dot
|
||||
if current is not None:
|
||||
if current.left:
|
||||
dot.edge(str(id(current)), str(id(current.left)))
|
||||
graph_traversal_recursive(current.left)
|
||||
if current.right:
|
||||
dot.edge(str(id(current)), str(id(current.right)))
|
||||
graph_traversal_recursive(current.right)
|
||||
|
||||
dot = graphviz.Digraph( name="BinaryTree",
|
||||
engine="neato",
|
||||
node_attr={"shape": "circle", "fontname": "Arial"},
|
||||
format="pdf" )
|
||||
self.tree_structure_traversal(define_node)
|
||||
graph_traversal_recursive(self.root)
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
filename = f"{self.graph_filename()}_{timestamp}.gv"
|
||||
filename = get_path(filename)
|
||||
dot.render(filename)
|
||||
|
||||
if __name__ == "__main__":
|
||||
tree = BinaryTree()
|
||||
values = [5, 3, 7, 2, 4, 6, 5, 8]
|
||||
|
||||
for value in values:
|
||||
tree.insert(value)
|
||||
|
||||
def print_node(node, indent=0, line=None):
|
||||
print((indent * 3) * " ", node.value)
|
||||
|
||||
|
||||
print("In-order traversal:")
|
||||
tree.in_order_traversal(print_node)
|
||||
print("\nLevel-order traversal:")
|
||||
tree.level_order_traversal(print_node)
|
||||
print("\nTree structure traversal:")
|
||||
tree.tree_structure_traversal(print_node)
|
||||
print("\nGraph traversal:")
|
||||
tree.graph_traversal()
|
||||
|
||||
print("\nDeleting 5:")
|
||||
tree.delete(5)
|
||||
|
||||
print("In-order traversal after deletion:")
|
||||
tree.in_order_traversal(print_node)
|
||||
print("\nLevel-order traversal after deletion:")
|
||||
tree.level_order_traversal(print_node)
|
||||
print("\nTree structure traversal after deletion:")
|
||||
tree.tree_structure_traversal(print_node)
|
||||
|
||||
|
@ -1,54 +0,0 @@
|
||||
import random
|
||||
import pygame
|
||||
from utils.game import Game
|
||||
from bin_tree import BinaryTree
|
||||
|
||||
WHITE = (255, 255, 255)
|
||||
BLUE = (0, 0, 255)
|
||||
BLACK = (0, 0, 0)
|
||||
WIDTH = 800
|
||||
HEIGHT = 400
|
||||
MARGIN = 20
|
||||
|
||||
class BinTreeGame(Game):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__("BinTree Game", fps=10, size=(WIDTH, HEIGHT))
|
||||
random.seed()
|
||||
self.z = list(range(1, 101))
|
||||
random.shuffle(self.z)
|
||||
self.finished = False
|
||||
self.tree = BinaryTree()
|
||||
self.tree.get_height = lambda node: 0 if node is None else 1 + max(self.tree.get_height(node.left), self.tree.get_height(node.right))
|
||||
self.height = self.tree.get_height(self.tree.root)
|
||||
|
||||
def update_game(self):
|
||||
if not self.finished:
|
||||
i = self.z.pop()
|
||||
self.tree.insert(i)
|
||||
self.height = self.tree.get_height(self.tree.root)
|
||||
if len(self.z) == 0:
|
||||
self.finished = True
|
||||
return True
|
||||
|
||||
def draw_game(self):
|
||||
self.screen.fill(WHITE)
|
||||
if self.height > 0:
|
||||
self.draw_tree(self.tree.root, WIDTH // 2, MARGIN, WIDTH // 4 - MARGIN)
|
||||
super().draw_game()
|
||||
|
||||
def draw_tree(self, node, x, y, x_offset):
|
||||
y_offset = (HEIGHT - (2 * MARGIN)) / self.height
|
||||
if node is not None:
|
||||
pygame.draw.circle(self.screen, BLUE, (x, y), 2)
|
||||
if node.left is not None:
|
||||
pygame.draw.line(self.screen, BLACK, (x, y), (x - x_offset, y + y_offset))
|
||||
self.draw_tree(node.left, x - x_offset, y + y_offset, x_offset // 2)
|
||||
if node.right is not None:
|
||||
pygame.draw.line(self.screen, BLACK, (x, y), (x + x_offset, y + y_offset))
|
||||
self.draw_tree(node.right, x + x_offset, y + y_offset, x_offset // 2)
|
||||
|
||||
if __name__ == "__main__":
|
||||
tree_game = BinTreeGame()
|
||||
tree_game.run()
|
||||
|
@ -1,22 +0,0 @@
|
||||
from utils.memory_cell import MemoryCell
|
||||
|
||||
class BinaryTreeNode(MemoryCell):
|
||||
|
||||
def __init__(self, value):
|
||||
super().__init__(value)
|
||||
self.left = None
|
||||
self.right = None
|
||||
|
||||
def height(self):
|
||||
left_height = self.left.height() if self.left else 0
|
||||
right_height = self.right.height() if self.right else 0
|
||||
return 1 + max(left_height, right_height)
|
||||
|
||||
def __repr__(self):
|
||||
return f"TreeNode(value={self.value}, left={self.left}, right={self.right})"
|
||||
|
||||
def __str__(self):
|
||||
return str(self.value)
|
||||
|
||||
def graphviz_rep(self, row, col, dot):
|
||||
dot.node(str(id(self)), label=str(self.value), pos=f"{col},{-row}!")
