Compare commits

..

23 Commits

Author SHA1 Message Date
02d9557e27 Changed formatting of Graphviz Graph 2025-04-26 19:04:37 +02:00
58f66fc1ff Implemented AVL Insert, sort and some debugstuff to find weird pythonissues 2025-04-26 18:54:00 +02:00
552f226e76 Implemented graphvizify 2025-04-24 15:50:39 +02:00
141ff08b82 merge upstream 2025-04-24 12:33:06 +00:00
c382641234 merge upstream 2025-04-23 09:17:26 +00:00
b12e39952d Removed no longer needed function, cleaned up structure 2025-04-23 10:45:53 +02:00
d8a9b29a69 merge upstream 2025-04-23 08:25:29 +00:00
f56b8c7e7a Added extended testsequencies for PriorityQueue 2025-04-23 10:24:39 +02:00
2735abfe81 Removed unneccessary inheritance due to syntax 2025-04-23 10:23:55 +02:00
82fbfa2772 Implemented pr04 (BST) using RAM 2025-04-18 17:18:37 +02:00
b3d3551994 merge upstream 2025-04-18 12:36:50 +00:00
38c099a94e Fixed order of operations in Insert, added serialization and more unittests 2025-04-13 19:04:22 +02:00
2af96a1b4e Cleaned up pr03 2025-04-13 19:03:06 +02:00
2bcd77f9ec Squash merge be/pr03 into main 2025-04-13 13:55:51 +02:00
1b0f9f8c50 merge upstream 2025-04-09 08:24:04 +00:00
f02669d601 Squash merge be/pr02 into main 2025-04-06 14:46:25 +02:00
e19262e818 merge upstream 2025-04-02 09:19:29 +00:00
3926d8d0c7 fixed one-off error and improved call-logic 2025-04-02 11:19:17 +02:00
364590c563 Added and fixed Comments 2025-03-31 14:56:13 +02:00
79f0fc36fd Implemented Algo_4 with O(n) 2025-03-27 16:41:26 +01:00
c0d376cd5c Implemented Algo_3 (n_log(n)) 2025-03-27 16:33:08 +01:00
8df24e2aa1 Copied basic structure, added sanityChecks and implemented Algo_2 2025-03-27 15:25:43 +01:00
bff98d35a7 Added python venv configuration and froze pip-packages of working setup 2025-03-26 22:25:08 +01:00
40 changed files with 1274 additions and 1435 deletions

24
activateEnv.srcme Executable file
View File

@ -0,0 +1,24 @@
#!/bin/bash -u
#
# Source python venv (installed via curl https://pyenv.run | bash) to use specific python-version for this project without affecting system
# For Algorithms and Datastructures Class
#
# For WSLg support for matplotlib export="DISPLAY:0" and
# echo "backend: TkAgg" > ~/.config/matplotlib/matplotlibrc
export PYENV_ROOT="$HOME/.pyenv"
export PATH="$PYENV_ROOT/bin:$PATH"
export PYTHONPATH=".:$PYTHONPATH"
eval "$(pyenv init --path)"
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"
# Create virtualenv if it doesn't exist
if ! pyenv versions | grep -q AUD; then
echo "Creating Python environment..."
pyenv install -s 3.12.0
pyenv virtualenv 3.12.0 AUD
fi
pyenv activate AUD

View File

@ -1,5 +0,0 @@
Sabqponm
abcryxxl
accszExk
acctuvwj
abdefghi

View File

@ -1,15 +0,0 @@
###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#.#.......#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S..#.....#...#
###############

View File

@ -1,8 +0,0 @@
"Höhleneingang";"Ost/West-Passage";5
"Höhleneingang";"Nord/Süd-Passage";3
"Nord/Süd-Passage";"Nebelraum";7
"Steiniger Pfad";"Ost/West-Passage";2
"Ost/West-Passage";"Schwefelgewölbe";4
"Schwefelgewölbe";"Steiniger Pfad";1
"Schatzkammer";"Nebelraum";2
"Steiniger Pfad";"Schatzkammer";6

View File

@ -1,8 +0,0 @@
"Höhleneingang" <> "Ost/West-Passage"
"Höhleneingang" <> "Nord/Süd-Passage"
"Nord/Süd-Passage" <> "Nebelraum"
"Steiniger Pfad" > "Ost/West-Passage"
"Ost/West-Passage" <> "Schwefelgewölbe"
"Schwefelgewölbe" > "Steiniger Pfad"
"Schatzkammer" > "Nebelraum"
"Steiniger Pfad" > "Schatzkammer"

View File

@ -1,9 +0,0 @@
xxxxxxxxxxxxxxxxxxxxx
x x
x S x
x x
x xxxxxxxx x
x x
x x
x A x
xxxxxxxxxxxxxxxxxxxxx

View File

@ -1,5 +0,0 @@
xxxxxAxxxxxxxxx
x xSx
xxxxxxxxxx xx x
x x
xxxxxxxxxxxxxxx

13
myreqs.txt Normal file
View File

@ -0,0 +1,13 @@
contourpy==1.3.1
cycler==0.12.1
fonttools==4.56.0
kiwisolver==1.4.8
matplotlib==3.10.1
numpy==2.2.4
packaging==24.2
pillow==11.1.0
pygame==2.6.1
pyparsing==3.2.3
python-dateutil==2.9.0.post0
six==1.17.0
tk==0.1.0

View File

@ -1,12 +0,0 @@
from utils.memory_array import MemoryArray
from vorlesung.L05_binaere_baeume.avl_tree import AVLTree
if __name__ == "__main__":
a = MemoryArray.create_array_from_file("data/seq0.txt")
tree = AVLTree()
for cell in a:
tree.insert(int(cell))
tree.graph_traversal()

View File

@ -1,12 +0,0 @@
from utils.memory_array import MemoryArray
from vorlesung.L05_binaere_baeume.bin_tree import BinaryTree
if __name__ == "__main__":
a = MemoryArray.create_array_from_file("data/seq0.txt")
tree = BinaryTree()
for cell in a:
tree.insert(int(cell))
tree.graph_traversal()