|
@ -1,58 +0,0 @@
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.literal import Literal
|
||||
from b_tree import BTree
|
||||
from b_tree_node import BTreeNode
|
||||
|
||||
class MemoryManagerBTree(MemoryManager):
|
||||
"""
|
||||
Diese Klasse erweitert den MemoryManager, um spezifische Statistiken für B-Bäume zu speichern.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def count_loads():
|
||||
return sum([cell.loaded_count for cell in MemoryManager().cells if isinstance(cell, BTreeNode)])
|
||||
|
||||
@staticmethod
|
||||
def count_saves():
|
||||
return sum([cell.saved_count for cell in MemoryManager().cells if isinstance(cell, BTreeNode)])
|
||||
|
||||
@staticmethod
|
||||
def save_stats(count):
|
||||
data = { "cells": MemoryManager.count_cells(),
|
||||
"reads": MemoryManager.count_reads(),
|
||||
"writes": MemoryManager.count_writes(),
|
||||
"compares": MemoryManager.count_compares(),
|
||||
"adds": MemoryManager.count_adds(),
|
||||
"subs": MemoryManager.count_subs(),
|
||||
"muls": MemoryManager.count_muls(),
|
||||
"divs": MemoryManager.count_divs(),
|
||||
"bitops": MemoryManager.count_bitops(),
|
||||
"loads": MemoryManagerBTree.count_loads(),
|
||||
"saves": MemoryManagerBTree.count_saves() }
|
||||
MemoryManager.stats[count] = data
|
||||
|
||||
|
||||
|
||||
|
||||
def analyze_complexity(sizes):
|
||||
"""
|
||||
Analysiert die Komplexität
|
||||
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
tree = BTree(5)
|
||||
random_array = MemoryArray.create_random_array(size, -100, 100)
|
||||
for i in range(size-1):
|
||||
tree.insert(int(random_array[Literal(i)]))
|
||||
MemoryManager.reset()
|
||||
tree.insert(int(random_array[Literal(size-1)]))
|
||||
MemoryManagerBTree.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "compares", "loads", "saves"])
|
||||
|
||||
if __name__ == "__main__":
|
||||
sizes = range(1, 1001, 2)
|
||||
analyze_complexity(sizes)
|
@ -1,120 +0,0 @@
|
||||
from utils.literal import Literal
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.memory_array import MemoryArray
|
||||
from b_tree_node import BTreeNode
|
||||
|
||||
class BTree:
|
||||
def __init__(self, m: int):
|
||||
self.m = m
|
||||
self.root = BTreeNode(m)
|
||||
|
||||
def search(self, value, start: BTreeNode = None) -> BTreeNode | None:
|
||||
if not start:
|
||||
start = self.root
|
||||
start.load()
|
||||
i = 0
|
||||
if not isinstance(value, MemoryCell):
|
||||
value = MemoryCell(value)
|
||||
while i < start.n and value > start.value[Literal(i)]:
|
||||
i += 1
|
||||
if i < start.n and value == start.value[Literal(i)]:
|
||||
return start
|
||||
if start.leaf:
|
||||
return None
|
||||
return self.search(value, start.children[i])
|
||||
|
||||
def split_child(self, parent: BTreeNode, i: int):
|
||||
child = parent.children[i]
|
||||
child.load()
|
||||
h = BTreeNode(self.m)
|
||||
h.leaf = child.leaf
|
||||
h.n = self.m - 1
|
||||
for j in range(self.m - 1):
|
||||
h.value[Literal(j)] = child.value[Literal(j + self.m)]
|
||||
if not h.leaf:
|
||||
for j in range(self.m):
|
||||
h.children[j] = child.children[j + self.m]
|
||||
for j in range(self.m, child.n + 1):
|
||||
child.children[j] = None
|
||||
child.n = self.m - 1
|
||||
child.save()
|
||||
h.save()
|
||||
for j in range(parent.n, i, -1):
|
||||
parent.children[j + 1] = parent.children[j]
|
||||
parent.value[Literal(j)] = parent.value[Literal(j - 1)]
|
||||
parent.children[i + 1] = h
|
||||
parent.value[Literal(i)] = child.value[Literal(self.m - 1)]
|
||||
parent.n += 1
|
||||
parent.save()
|
||||
|
||||
def insert(self, value):
|
||||
if not isinstance(value, MemoryCell):
|
||||
value = MemoryCell(value)
|