View File

@ -1,106 +0,0 @@
import math
import unittest
from utils.literal import Literal
from utils.memory_cell import MemoryCell
from utils.memory_array import MemoryArray
from vorlesung.L07_hashtable.hashtable import HashTableOpenAddressing
#Goldener Schnitt
a = Literal((math.sqrt(5) - 1) / 2)
# Hashfunktion nach multiplikativer Methode
def h(x: MemoryCell, m: Literal) -> Literal:
with MemoryCell(int(x * a)) as integer_part, MemoryCell(x * a) as full_product:
with MemoryCell(full_product - integer_part) as fractional_part:
return Literal(abs(int(fractional_part * m)))
# Quadratische Sondierung
def f(x: MemoryCell, i: Literal, m: Literal) -> Literal:
c1 = 1
c2 = 5
with MemoryCell(h(x, m)) as initial_hash, MemoryCell(c2 * int(i) * int(i)) as quadratic_offset:
with MemoryCell(initial_hash + quadratic_offset) as probe_position:
probe_position += Literal(c1 * int(i)) # Linear component
return probe_position % m
# Symmetrische quadratische Sondierung
def fs(x: MemoryCell, i: Literal, m: Literal) -> Literal:
with MemoryCell(h(x, m)) as base_hash, MemoryCell(int(i) * int(i)) as square:
if int(i) % 2 == 0: # gerades i: Vorwärtssondierung
with MemoryCell(base_hash + square) as position:
return position % m
else: # ungerades i: Rückwärtssondierung
with MemoryCell(base_hash - square) as position:
return position % m
if __name__ == "__main__":
print("*** Aufgabe 3 ***")
size = Literal(20)
print(f"Anlage einer Hash-Tabelle mit offener Adressierung mit Größe {size}")
ht = HashTableOpenAddressing(size, f)
print("Einfügen der Werte aus seq0.txt")
for cell in MemoryArray.create_array_from_file("data/seq0.txt"):
if not ht.insert(cell):
print(f"Einfügen von {cell} nicht möglich")
print(ht)
print(f"Belegungsfaktor: {ht.alpha()}")
with MemoryCell(52) as cell:
print(f"Suche nach {cell}")
if ht.search(cell):
print(f"{cell} gefunden, wird gelöscht.")
ht.delete(cell)
else:
print(f"{cell} nicht gefunden")
print(ht)
print(f"Belegungsfaktor: {ht.alpha()}")
print("Einfügen von 24")
with MemoryCell(24) as cell:
if not ht.insert(cell):
print(f"Einfügen von {cell} nicht möglich")
print(ht)
print(f"Belegungsfaktor: {ht.alpha()}")
print()
print("*** Aufgabe 4 ***")
size = Literal(90)
print(f"Anlage einer Hash-Tabelle mit offener Adressierung mit Größe {size}")
ht = HashTableOpenAddressing(size, f)
print("Einfügen der Werte aus seq1.txt")
for cell in MemoryArray.create_array_from_file("data/seq1.txt"):
if not ht.insert(cell):
print(f"Einfügen von {cell} nicht möglich")
print(ht)
print(f"Belegungsfaktor: {ht.alpha()}")
print()
print("*** Aufgabe 5 ***")
size = Literal(89)
print(f"Anlage einer Hash-Tabelle mit offener Adressierung mit Größe {size}")
ht = HashTableOpenAddressing(size, f)
print("Einfügen der Werte aus seq1.txt")
for cell in MemoryArray.create_array_from_file("data/seq1.txt"):
if not ht.insert(cell):
print(f"Einfügen von {cell} nicht möglich")
print(ht)
print(f"Belegungsfaktor: {ht.alpha()}")
print()
print("*** Aufgabe 6 ***")
size = Literal(90)
print(f"Anlage einer Hash-Tabelle mit offener Adressierung mit Größe {size}")
print("Verwendung der symmetrischen quadratischen Sondierung")
ht = HashTableOpenAddressing(size, fs)
print("Einfügen der Werte aus seq1.txt")
for cell in MemoryArray.create_array_from_file("data/seq1.txt"):
if not ht.insert(cell):
print(f"Einfügen von {cell} nicht möglich")
print(ht)
print(f"Belegungsfaktor: {ht.alpha()}")
print()

View File

@ -1,37 +0,0 @@
import re
from utils.project_dir import get_path
from vorlesung.L08_graphen.graph import Graph, AdjacencyListGraph, AdjacencyMatrixGraph
def read_cave_into_graph(graph: Graph, filename: str):
"""Read a cave description from a file and insert it into the given graph."""
filename = get_path(filename)
with open(filename, "r") as file:
lines = file.readlines()
for line in lines:
# match a line with two node names and an optional direction
m = re.match(r"(^\s*\"(.*)\"\s*([<>]*)\s*\"(.*)\"\s*)", line)
if m:
startnode = m.group(2)
endnode = m.group(4)
opcode = m.group(3)
graph.insert_vertex(startnode)
graph.insert_vertex(endnode)
if '>' in opcode:
graph.connect(startnode, endnode)
if '<' in opcode:
graph.connect(endnode, startnode)
graph = AdjacencyListGraph()
# graph = AdjacencyMatrixGraph()
read_cave_into_graph(graph, "data/hoehle.txt")
_, predecessor_map = graph.bfs('Höhleneingang')
path = graph.path('Schatzkammer', predecessor_map)
print(path)
_, predecessor_map = graph.bfs('Schatzkammer')
path = graph.path('Höhleneingang', predecessor_map)
print(path)
graph.graph("Höhle")

View File

@ -1,59 +0,0 @@
from utils.project_dir import get_path
from vorlesung.L08_graphen.graph import AdjacencyListGraph
DIRECTIONS = [(1,0), (0, 1), (-1, 0), (0, -1)]
class D16Solution:
def __init__(self):
with open(get_path("data/aoc2416.txt"), "r") as file:
self.puzzle = [line.strip() for line in file]
self.cells = set()
self.start = None
self.end = None
def get_cells_start_end(self):
for row in range(len(self.puzzle)):
for col in range(len(self.puzzle[row])):
if self.puzzle[row][col] != '#':
self.cells.add((col, row))
if self.puzzle[row][col] == 'S':
self.start = (col, row)
if self.puzzle[row][col] == 'E':
self.end = (col, row)
def get_label(self, cell, direction):
"""Generate a label for a cell based on its coordinates and direction."""
return f"{cell[0]},{cell[1]}_{direction}"
def create_graph(self):
graph = AdjacencyListGraph()
for cell in self.cells:
for direction in DIRECTIONS:
label = self.get_label(cell, direction)
graph.insert_vertex(label)
for cell in self.cells:
for d, direction in enumerate(DIRECTIONS):
label = self.get_label(cell, direction)
dx, dy = direction
neighbor = (cell[0] + dx, cell[1] + dy)
if neighbor in self.cells:
graph.connect(label, self.get_label(neighbor, direction))
direction_left = DIRECTIONS[(d - 1) % 4]
direction_right = DIRECTIONS[(d + 1) % 4]
graph.connect(label, self.get_label(cell, direction_left), 1000)
graph.connect(label, self.get_label(cell, direction_right), 1000)
return graph
if __name__ == "__main__":
solution = D16Solution()
solution.get_cells_start_end()
graph = solution.create_graph()
start = solution.get_label(solution.start, DIRECTIONS[0])
print(f"Start: {start}")
distance_map, predecessor_map = graph.dijkstra(start)
end_labels = [solution.get_label(solution.end, direction) for direction in DIRECTIONS]
end_vertices = [graph.get_vertex(label) for label in end_labels]
min_weight = min([distance_map[vertex] for vertex in end_vertices])
print(f"Minimum distance to End {solution.end}: {min_weight}")

View File

@ -1,32 +0,0 @@
from vorlesung.L08_graphen.graph import Graph, AdjacencyMatrixGraph
from utils.project_dir import get_path
import re
def read_elektro_into_graph(graph: Graph, filename: str):
pattern = re.compile(r'"([^"]+)";"([^"]+)";(\d+)')
with (open(filename, "r") as file):
for line in file:
m = pattern.match(line)
if m:
start_name = m.group(1)
end_name = m.group(2)
cost = int(m.group(3))
graph.insert_vertex(start_name)
graph.insert_vertex(end_name)
graph.connect(start_name, end_name, cost)
graph.connect(end_name, start_name, cost)
if __name__ == "__main__":
graph = AdjacencyMatrixGraph()
read_elektro_into_graph(graph, get_path("data/elektro.txt"))
parents, cost = graph.mst_prim()
print(f"Kosten nach Prim: {cost}")
for node, parent in parents.items():
if parent is not None:
print(f"{node} - {parent}")
edges, cost = graph.mst_kruskal()
print(f"Kosten nach Kruskal: {cost}")
for start_name, end_name, _ in edges:
print(f"{start_name} - {end_name}")

View File

@ -1,4 +1,3 @@
matplotlib
numpy
pygame
graphviz

165
schoeffelbe/pr01.py Normal file
View File

@ -0,0 +1,165 @@
from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell
from utils.literal import Literal
from utils.constants import MIN_VALUE
from utils.memory_manager import MemoryManager
from utils.memory_range import mrange
def max_sequence_1(z: MemoryArray):
n = z.length()
m = MemoryCell(MIN_VALUE)
s = MemoryCell()
l = MemoryCell()
r = MemoryCell()
for i in mrange(n):
for j in mrange(i, n):
s.set(0)
for k in mrange(i, j):
s += z[k]
if s > m:
m.set(s)
l.set(i)
r.set(j)
return m, l, r
def max_sequence_2(z: MemoryArray):
n = z.length()
m = MemoryCell(MIN_VALUE)
s = MemoryCell()
l = MemoryCell()
r = MemoryCell()
for i in mrange(n):
s.set(0)
for j in mrange(i, n):
s += z[j]
if s > m:
m.set(s)
l.set(i)
r.set(j)
return m, l, r
def _max_sequence_3_sub(z: MemoryArray, l: Literal, m: Literal, r: Literal):
# find max-sum from Middle to left
linksMax = MemoryCell(MIN_VALUE)
sum = MemoryCell(0)
links = MemoryCell(l)
rechts = MemoryCell(l)
for i in mrange(m, MemoryCell(l)-Literal(1), -1):
sum += z[i]
if sum > linksMax :
linksMax.set(sum)
links.set(i)
# find max-sum from Middle to right
rechtsMax = MemoryCell(MIN_VALUE)
sum.set(0);
# MRange is exclusive
startRight = MemoryCell(1) + m
for i in mrange(startRight, MemoryCell(1) + r):
sum += z[i]
if sum > rechtsMax:
rechtsMax.set(sum)
rechts.set(i)
return (linksMax + rechtsMax), links, rechts
def _max_sequence_3(z: MemoryArray, l: Literal, r: Literal):
# Calc-Vars -> illegal to use Literal(0) here? Probably
# CAN ALLLL BE LITERALS
linksMax = MemoryCell()
linksL = MemoryCell()
linksR = MemoryCell()
rechtsMax = MemoryCell()
rechtsL = MemoryCell()
rechtsR = MemoryCell()
zwiMax = MemoryCell()
zwiL = MemoryCell()
zwiR = MemoryCell()
# Middle
m = MemoryCell()
# Rec-Term - Reached subarray of size 1
if l == r:
return (z[l], l, r)
# calc middle
m.set(MemoryCell(l) + r)
# Use cutoff/floor here, did not check
m //= Literal(2);
# get maxLeft, then maxRight and then cross them (rec)
(linksMax, linksL, linksR) = _max_sequence_3(z, l, m)
startRight = MemoryCell(1) + m
(rechtsMax, rechtsL, rechtsR) = _max_sequence_3(z, startRight, r)
(zwiMax, zwiL, zwiR) = _max_sequence_3_sub(z, l, m, r)
if linksMax >= rechtsMax and linksMax >= zwiMax:
return (linksMax, linksL, linksR)
if rechtsMax >= linksMax and rechtsMax >= zwiMax:
return (rechtsMax, rechtsL, rechtsR)
return (zwiMax, zwiL, zwiR)
# Wrapper for Seq DivAndConquer to keep call/teststructure possible
def max_sequence_3(z: MemoryArray):
# Start with full range
lstart = Literal(0)
rend = Literal(len(z) - 1)
return _max_sequence_3(z, lstart, rend)
def max_sequence_4(z: MemoryArray):
n = z.length()
max = MemoryCell(MIN_VALUE)
aktLinks = MemoryCell()
links = MemoryCell()
rechts = MemoryCell()
aktSum = MemoryCell()
for i in mrange(n):
aktSum += z[i]
if aktSum > max:
max.set(aktSum)
links.set(aktLinks)
rechts.set(i)
# if negative we start new Sum -> Restart must be better than continue
if aktSum < Literal(0):
aktSum.set(0)
aktLinks.set(MemoryCell(1) + i)
return (max, links, rechts)
def example(max_sequence_func):
l = [-59, 52, 46, 14, -50, 58, -87, -77, 34, 15]
print(l)
z = MemoryArray(l)
m, l, r = max_sequence_func(z)
print(m, l, r)
assert(m == Literal(120))
def seq(filename, max_sequence_func):
z = MemoryArray.create_array_from_file(filename)
m, l, r = max_sequence_func(z)
print(m, l, r)
def analyze_complexity(max_sequence_func, sizes):
"""
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
:param max_sequence_func: Die Funktion, die analysiert wird.
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
"""
for size in sizes:
MemoryManager.purge() # Speicher zurücksetzen
random_array = MemoryArray.create_random_array(size, -100, 100)
max_sequence_func(random_array)
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "adds"])
if __name__ == '__main__':
# fn = max_sequence_4
for fn in [max_sequence_1, max_sequence_2, max_sequence_3, max_sequence_4]:
example(fn)
# for filename in ["data/seq0.txt", "data/seq1.txt", "data/seq2.txt", "data/seq3.txt"]:
for filename in ["data/seq0.txt", "data/seq1.txt"]:
print(filename)
seq(filename, fn)
analyze_complexity(fn, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])