||||
r = self.root
|
||||
if r.n == 2 * self.m - 1:
|
||||
h = BTreeNode(self.m)
|
||||
self.root = h
|
||||
h.leaf = False
|
||||
h.n = 0
|
||||
h.children[0] = r
|
||||
self.split_child(h, 0)
|
||||
self.insert_in_node(h, value)
|
||||
else:
|
||||
self.insert_in_node(r, value)
|
||||
|
||||
def insert_in_node(self, start: BTreeNode, value):
|
||||
start.load()
|
||||
i = start.n
|
||||
if start.leaf:
|
||||
while i >= 1 and value < start.value[Literal(i-1)]:
|
||||
start.value[Literal(i)] = start.value[Literal(i-1)]
|
||||
i -= 1
|
||||
start.value[Literal(i)].set(value)
|
||||
start.n += 1
|
||||
start.save()
|
||||
else:
|
||||
j = 0
|
||||
while j < start.n and value > start.value[Literal(j)]:
|
||||
j += 1
|
||||
if start.children[j].n == 2 * self.m - 1:
|
||||
self.split_child(start, j)
|
||||
if value > start.value[Literal(j)]:
|
||||
j += 1
|
||||
self.insert_in_node(start.children[j], value)
|
||||
|
||||
def traversal(self, callback):
|
||||
def traversal_recursive(node, callback):
|
||||
i = 0
|
||||
while i < node.n:
|
||||
if not node.leaf:
|
||||
traversal_recursive(node.children[i], callback)
|
||||
callback(node.value[Literal(i)])
|
||||
i += 1
|
||||
if not node.leaf:
|
||||
traversal_recursive(node.children[i], callback)
|
||||
|
||||
traversal_recursive(self.root, callback)
|
||||
|
||||
def walk(self):
|
||||
def print_key(key):
|
||||
print(key, end=" ")
|
||||
|
||||
self.traversal(print_key)
|
||||
|
||||
def height(self, start: BTreeNode = None):
|
||||
if not start:
|
||||
start = self.root
|
||||
if start.leaf:
|
||||
return 0
|
||||
return 1 + self.height(start.children[0])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
a = MemoryArray.create_array_from_file("data/seq3.txt")
|
||||
tree = BTree(3)
|
||||
for cell in a:
|
||||
tree.insert(cell)
|
||||
print(f"Height: {tree.height()}")
|
||||
tree.walk()
|
||||
s = tree.search(0)
|
||||
print(f"\nKnoten mit 0: {str(s)}")
|
@ -1,29 +0,0 @@
|
||||
from utils.literal import Literal
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.memory_array import MemoryArray
|
||||
|
||||
class BTreeNode(MemoryCell):
|
||||
|
||||
def __init__(self, m: int):
|
||||
super().__init__()
|
||||
self.m = m
|
||||
self.n = 0
|
||||
self.leaf = True
|
||||
self.value = MemoryArray(Literal(2 * m - 1))
|
||||
self.children = [None] * (2 * m)
|
||||
self.loaded_count = 0
|
||||
self.saved_count = 0
|
||||
|
||||
def reset_counters(self):
|
||||
super().reset_counters()
|
||||
self.loaded_count = 0
|
||||
self.saved_count = 0
|
||||
|
||||
def load(self):
|
||||
self.loaded_count += 1
|
||||
|
||||
def save(self):
|
||||
self.saved_count += 1
|
||||
|
||||
def __str__(self):
|
||||
return "(" + " ".join([str(self.value[Literal(i)]) for i in range(self.n)]) + ")"
|
@ -1,60 +0,0 @@
|
||||
import math
|
||||
import random
|
||||
from utils.literal import Literal
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_manager import MemoryManager
|
||||
from vorlesung.L07_hashtable.hashtable import HashTableOpenAddressing
|
||||
|
||||
#Goldener Schnitt
|
||||
a = Literal((math.sqrt(5) - 1) / 2)
|
||||
|
||||
# Hashfunktion nach multiplikativer Methode
|
||||
def h(x: MemoryCell, m: Literal) -> Literal:
|
||||
with MemoryCell(int(x * a)) as integer_part, MemoryCell(x * a) as full_product:
|
||||
with MemoryCell(full_product - integer_part) as fractional_part:
|
||||
return Literal(abs(int(fractional_part * m)))
|
||||
|
||||
# Quadratische Sondierung
|
||||
def f(x: MemoryCell, i: Literal, m: Literal) -> Literal:
|
||||
c1 = 1
|
||||
c2 = 5
|
||||
with MemoryCell(h(x, m)) as initial_hash, MemoryCell(c2 * int(i) * int(i)) as quadratic_offset:
|