125
schoeffelbe/pr02.py Normal file
View File

@ -0,0 +1,125 @@
import logging
logger = logging.getLogger(__name__)
# logging.basicConfig(level=logging.DEBUG)
import time
def timeMS(func, *args, **kwargs):
startTime = time.perf_counter()
result = func(*args, **kwargs)
endTime = time.perf_counter()
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
print(f"{func.__name__} took {elapsedMS:.2f} ms")
return result
from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell
from utils.literal import Literal
from utils.constants import MIN_VALUE
from utils.memory_manager import MemoryManager
from utils.memory_range import mrange
def example():
initial = [6, 5, 3, 8, 1, 7, 2, 4]
# initial = [-6, -5, -3, -8, 1, 7, 2, 4]
toSort = MemoryArray(initial)
# init_from_size not accessible?
sorted = MemoryArray([-1] * len(initial))
mergeSort(toSort, sorted)
logger.debug(f"sorted {sorted} vs initial {initial}")
assert all(sorted[Literal(i)] == Literal(i+1) for i in range(len(initial))), "Array not sorted correctly"
analyze_complexity(mergeSort, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
def merge(left: MemoryArray, right: MemoryArray, sort: MemoryArray):
pointerLeft = MemoryCell(0)
pointerRight = MemoryCell(0)
pointerSort = MemoryCell(0)
compare = lambda x, y: x <= y
logger.debug(f"Merging left {left} with right {right} in sort {sort}")
while pointerLeft < left.length() and pointerRight < right.length():
if compare(left[pointerLeft], right[pointerRight]):
sort[pointerSort] = left[pointerLeft]
pointerLeft += Literal(1)
else:
sort[pointerSort] = right[pointerRight]
pointerRight += Literal(1)
logger.debug(f"Now are at sort {sort} with {pointerLeft} (l) and {pointerRight} (r)")
pointerSort += Literal(1)
# Consume remaining elements
while pointerLeft < left.length():
logger.debug(f"Consuming left {left} from {pointerSort} at {pointerLeft}")
sort[pointerSort] = left[pointerLeft]
pointerLeft += Literal(1)
pointerSort += Literal(1)
while pointerRight < right.length():
logger.debug(f"Consuming right {right} from {pointerSort} at {pointerRight}")
sort[pointerSort] = right[pointerRight]
pointerRight += Literal(1)
pointerSort += Literal(1)
# Sort the array passed as "toSort" and place the result in array "sort"
# Does not change the original Array
def mergeSort(toSort: MemoryArray, sort: MemoryArray):
logger.debug(toSort)
toSortLength = MemoryCell(toSort.length())
# Splitting
# Rec-Term -> Reached single Element. Single Element is already sorted so we place it!
if toSortLength <= Literal(1):
# still working for empty array
if toSortLength == Literal(1):
sort[Literal(0)] = toSort[Literal(0)]
return
# TODO - Use a global var or a reference to an array passed as argument for this
# TODO - Tried non-temp-array approach with alternating Work-Arrays passed to the function, but made code really unreadable. Decided not worth it for now
# Temporary Arrays to hold the split arrays
mid : Literal = toSortLength // Literal(2)
left : MemoryArray = MemoryArray([toSort[i] for i in mrange(mid)])
right : MemoryArray = MemoryArray([toSort[i] for i in mrange(mid, toSortLength)])
# Temporary arrays for sorted halves
leftSort = MemoryArray([-1] * mid.get())
rightSort = MemoryArray([-1] * (toSortLength - mid).get())
# Split further
mergeSort(left, leftSort)
mergeSort(right, rightSort)
# Recreate the array from the seperated parts
merge(leftSort, rightSort, sort)
def analyze_complexity(fn, sizes):
"""
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
:param max_sequence_func: Die Funktion, die analysiert wird.
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
"""
for size in sizes:
MemoryManager.purge() # Speicher zurücksetzen
random_array = MemoryArray.create_random_array(size, -100, 100)
other_array = MemoryArray([-1] * size)
fn(random_array, other_array)
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "adds", "compares"])
if __name__ == '__main__':
# For debug, assert if working and complexity-analysis
# example()
for filename in ["data/seq0.txt", "data/seq1.txt", "data/seq2.txt", "data/seq3.txt"]:
print(filename)
toSort = MemoryArray.create_array_from_file(filename)
sorted = MemoryArray([-1] * toSort.length().get())
timeMS(mergeSort, toSort, sorted)
# print(sorted)

190
schoeffelbe/pr03.py Normal file
View File

@ -0,0 +1,190 @@
import logging
logger = logging.getLogger(__name__)
# logging.basicConfig(level=logging.DEBUG)
import time
def timeMS(func, *args, **kwargs):
startTime = time.perf_counter()
result = func(*args, **kwargs)
endTime = time.perf_counter()
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
print(f"{func.__name__} took {elapsedMS:.2f} ms")
return result
from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell
from utils.literal import Literal
from utils.constants import MIN_VALUE
from utils.memory_manager import MemoryManager
from utils.memory_range import mrange
def example():
initial = [6, 5, 3, 8, 1, 7, 2, 4]
# initial = [-6, -5, -3, -8, 1, 7, 2, 4]
toSort = MemoryArray(initial)
quickSortIterative(toSort, Literal(0), toSort.length().pred())
logger.debug(f"sorted {toSort} vs initial {initial}")
assert all(toSort[Literal(i)] == Literal(i+1) for i in range(len(initial))), "Array not sorted correctly"
# analyze_complexity(quickSort, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
def getPivot(z: MemoryArray, l: Literal, r: Literal, mode) -> Literal:
if mode == 0:
return r
else:
mid_offset = r.value - l.value
mid_offset = mid_offset // 2
mid = Literal(l.value + mid_offset)
# Return median of left, middle, and right elements
if ((z[l] <= z[mid] and z[mid] <= z[r]) or
(z[r] <= z[mid] and z[mid] <= z[l])):
return mid
elif ((z[mid] <= z[l] and z[l] <= z[r]) or
(z[r] <= z[l] and z[l] <= z[mid])):
return l
else:
return r
def swap(z: MemoryArray, i: int, j: int):
tmp = z[Literal(i)].value
z[Literal(i)] = z[Literal(j)]
z[Literal(j)].set(tmp)
# toSort[] --> Array to be sorted,
# left --> Starting index,
# right --> Ending index
# adapted from https://stackoverflow.com/questions/68524038/is-there-a-python-implementation-of-quicksort-without-recursion
def quickSortIterative(toSort : MemoryArray, left : Literal, right : Literal, mode=0):
# Create a manually managed stack and avoid pythons recursion-limit
size = right.value - left.value + 1
stack : MemoryArray = MemoryArray([0] * size)
top : MemoryCell = MemoryCell(-1)
# push initial values of l and h to stack
top += Literal(1)
stack[top] = left
top += Literal(1)
stack[top] = right
# Keep popping from stack until its empty
while top >= Literal(0):
logger.debug(f"size {size}, stack {stack}, right {right} and left {left}, top {top}")
# Pop h and l - Ensure we are not getting them by Ref, this will produce weird "JUST A LITTLE OF" Results
right = Literal(stack[top].get())
top -= Literal(1)
left = Literal(stack[top].get())
top -= Literal(1)
# Set pivot element at its correct position in sorted array
p = partitionIterative(toSort, left, right, mode)
# If there are elements on left side of pivot, then push left side to stack
if p.pred() > left:
top += Literal(1)
stack[top] = left
top += Literal(1)
stack[top] = p.pred()
# If there are elements on right side of pivot, then push right side to stack
if p.succ() < right:
top += Literal(1)
stack[top] = p.succ()
top += Literal(1)
stack[top] = right
def partitionIterative(arr : MemoryArray, l : Literal, h : Literal, mode=0):
logger.debug(f"Partitioning {arr}, {l} and {h}")
pivot_idx : Literal = getPivot(arr, l, h, mode)
# If pivot isn't at the high end, swap it there
if pivot_idx != h:
swap(arr, int(pivot_idx), int(h))
# Carefull that we do not use a reference. I suppose python would return one here if we just assign without value>Literal cast.
# At least this helped fix weird issue
pivotValue : Literal = arr[h]
i : MemoryCell = MemoryCell(l.pred())
for j in mrange(l, h):
if arr[j] <= pivotValue:
i += Literal(1) # increment index of smaller element
swap(arr, int(i), int(j))
swap(arr, i.succ().value, h.value)
return i.succ()
def LEGACY_quickSort(z: MemoryArray, l: Literal = Literal(0), r: Literal = Literal(-1), mode=0):
if r == Literal(-1):
r = z.length().pred();
if l < r:
q = LEGACY_partition(z, l, r, mode)
LEGACY_quickSort(z, l, q.pred())
LEGACY_quickSort(z, q.succ(), r)
def LEGACY_partition(z: MemoryArray, l: Literal, r: Literal, mode):
# Get pivot
pivot_idx = getPivot(z, l, r, mode)
# If pivot is not already at the right end, swap it there
if pivot_idx != r:
swap(z, int(pivot_idx), int(r))
with MemoryCell(z[r]) as pivot, MemoryCell(l) as i, MemoryCell(r.pred()) as j:
while i < j:
while z[i] < pivot:
i.set(i.succ())
while j > l and z[j] >= pivot:
j.set(j.pred())
if i < j:
swap(z, int(i), int(j))
i.set(i.succ())
j.set(j.pred())
if i == j and z[i] < pivot:
i.set(i.succ())
if z[i] != pivot:
swap(z, int(i), int(r))
return Literal(i)
def analyze_complexity(fn, sizes):
"""
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
:param max_sequence_func: Die Funktion, die analysiert wird.
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
"""
for size in sizes:
MemoryManager.purge() # Speicher zurücksetzen
random_array = MemoryArray.create_random_array(size, -100, 100)
fn(random_array, Literal(0), random_array.length().pred())
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "adds", "compares", "reads", "writes"])
if __name__ == '__main__':
# For debug, assert if working and complexity-analysis
example()
print("I ran into a MaxRecursionDepth Error. From what I read on the Internet python does not do Tailcall Optimizations")
print("Increasing recursion-limit seems like a poor Idea, therefore tried an iterative approach with manual stack-keeping")
toSort = MemoryArray.create_array_from_file("data/seq0.txt")
print(toSort)
quickSortIterative(toSort, Literal(0), toSort.length().pred())
print(toSort)
# analyze_complexity(quickSortIterative, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
for filename in ["data/seq0.txt", "data/seq1.txt", "data/seq2.txt" ,"data/seq3.txt"]:
# for filename in [ "data/seq1.txt"]:
print(filename)
toSort = MemoryArray.create_array_from_file(filename)
timeMS(quickSortIterative, toSort, Literal(0), toSort.length().pred(), mode=1)
print(toSort)
print("Kann durch die Modifikation eine besser Laufzeit als nlog(n) erreicht werden? Nein! nlog(n) ist das Minimum. Durch die Änderung kann aber der Worst-Case fall von n^2 für z.B. bereits vorsortierte Arrays oder Arrays mit vielen Duplikaten vermieden werden.")