||||
with MemoryCell(initial_hash + quadratic_offset) as probe_position:
|
||||
probe_position += Literal(c1 * int(i)) # Linear component
|
||||
return probe_position % m
|
||||
|
||||
# Symmetrische quadratische Sondierung
|
||||
def fs(x: MemoryCell, i: Literal, m: Literal) -> Literal:
|
||||
with MemoryCell(h(x, m)) as base_hash, MemoryCell(int(i) * int(i)) as square:
|
||||
if int(i) % 2 == 0: # gerades i: Vorwärtssondierung
|
||||
with MemoryCell(base_hash + square) as position:
|
||||
return position % m
|
||||
else: # ungerades i: Rückwärtssondierung
|
||||
with MemoryCell(base_hash - square) as position:
|
||||
return position % m
|
||||
|
||||
|
||||
def analyze_complexity(sizes):
|
||||
"""
|
||||
Analysiert die Komplexität
|
||||
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
ht = HashTableOpenAddressing(size, f)
|
||||
random_array = MemoryArray.create_random_array(size, -100, 100)
|
||||
for cell in random_array:
|
||||
ht.insert(cell)
|
||||
MemoryManager.reset()
|
||||
cell = random.choice(random_array.cells)
|
||||
ht.search(cell)
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "compares"])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
sizes = range(1, 1001, 10)
|
||||
analyze_complexity(sizes)
|
@ -1,76 +0,0 @@
|
||||
from collections.abc import Callable
|
||||
from utils.literal import Literal
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.memory_range import mrange
|
||||
|
||||
|
||||
UNUSED_MARK = "UNUSED"
|
||||
DELETED_MARK = "DELETED"
|
||||
|
||||
class HashTableOpenAddressing:
|
||||
def __init__(self, m: Literal, f: Callable[[MemoryCell, Literal, Literal], Literal]):
|
||||
if not isinstance(m, Literal):
|
||||
m = Literal(m)
|
||||
self.m = m
|
||||
self.f = f
|
||||
self.table = MemoryArray(m)
|
||||
for i in mrange(m):
|
||||
self.table[i].value = UNUSED_MARK
|
||||
|
||||
def insert(self, x: MemoryCell):
|
||||
with MemoryCell(0) as i:
|
||||
while i < self.m:
|
||||
j = self.f(x, i, self.m)
|
||||
if self.is_free(j):
|
||||
self.table[j].set(x)
|
||||
return True
|
||||
i.set(i.succ())
|
||||
return False
|
||||
|
||||
def search(self, x: MemoryCell):
|
||||
with MemoryCell(0) as i:
|
||||
while i < self.m:
|
||||
j = self.f(x, i, self.m)
|
||||
if self.is_unused(j):
|
||||
return False
|
||||
if self.table[j] == x:
|
||||
return True
|
||||
i.set(i.succ())
|
||||
return False
|
||||
|
||||
def delete(self, x: MemoryCell):
|
||||
with MemoryCell(0) as i:
|
||||
while i < self.m:
|
||||
j = self.f(x, i, self.m)
|
||||
if self.is_unused(j):
|
||||
return False
|
||||
if self.table[j] == x:
|
||||
self.table[j].value = DELETED_MARK
|
||||
return True
|
||||
i.set(i.succ())
|
||||
return False
|
||||
|
||||
def __str__(self):
|
||||
return str(self.table)
|
||||
|
||||
def alpha(self):
|
||||
with MemoryCell(0) as i:
|
||||
used = 0
|
||||
while i < self.m:
|
||||
used += 0 if self.is_free(i) else 1
|
||||
i.set(i.succ())
|
||||
return used / int(self.m)
|
||||
|
||||
def is_unused(self, i: Literal):
|
||||
if self.table[i].value == UNUSED_MARK:
|
||||
return True
|
||||
return False
|
||||
|
||||
def is_deleted(self, i: Literal):
|
||||
if self.table[i].value == DELETED_MARK:
|
||||
return True
|
||||
return False
|
||||
|
||||
def is_free(self, i: Literal):
|
||||
return self.is_unused(i) or self.is_deleted(i)
|
@ -1,45 +0,0 @@
|
||||
from vorlesung.L08_graphen.graph import Graph, AdjacencyMatrixGraph
|
||||
from utils.project_dir import get_path
|
||||
|
||||
graph = AdjacencyMatrixGraph()
|
||||
start = ""
|
||||
end = ""
|
||||
|
||||
def read_file(filename: str = "data/aoc2212.txt"):
|
||||
"""Read a file and return the content as a string."""
|
||||
|
||||
def adjust_char(char):
|
||||
"""Adjust character for comparison."""
|
||||
if char == 'S':
|
||||
return 'a'
|
||||
elif char == 'E':
|
||||
return 'z'
|
||||
return char
|
||||
|
||||
global start, end
|
||||
with open(get_path(filename), "r") as file:
|
||||
quest = file.read().strip().splitlines()
|
||||
for row, line in enumerate(quest):
|
||||
for col, char in enumerate(line):
|
||||
label = f"{row},{col}"
|
||||
graph.insert_vertex(label)
|
||||
if char == "S":
|
||||
start = label
|
||||
if char == "E":
|
||||
end = label
|
||||
for row, line in enumerate(quest):
|
||||
for col, char in enumerate(line):
|
||||
for neighbor in [(row - 1, col), (row, col - 1), (row + 1, col), (row, col + 1)]:
|
||||
if 0 <= neighbor[0] < len(quest) and 0 <= neighbor[1] < len(line):
|
||||
if ord(adjust_char(quest[neighbor[0]][neighbor[1]])) <= ord(adjust_char(char)) + 1:
|
||||
label1 = f"{row},{col}"
|
||||
label2 = f"{neighbor[0]},{neighbor[1]}"
|
||||
graph.connect(label1, label2)
|
||||
|
||||
|
||||
# Lösung des Adventskalenders 2022, Tag 12
|
||||
read_file("data/aoc2212test.txt")
|
||||
graph.graph()
|
||||
distance_map, predecessor_map = graph.bfs(start)
|
||||
print(distance_map[graph.get_vertex(end)])
|
||||
print(graph.path(end, predecessor_map))
|
@ -1,366 +0,0 @@
|
||||
from collections import deque
|
||||
from typing import List
|
||||
from enum import Enum
|
||||
import graphviz
|
||||
import math
|
||||
import heapq
|
||||
from datetime import datetime
|
||||
from utils.project_dir import get_path
|
||||
from utils.priority_queue import PriorityQueue
|
||||
from vorlesung.L09_mst.disjoint import DisjointValue
|
||||
|
||||
|
||||
class NodeColor(Enum):
|
||||
"""Enumeration for node colors in a graph traversal."""
|
||||
WHITE = 1 # WHITE: not visited
|
||||
GRAY = 2 # GRAY: visited but not all neighbors visited
|
||||
BLACK = 3 # BLACK: visited and all neighbors visited
|
||||
|
||||
|
||||
class Vertex:
|
||||
"""A vertex in a graph."""
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
|
||||
def __str__(self):
|
||||
return str(self.value)
|
||||
|
||||
def __repr__(self):
|
||||
return f"Vertex({self.value})"
|
||||
|
||||
|
||||
|
||||
class Graph:
|
||||
"""A graph."""
|
||||
def insert_vertex(self, name: str):
|
||||
raise NotImplementedError("Please implement this method in subclass")
|
||||
|
||||
def connect(self, name1: str, name2: str, weight: float = 1):
|
||||
raise NotImplementedError("Please implement this method in subclass")
|
||||
|
||||
def all_vertices(self) -> List[Vertex]:
|
||||
raise NotImplementedError("Please implement this method in subclass")
|
||||
|
||||
def get_vertex(self, name: str) -> Vertex:
|
||||
raise NotImplementedError("Please implement this method in subclass")
|
||||
|
||||
def get_adjacent_vertices(self, name: str) -> List[Vertex]:
|
||||
raise NotImplementedError("Please implement this method in subclass")
|
||||
|
||||
def get_adjacent_vertices_with_weight(self, name: str) -> List[tuple[Vertex, float]]:
|
||||
raise NotImplementedError("Please implement this method in subclass")
|
||||
|
||||
def all_edges(self) -> List[tuple[str, str, float]]:
|
||||
raise NotImplementedError("Please implement this method in subclass")
|
||||
|
||||
def bfs(self, start_name: str):
|
||||
"""
|
||||
Perform a breadth-first search starting at the given vertex.