293
schoeffelbe/pr04.py Normal file
View File

@ -0,0 +1,293 @@
import logging
logger = logging.getLogger(__name__)
# logging.basicConfig(level=logging.DEBUG)
import time
def timeMS(func, *args, **kwargs):
startTime = time.perf_counter()
result = func(*args, **kwargs)
endTime = time.perf_counter()
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
print(f"{func.__name__} took {elapsedMS:.2f} ms")
return result
from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell
from utils.literal import Literal
from utils.constants import MAX_VALUE
from utils.memory_manager import MemoryManager
from utils.memory_range import mrange
# Impl of MemoryArray says we cant add our own Datatypes beside Literal and List
# BUUUUT we can just wrap our Datatype in a List :-)
# We store them in a MemoryArray internaly tho anyhow so we increment our Counters for the RAM
class HeapEntry:
def __init__(self, item, priority=1):
self.data = MemoryArray(Literal(2))
# 0: Content, 1: Prio
self.data[Literal(0)] = Literal(item)
self.data[Literal(1)] = Literal(priority)
def getItem(self):
return self.data[Literal(0)]
def getPriority(self):
return self.data[Literal(1)]
def setPriority(self, priority):
self.data[Literal(1)] = Literal(priority)
def __lt__(self, other):
if other is None:
return True
if isinstance(other, (int, float)):
return self.getPriority().value > other
return self.getPriority() > other.getPriority()
def __gt__(self, other):
if other is None:
return False
if isinstance(other, (int, float)):
return self.getPriority().value < other
return self.getPriority() < other.getPriority()
def __eq__(self, other):
return self.getPriority() == other.getPriority()
def __str__(self):
return f"({self.getItem()}, prio={self.getPriority()})"
class PriorityQueue:
def __init__(self, max_size : Literal = Literal(100)):
self.heap = MemoryArray(max_size)
# Add uninitialized HeapEntry Values so the Adds/Compares do not fail on emtpy stack.
# Would have to switch to MIN_VALUE if we switch what is a "Higher" Prio
for i in mrange(max_size.value):
self.heap[i].set([HeapEntry(MAX_VALUE, MAX_VALUE)])
self.size = MemoryCell(0)
def parent(self, i: Literal) -> Literal:
return MemoryCell(i.pred()) // Literal(2)
def leftChild(self, i: Literal) -> Literal:
return MemoryCell(MemoryCell(2) * i) + Literal(1)
def rightChild(self, i: Literal) -> Literal:
return MemoryCell(MemoryCell(2) * i) + Literal(2)
# Swap the Lists -> Therefore get the value which is the List and then Set it again
def swap(self, i: Literal, j: Literal):
tmp_i = self.heap[i].value
tmp_j = self.heap[j].value
self.heap[i].set(tmp_j)
self.heap[j].set(tmp_i)
def maxHeapify(self, i: Literal):
left = self.leftChild(i)
right = self.rightChild(i)
largest = i
if left < Literal(self.size.value) and self.heap[left].value[0] > self.heap[largest].value[0]:
largest = left
if right < Literal(self.size.value) and self.heap[right].value[0] > self.heap[largest].value[0]:
largest = right
if largest != i:
self.swap(i, largest)
self.maxHeapify(largest)
def insert(self, entry : HeapEntry):
if self.size >= self.heap.length():
raise IndexError("Heap full")
i = self.size
self.heap[i].set([entry])
while i > Literal(0) and self.heap[self.parent(i)].value[0] < self.heap[i].value[0]:
self.swap(i, self.parent(i))
i = self.parent(i)
self.size += Literal(1)
def pop(self):
if self.isEmpty():
raise IndexError("Queue is empty!")
max_item = self.heap[Literal(0)].value[0]
self.heap[Literal(0)] = self.heap[self.size - Literal(1)]
self.size -= Literal(1)
self.maxHeapify(Literal(0))
return max_item
def peek(self):
if self.isEmpty():
raise IndexError("Queue is empty")
return self.heap[Literal(0)].value[0]
def isEmpty(self):
return self.size == Literal(0)
def __len__(self):
return self.size
def __str__(self):
entries = []
for i in mrange(self.size.value):
entry = self.heap[i].value[0]
if entry.getItem() != MAX_VALUE:
entries.append(str(entry))
return "[" + ", ".join(entries) + "]"
# Insert here so we dont run into import problems, but can deliver this file Standalone
class BinaryTreeNode(MemoryCell):
def __init__(self, value):
super().__init__(value)
self.left = None
self.right = None
def __repr__(self):
return f"BinaryTreeNode(value={self.value}, left={self.left}, right={self.right})"
def __str__(self):
return str(self.value)
class BinaryTree:
def __init__(self):
self.root: BinaryTreeNode | None = None
def insert(self, value: BinaryTreeNode):
# Insert at Leaf, if smaller then left one, otherwise right one
def _insert(node: BinaryTreeNode | None, value) -> BinaryTreeNode:
if node is None:
return BinaryTreeNode(value)
if value < node:
node.left = _insert(node.left, value) # type: ignore -> Ignoring pywright errors
else:
node.right = _insert(node.right, value) # type: ignore -> Ignoring pywright errors
return node
self.root = _insert(self.root, value)
def traverse(self, mode="in", visual=False):
mode = mode.lower()
# Have internal depth counting
def InternalTraverse(node, prefix="", is_left=True, depth=0):
if node is None:
return [] if not visual else []
result = []
node_str = str(node)
prefixAcc = prefix + ("| " if is_left and depth > 0 else " ")
if visual:
connector = "+-- " if is_left else "L-- "
line = prefix + connector + node_str if depth > 0 else node_str
result.append(line)
else:
result.append(node_str)
if mode == "pre":
result += InternalTraverse(node.left, prefixAcc, True, depth + 1)
result += InternalTraverse(node.right, prefixAcc, False, depth + 1)
elif mode == "in":
result += InternalTraverse(node.left, prefixAcc, True, depth + 1)
result += InternalTraverse(node.right, prefixAcc, False, depth + 1)
elif mode == "post":
result += InternalTraverse(node.left, prefixAcc, True, depth + 1)
result += InternalTraverse(node.right, prefixAcc, False, depth + 1)
return result
if self.root is None:
return "(empty tree)" if visual else []
result = InternalTraverse(self.root)
return "\n".join(result) if visual else result
def levelOrderWithPriorityQueue(self):
if not self.root:
return []
# Create a priority queue, using a reduced prio for every new entry -> behaviour as regular queue FIFO
pq = PriorityQueue(Literal(1000))
# Again we cannot create a MemoryArray of dynamic sizes and also cannot create a string as MemoryCell does not like it
# Again we just create a list holding a single dummy Entry (to set its size to 1) and then just use this "list" as our string
# Appending to it is easy as it is just a regular list and in the end we return it
# Like MemoryCell("").value.append("STRING") will fail. But list-wrap works.
#
# Sorry for Syntax, dont know any better way to have everything as RAM-Managed memory:-(
result = MemoryArray(["MYSTRING"])
result[Literal(0)].set([]);
counter = MemoryCell(0)
def nextPriority():
val = counter.value
counter.set(Literal(val + 1))
return val
pq.insert(HeapEntry([self.root], nextPriority()))
while not pq.isEmpty():
entry = pq.pop()
node = entry.getItem().value
result[Literal(0)].value.append(str(node[0]))
if node[0].left:
pq.insert(HeapEntry([node[0].left], nextPriority()))
if node[0].right:
pq.insert(HeapEntry([node[0].right], nextPriority()))
return result[Literal(0)]
def __str__(self):
return str(self.traverse(mode="PrE", visual=True))
def analyze_complexity(fn, sizes):
"""
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
:param max_sequence_func: Die Funktion, die analysiert wird.
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
"""
for size in sizes:
MemoryManager.purge() # Speicher zurücksetzen
random_array = MemoryArray.create_random_array(size, -100, 100)
fn(random_array, Literal(0), random_array.length().pred())
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "adds", "compares", "reads", "writes"])
if __name__ == '__main__':
# For debug, assert if working and complexity-analysis
# example()
print("Sorry for the Syntax and the large file, tried to keep everything as a standalone file to help make it \" download and run \".\n \
Also did - once again - not find a better way to have a queue managed by the RAM contain the values of non-integer-attributes I \n\
needed it to. Therefore i reused my Priorityqueue and its accesses via the unspecified wrapped list.");
# for filename in ["data/seq0.txt", "data/seq1.txt", "data/seq2.txt" ,"data/seq3.txt"]:
for filename in [ "data/seq0.txt"]:
print(filename)
binTreeData = MemoryArray.create_array_from_file(filename)
binTree = BinaryTree()
for value in binTreeData:
binTree.insert(BinaryTreeNode(value))
# Print overlaoded InOrder traversal
print(binTree)
# print(binTree.traverse(mode="pre", visual=False))
# print(binTree.traverse(mode="in", visual=False))
# print(binTree.traverse(mode="post", visual=False))
# Print Levelorder traversal:
print(binTree.levelOrderWithPriorityQueue())