|
||||
:param start_name: the name of the vertex to start at
|
||||
:return: a tuple of two dictionaries, the first mapping vertices to distances from the start vertex,
|
||||
the second mapping vertices to their predecessors in the traversal tree
|
||||
"""
|
||||
|
||||
color_map = {} # maps vertices to their color
|
||||
distance_map = {} # maps vertices to their distance from the start vertex
|
||||
predecessor_map = {} # maps vertices to their predecessor in the traversal tree
|
||||
|
||||
# Initialize the maps
|
||||
for vertex in self.all_vertices():
|
||||
color_map[vertex] = NodeColor.WHITE
|
||||
distance_map[vertex] = None
|
||||
predecessor_map[vertex] = None
|
||||
|
||||
# Start at the given vertex
|
||||
start_node = self.get_vertex(start_name)
|
||||
color_map[start_node] = NodeColor.GRAY
|
||||
distance_map[start_node] = 0
|
||||
|
||||
# Initialize the queue with the start vertex
|
||||
queue = deque()
|
||||
queue.append(start_node)
|
||||
|
||||
# Process the queue
|
||||
while len(queue) > 0:
|
||||
vertex = queue.popleft()
|
||||
for dest in self.get_adjacent_vertices(vertex.value):
|
||||
if color_map[dest] == NodeColor.WHITE:
|
||||
color_map[dest] = NodeColor.GRAY
|
||||
distance_map[dest] = distance_map[vertex] + 1
|
||||
predecessor_map[dest] = vertex
|
||||
queue.append(dest)
|
||||
color_map[vertex] = NodeColor.BLACK
|
||||
|
||||
# Return the distance and predecessor maps
|
||||
return distance_map, predecessor_map
|
||||
|
||||
def dfs(self):
|
||||
"""
|
||||
Perform a depth-first search starting at the first vertex.
|
||||
:return: a tuple of two dictionaries, the first mapping vertices to distances from the start vertex,
|
||||
the second mapping vertices to their predecessors in the traversal tree
|
||||
"""
|
||||
color_map : dict[Vertex, NodeColor]= {}
|
||||
enter_map : dict[Vertex, int] = {}
|
||||
leave_map : dict[Vertex, int] = {}
|
||||
predecessor_map : dict[Vertex, Vertex | None] = {}
|
||||
white_vertices = set(self.all_vertices())
|
||||
time_counter = 0
|
||||
|
||||
def dfs_visit(vertex):
|
||||
nonlocal time_counter
|
||||
color_map[vertex] = NodeColor.GRAY
|
||||
white_vertices.remove(vertex)
|
||||
time_counter += 1
|
||||
enter_map[vertex] = time_counter
|
||||
for dest in self.get_adjacent_vertices(vertex.value):
|
||||
if color_map[dest] == NodeColor.WHITE:
|
||||
predecessor_map[dest] = vertex
|
||||
dfs_visit(dest)
|
||||
color_map[vertex] = NodeColor.BLACK
|
||||
time_counter += 1
|
||||
leave_map[vertex] = time_counter
|
||||
|
||||
# Initialize the maps
|
||||
for vertex in self.all_vertices():
|
||||
color_map[vertex] = NodeColor.WHITE
|
||||
predecessor_map[vertex] = None
|
||||
|
||||
while white_vertices:
|
||||
v = white_vertices.pop()
|
||||
dfs_visit(v)
|
||||
|
||||
return enter_map, leave_map, predecessor_map
|
||||
|
||||
|
||||
def path(self, destination, map):
|
||||
"""
|
||||
Compute the path from the start vertex to the given destination vertex.
|
||||
The map parameter is the predecessor map
|
||||
"""
|
||||
path = []
|
||||
destination_node = self.get_vertex(destination)
|
||||
while destination_node is not None:
|
||||
path.insert(0, destination_node.value)
|
||||
destination_node = map[destination_node]
|
||||
return path
|
||||
|
||||
def graph(self, filename: str = "Graph"):
|
||||
dot = graphviz.Digraph( name=filename,
|
||||
node_attr={"fontname": "Arial"},
|
||||
format="pdf" )
|
||||
for vertex in self.all_vertices():
|
||||
dot.node(str(id(vertex)), label=str(vertex.value))
|
||||
for edge in self.all_edges():
|
||||
dot.edge(str(id(self.get_vertex(edge[0]))), str(id(self.get_vertex(edge[1]))), label=str(edge[2]))
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
filename = f"{filename}_{timestamp}.gv"
|
||||
filename = get_path(filename)
|
||||
dot.render(filename)
|
||||
|
||||
def dijkstra(self, start_name: str) -> tuple[dict[Vertex, float], dict[Vertex, Vertex | None]]:
|
||||
"""
|
||||
Führt den Dijkstra-Algorithmus für kürzeste Pfade durch, implementiert mit Knotenfarben.
|
||||
|
||||
Args:
|
||||
start_name: Name des Startknotens
|
||||
|
||||
Returns:
|
||||
Ein Tupel aus zwei Dictionaries:
|
||||
- distance_map: Abbildung von Knoten auf ihre kürzeste Distanz vom Startknoten
|
||||
- predecessor_map: Abbildung von Knoten auf ihre Vorgänger im kürzesten Pfad
|
||||
"""
|
||||
|
||||
def relax(vertex, dest, weight):
|
||||
"""
|
||||
Entspannt die Kante zwischen vertex und dest.
|
||||
Aktualisiert die Distanz und den Vorgänger, wenn ein kürzerer Pfad gefunden wird.
|
||||
"""
|
||||
if distance_map[vertex] + weight < distance_map[dest]:
|
||||
distance_map[dest] = distance_map[vertex] + weight
|
||||
predecessor_map[dest] = vertex
|
||||
queue.add_or_update(dest, distance_map[dest])
|
||||
|
||||
# Initialisierung der Maps
|
||||
distance_map = {} # Speichert kürzeste Distanzen
|
||||
predecessor_map = {} # Speichert Vorgänger
|
||||
|
||||
# Initialisiere alle Knoten
|
||||
queue = PriorityQueue()
|
||||
for vertex in self.all_vertices():
|
||||
distance_map[vertex] = float('inf') # Initiale Distanz unendlich
|
||||
predecessor_map[vertex] = None # Initialer Vorgänger None
|
||||
queue.add_or_update(vertex, distance_map[vertex]) # Füge Knoten zur Prioritätswarteschlange hinzu
|
||||
|
||||
|
||||
|
||||
# Setze Startknoten
|
||||
start_node = self.get_vertex(start_name)
|
||||
distance_map[start_node] = 0
|
||||
queue.add_or_update(start_node, distance_map[start_node])
|
||||
|
||||
while True:
|
||||
entry = queue.pop()
|
||||
if entry is None:
|
||||
break
|
||||
vertex = entry[0]
|
||||
for dest, weight in self.get_adjacent_vertices_with_weight(vertex.value):
|
||||
relax(vertex, dest, weight)
|
||||
return distance_map, predecessor_map
|
||||
|
||||
def mst_prim(self, start_name: str = None):
|
||||
""" Compute the minimum spanning tree of the graph using Prim's algorithm. """
|
||||
|
||||
distance_map = {} # maps vertices to their current distance from the spanning tree
|
||||
parent_map = {} # maps vertices to their predecessor in the spanning tree
|
||||
|
||||
Vertex.__lt__ = lambda self, other: distance_map[self] < distance_map[other]
|
||||
|
||||
queue = []
|
||||
|
||||
if start_name is None:
|
||||
start_name = self.all_vertices()[0].value
|
||||
|
||||
# Initialize the maps
|
||||
for vertex in self.all_vertices():
|
||||
distance_map[vertex] = 0 if vertex.value == start_name else math.inf
|
||||
parent_map[vertex] = None
|
||||
queue.append(vertex)
|
||||
|
||||
heapq.heapify(queue) # Convert the list into a heap
|
||||
|
||||
# Process the queue
|
||||
cost = 0 # The cost of the minimum spanning tree
|
||||
while len(queue) > 0:
|
||||
vertex = heapq.heappop(queue)
|
||||
cost += distance_map[vertex] # Add the cost of the edge to the minimum spanning tree
|
||||
for (dest, w) in self.get_adjacent_vertices_with_weight(vertex.value):
|
||||
if dest in queue and distance_map[dest] > w:
|
||||
# Update the distance and parent maps
|
||||
queue.remove(dest)
|
||||
distance_map[dest] = w
|
||||
parent_map[dest] = vertex
|
||||
queue.append(dest) # Add the vertex back to the queue
|
||||
heapq.heapify(queue) # Re-heapify the queue
|
||||
|
||||
# Return the distance and predecessor maps
|
||||
return parent_map, cost
|
||||
|
||||
def mst_kruskal(self, start_name: str = None):
|
||||
""" Compute the minimum spanning tree of the graph using Kruskal's algorithm. """
|
||||
|
||||
cost = 0
|
||||
result = []
|
||||
edges = self.all_edges()
|
||||
|
||||
# Create a disjoint set for each vertex
|
||||
vertex_map = {v.value: DisjointValue(v) for v in self.all_vertices()}
|
||||
|
||||
# Sort the edges by weight
|
||||
edges.sort(key=lambda edge: edge[2])
|
||||
|
||||
# Process the edges
|
||||
for edge in edges:
|
||||
start_name, end_name, weight = edge
|
||||
# Check if the edge creates a cycle
|
||||
if not vertex_map[start_name].same_set(vertex_map[end_name]):
|
||||
result.append(edge)
|
||||
vertex_map[start_name].union(vertex_map[end_name])
|
||||
cost += weight
|
||||
|
||||
return result, cost
|
||||
|
||||
|
||||
class AdjacencyListGraph(Graph):
|
||||
"""A graph implemented as an adjacency list."""