246
schoeffelbe/pr05.py Normal file
View File

@ -0,0 +1,246 @@
import logging
logger = logging.getLogger(__name__)
# logging.basicConfig(level=logging.DEBUG)
import time
def timeMS(func, *args, **kwargs):
startTime = time.perf_counter()
result = func(*args, **kwargs)
endTime = time.perf_counter()
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
print(f"{func.__name__} took {elapsedMS:.2f} ms")
return result
from utils.memory_array import MemoryArray
from utils.literal import Literal
from utils.memory_manager import MemoryManager
from vorlesung.L05_binaere_baeume.bin_tree import BinaryTree
from vorlesung.L05_binaere_baeume.bin_tree_node import BinaryTreeNode
def analyze_complexity(fn, sizes):
"""
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
:param max_sequence_func: Die Funktion, die analysiert wird.
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
"""
for size in sizes:
MemoryManager.purge() # Speicher zurücksetzen
random_array = MemoryArray.create_random_array(size, -100, 100)
fn(random_array, Literal(0), random_array.length().pred())
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "adds", "compares", "reads", "writes"])
lineAccumulator = []
# Returnvalue does not get forwarded so we can not work with return.
# Will try glob vars to append the string
# Signature: def print_node(node, indent=0, line=None):
def clbk_graphvizify(toDecorate : BinaryTreeNode, indent=0, line=None):
global lineAccumulator
if isinstance(toDecorate, AVLTreeNode):
lineAccumulator.append(f'n_{id(toDecorate)} [label=<{toDecorate.value}<BR/><FONT COLOR="RED" POINT-SIZE="10.0" FACE="ambrosia">B: {toDecorate.balanceFactor}</FONT>>]')
else:
lineAccumulator.append(f"n_{id(toDecorate)} [label={toDecorate.value}]")
# Create edges for nodes with Child (use l - r)
if toDecorate.left is not None:
lineAccumulator.append(f"n_{id(toDecorate)} -> n_{id(toDecorate.left)}")
if toDecorate.right is not None:
lineAccumulator.append(f"n_{id(toDecorate)} -> n_{id(toDecorate.right)}")
def graphvizify() -> str:
# Header
result = "digraph {\n\t"
# Body
result += ('\n\t'.join(str(item) for item in lineAccumulator))
# Footer
result += "\n}"
return result
class AVLTreeNode(BinaryTreeNode):
def __init__(self, value):
super().__init__(value)
self.parentRef = None
# Start balanced as we probably have no children right after insert
self.balanceFactor = Literal(0)
def rightRotate(self, node) -> 'AVLTreeNode|None':
if node is None:
return None
oLeft = node.left;
oLeft.parentRef = node.parentRef;
node.left = oLeft.right;
if node.left is not None:
node.left.parentRef = node;
oLeft.right = node;
node.parentRef = oLeft;
if oLeft.parentRef is not None:
if oLeft.parentRef.right is node:
oLeft.parentRef.right = oLeft;
elif oLeft.parentRef.left is node:
oLeft.parentRef.left = oLeft;
node.getSetBalanceFactor()
oLeft.getSetBalanceFactor()
return oLeft
def leftRotate(self, node) -> 'AVLTreeNode|None':
if node is None:
return None
oRight = node.right
oRight.parentRef = node.parentRef
node.right = oRight.left
if node.right is not None:
node.right.parentRef = node
oRight.left = node
node.parentRef = oRight
if oRight.parentRef is not None:
if oRight.parentRef.right is node:
oRight.parentRef.right = oRight
elif oRight.parentRef.left is node:
oRight.parentRef.left = oRight
node.getSetBalanceFactor()
oRight.getSetBalanceFactor()
return oRight
def getSetBalanceFactor(self) -> Literal:
leftHeight = self.left.height() if self.left else 0
rightHeight = self.right.height() if self.right else 0
self.balanceFactor = Literal(rightHeight - leftHeight)
return self.balanceFactor
def rightLeftRotate(self, node) -> 'AVLTreeNode|None':
node.right = self.rightRotate(node.right)
return self.leftRotate(node)
def leftRightRotate(self, node) -> 'AVLTreeNode|None':
node.left = self.leftRotate(node.left)
return self.rightRotate(node)
def debugTraverse(node, source=1):
if node is None:
return None
logger.debug(f"{node.value} {node.getSetBalanceFactor()} {source}")
debugTraverse(node.left, 10);
debugTraverse(node.right, 20);
class AVLTree(BinaryTree):
# @override
def new_node(self, value) -> AVLTreeNode:
return AVLTreeNode(value)
def balanceAVLTree(self, node : AVLTreeNode):
# balance < -1 means imbalance to the left, > 1 means imbalance to the right
logger.debug("in")
if node is None:
return None
logger.debug("out")
node.getSetBalanceFactor()
logger.debug(f"Parent Balancing for {node.value} -> {node.balanceFactor} {node.left.height() if node.left else None} and {node.right.height() if node.right else None}")
# imbalance to left -> If we enter this we cannot LOGICALLY have a left=None node -> No need to chekc
if node.balanceFactor < Literal(-1):
# Left-Left
if node.left.balanceFactor <= Literal(0): # type: ignore -> Ignoring pywright error, see comment above
# Wow, this syntax is sketchy ^^
# TODO Maybe declare as static if python supports this? Or just leaf param be?
logger.debug("rr")
node = node.rightRotate(node)
# Left-Right
else:
# TODO Maybe declare as static if python supports this? Or just leaf param be?
logger.debug("lrr")
node = node.leftRightRotate(node)
# Right heavy
# imbalance to right -> If we enter this we cannot LOGICALLY have a right=None node -> No need to chekc
if node.balanceFactor > Literal(1):
# Right-Right case
if node.right.balanceFactor >= Literal(0): # type: ignore -> Ignoring pywright error, see comment above
# TODO Maybe declare as static if python supports this? Or just leaf param be?
logger.debug("lr")
node = node.leftRotate(node)
# Right-Left case
else:
# TODO Maybe declare as static if python supports this? Or just leaf param be?
logger.debug("rlr")
node = node.rightLeftRotate(node)
logger.debug(f"Reached {node.parentRef}")
if node.parentRef is not None:
logger.debug(f"Calling again for {node.parentRef.value}");
self.balanceAVLTree(node.parentRef);
else:
self.root = node;
# Node is balanced
return node
# @override
def insert(self, value):
node, parent = super().insert(value)
# NOTE Python does not have a Problem with NOT tellin us that we override something important
# or something that does not exist.... This Makes for AWESOME debugging .... ... ...
node.parentRef = parent
if parent:
node = self.balanceAVLTree(node.parentRef)
return node, parent
if __name__ == '__main__':
tree = AVLTree()
### Force RR
# testData = [30, 20, 10];
# for value in testData:
# tree.insert(MemoryCell(value));
### Force LR
# testData = [10, 20, 30];
# for value in testData:
# tree.insert(MemoryCell(value));
### Force LRR
# testData = [30, 10, 20]
# for value in testData:
# tree.insert(MemoryCell(value))
### Force RLR
# testData = [10, 30, 20]
# for value in testData:
# tree.insert(MemoryCell(value))
# Force rebuild of our balanceFactor indices...
# debugTraverse(tree.root)
binTreeData = MemoryArray.create_array_from_file("data/seq0.txt")
for value in binTreeData:
tree.insert(value)
lineAccumulator.clear();
tree.in_order_traversal(clbk_graphvizify)
# tree.tree_structure_traversal(clbk_graphvizify)
print(graphvizify())