|
||||
def __init__(self):
|
||||
self.adjacency_map = {} # maps vertex names to lists of adjacent vertices
|
||||
self.vertex_map = {} # maps vertex names to vertices
|
||||
|
||||
def insert_vertex(self, name: str):
|
||||
if name not in self.vertex_map:
|
||||
self.vertex_map[name] = Vertex(name)
|
||||
if name not in self.adjacency_map:
|
||||
self.adjacency_map[name] = []
|
||||
|
||||
def connect(self, name1: str, name2: str, weight: float = 1):
|
||||
adjacency_list = self.adjacency_map[name1]
|
||||
dest = self.vertex_map[name2]
|
||||
adjacency_list.append((dest, weight))
|
||||
|
||||
def all_vertices(self) -> List[Vertex]:
|
||||
return list(self.vertex_map.values())
|
||||
|
||||
def get_vertex(self, name: str) -> Vertex:
|
||||
return self.vertex_map[name]
|
||||
|
||||
def get_adjacent_vertices(self, name: str) -> List[Vertex]:
|
||||
return list(map(lambda x: x[0], self.adjacency_map[name]))
|
||||
|
||||
def get_adjacent_vertices_with_weight(self, name: str) -> List[tuple[Vertex, float]]:
|
||||
return self.adjacency_map[name]
|
||||
|
||||
def all_edges(self) -> List[tuple[str, str, float]]:
|
||||
result = []
|
||||
for name in self.adjacency_map:
|
||||
for (dest, weight) in self.adjacency_map[name]:
|
||||
result.append((name, dest.value, weight))
|
||||
return result
|
||||
|
||||
|
||||
class AdjacencyMatrixGraph(Graph):
|
||||
"""A graph implemented as an adjacency matrix."""
|
||||
def __init__(self):
|
||||
self.index_map = {} # maps vertex names to indices
|
||||
self.vertex_list = [] # list of vertices
|
||||
self.adjacency_matrix = [] # adjacency matrix
|
||||
|
||||
def insert_vertex(self, name: str):
|
||||
if name not in self.index_map:
|
||||
self.index_map[name] = len(self.vertex_list)
|
||||
self.vertex_list.append(Vertex(name))
|
||||
for row in self.adjacency_matrix: # add a new column to each row
|
||||
row.append(None)
|
||||
self.adjacency_matrix.append([None] * len(self.vertex_list)) # add a new row
|
||||
|
||||
def connect(self, name1: str, name2: str, weight: float = 1):
|
||||
index1 = self.index_map[name1]
|
||||
index2 = self.index_map[name2]
|
||||
self.adjacency_matrix[index1][index2] = weight
|
||||
|
||||
|
||||
def all_vertices(self) -> List[Vertex]:
|
||||
return self.vertex_list
|
||||
|
||||
def get_vertex(self, name: str) -> Vertex:
|
||||
index = self.index_map[name]
|
||||
return self.vertex_list[index]
|
||||
|
||||
def get_adjacent_vertices(self, name: str) -> List[Vertex]:
|
||||
index = self.index_map[name]
|
||||
result = []
|
||||
for i in range(len(self.vertex_list)):
|
||||
if self.adjacency_matrix[index][i] is not None:
|
||||
name = self.vertex_list[i].value
|
||||
result.append(self.get_vertex(name))
|
||||
return result
|
||||
|
||||
def get_adjacent_vertices_with_weight(self, name: str) -> List[tuple[Vertex, float]]:
|
||||
index = self.index_map[name]
|
||||
result = []
|
||||
for i in range(len(self.vertex_list)):
|
||||
if self.adjacency_matrix[index][i] is not None:
|
||||
name = self.vertex_list[i].value
|
||||
result.append((self.get_vertex(name), self.adjacency_matrix[index][i]))
|
||||
return result
|
||||
|
||||
def all_edges(self) -> List[tuple[str, str, float]]:
|
||||
result = []
|
||||
for i in range(len(self.vertex_list)):
|
||||
for j in range(len(self.vertex_list)):
|
||||
if self.adjacency_matrix[i][j] is not None:
|
||||
result.append((self.vertex_list[i].value, self.vertex_list[j].value, self.adjacency_matrix[i][j]))
|
||||
return result
|
||||
|
||||
|
||||
|
@ -1,18 +0,0 @@
|
||||
|
||||
|
||||
class DisjointValue():
|
||||
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
self.parent = None
|
||||
|
||||
def canonical(self):
|
||||
if self.parent:
|
||||
return self.parent.canonical()
|
||||
return self
|
||||
|
||||
def same_set(self, other):
|
||||
return self.canonical() == other.canonical()
|
||||
|
||||
def union(self, other):
|
||||
self.canonical().parent = other.canonical()
|
Loading…
x
Reference in New Issue
Block a user