View File

@ -0,0 +1,193 @@
from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell
from utils.literal import Literal
from utils.constants import MIN_VALUE
from utils.memory_range import mrange
# Impl of MemoryArray says we cant add our own Datatypes beside Literal and List
# BUUUUT we can just wrap our Datatype in a List :-)
# We store them in a MemoryArray internaly tho anyhow so we increment our Counters for the RAM
class HeapEntry:
def __init__(self, item, priority=1):
self.data = MemoryArray(Literal(2))
# 0: Content, 1: Prio
self.data[Literal(0)] = Literal(item)
self.data[Literal(1)] = Literal(priority)
def getItem(self):
return self.data[Literal(0)]
def getPriority(self):
return self.data[Literal(1)]
def setPriority(self, priority):
self.data[Literal(1)] = Literal(priority)
def __lt__(self, other):
if other is None:
return True
if isinstance(other, (int, float)):
return self.getPriority().value > other
return self.getPriority() < other.getPriority()
def __gt__(self, other):
if other is None:
return False
if isinstance(other, (int, float)):
return self.getPriority().value < other
return self.getPriority() > other.getPriority()
def __eq__(self, other):
return self.getPriority() == other.getPriority()
def __str__(self):
return f"({self.getItem()}, prio={self.getPriority()})"
class PriorityQueue:
def __init__(self, max_size : Literal = Literal(100)):
self.heap = MemoryArray(max_size)
# Add uninitialized HeapEntry Values so the Adds/Compares do not fail on emtpy stack.
# Would have to switch to MIN_VALUE if we switch what is a "Higher" Prio
for i in mrange(max_size.value):
self.heap[i].set([HeapEntry(MIN_VALUE, MIN_VALUE)])
self.size = MemoryCell(0)
def parent(self, i: Literal) -> Literal:
return MemoryCell(i.pred()) // Literal(2)
def leftChild(self, i: Literal) -> Literal:
return MemoryCell(MemoryCell(2) * i) + Literal(1)
def rightChild(self, i: Literal) -> Literal:
return MemoryCell(MemoryCell(2) * i) + Literal(2)
# Swap the Lists -> Therefore get the value which is the List and then Set it again
def swap(self, i: Literal, j: Literal):
tmp_i = self.heap[i].value
tmp_j = self.heap[j].value
self.heap[i].set(tmp_j)
self.heap[j].set(tmp_i)
def maxHeapify(self, i: Literal):
left = self.leftChild(i)
right = self.rightChild(i)
largest = i
if left < Literal(self.size.value) and self.heap[left].value[0] > self.heap[largest].value[0]:
largest = left
if right < Literal(self.size.value) and self.heap[right].value[0] > self.heap[largest].value[0]:
largest = right
if largest != i:
self.swap(i, largest)
self.maxHeapify(largest)
def insert(self, entry : HeapEntry):
if self.size >= self.heap.length():
raise IndexError("Heap full")
i = self.size
self.heap[i].set([entry])
while i > Literal(0) and self.heap[self.parent(i)].value[0] < self.heap[i].value[0]:
self.swap(i, self.parent(i))
i = self.parent(i)
self.size += Literal(1)
def pop(self):
if self.isEmpty():
raise IndexError("Queue is empty!")
max_item = self.heap[Literal(0)].value[0]
self.heap[Literal(0)] = self.heap[self.size - Literal(1)]
self.size -= Literal(1)
self.maxHeapify(Literal(0))
return max_item
def peek(self):
if self.isEmpty():
raise IndexError("Queue is empty")
return self.heap[Literal(0)].value[0]
def isEmpty(self):
return self.size == Literal(0)
def __len__(self):
return self.size
def __str__(self):
entries = []
for i in mrange(self.size.value):
entry = self.heap[i].value[0]
if entry.getItem() != MIN_VALUE:
entries.append(str(entry))
return "[" + ", ".join(entries) + "]"
def testQueueRandom(number: int):
import random
import string
pq = PriorityQueue(Literal(number))
entries = []
for _ in range(number):
value = ''.join(random.choices(string.ascii_uppercase + string.digits, k=3))
priority = random.randint(1, 100)
entry = HeapEntry(value, priority)
entries.append(entry)
pq.insert(entry)
print(pq)
for entry in entries:
print(f"Unprioritized: {entry}")
while not pq.isEmpty():
print(pq.pop())
if __name__ == '__main__':
# Proof of Concept
testEntry = HeapEntry("A", 2)
print(testEntry)
testArray = MemoryArray([testEntry])
print(testArray)
print(testArray[Literal(0)])
# Queue Testing
pq = PriorityQueue()
try:
pq.pop()
assert False, "Queue should be empty"
except IndexError:
pass
assert(pq.isEmpty() and pq.size == Literal(0))
entry = HeapEntry("A", 1)
pq.insert(entry)
assert(not pq.isEmpty() and pq.size == Literal(1))
pq.peek()
assert(not pq.isEmpty())
assert(pq.pop() == HeapEntry("A", 1))
assert(pq.isEmpty())
pq.insert(HeapEntry("C", 3))
pq.insert(HeapEntry("B", 2))
pq.insert(HeapEntry("A", 1))
assert(pq.size == Literal(3))
assert(pq.pop() == HeapEntry("C", 3))
assert(pq.pop() == HeapEntry("B", 2))
assert(pq.pop() == HeapEntry("A", 1))
pq.insert(HeapEntry("A", 1))
pq.insert(HeapEntry("C", 3))
pq.insert(HeapEntry("B", 2))
pq.insert(HeapEntry(42, 4))
pq.insert(HeapEntry(42, 1))
pq.insert(HeapEntry("C", 2))
print(pq)
while not pq.isEmpty():
print(pq.pop())
testQueueRandom(100)

View File

@ -1,40 +0,0 @@
import heapq
class PriorityQueue:
def __init__(self):
self.heap = []
self.entry_finder = {} # map: item -> [priority, item]
self.REMOVED = '<removed>'
self.counter = 0 # unique sequence count to break ties
def add_or_update(self, item, priority):
if item in self.entry_finder:
self.remove(item)
count = self.counter
entry = [priority, count, item]
self.entry_finder[item] = entry
heapq.heappush(self.heap, entry)
self.counter += 1
def remove(self, item):
entry = self.entry_finder.pop(item)
entry[-1] = self.REMOVED # mark as removed
def pop(self):
while self.heap:
priority, count, item = heapq.heappop(self.heap)
if item != self.REMOVED:
del self.entry_finder[item]
return item, priority
return None
if __name__ == "__main__":
pq = PriorityQueue()
pq.add_or_update('task1', 1)
pq.add_or_update('task2', float('inf'))
pq.add_or_update('task3', float('inf'))
print(pq.pop()) # Should print ('task1', 1)
pq.add_or_update('task2', 0) # Update priority of 'task1'
print(pq.pop()) # Should print ('task2', 0)
print(pq.pop()) # Should print ('task3', 3)

View File

@ -1,26 +0,0 @@
from utils.memory_manager import MemoryManager
from utils.memory_array import MemoryArray
from utils.literal import Literal
from vorlesung.L05_binaere_baeume.avl_tree import AVLTree
def analyze_complexity(sizes):
"""
Analysiert die Komplexität
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
"""
for size in sizes:
MemoryManager.purge() # Speicher zurücksetzen
tree = AVLTree()
random_array = MemoryArray.create_random_array(size, -100, 100)
for i in range(size-1):
tree.insert(int(random_array[Literal(i)]))
MemoryManager.reset()
tree.insert(int(random_array[Literal(size-1)]))
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "compares"])
if __name__ == "__main__":
sizes = range(1, 1001, 2)
analyze_complexity(sizes)

View File

@ -1,94 +0,0 @@
from utils.memory_array import MemoryArray
from vorlesung.L05_binaere_baeume.avl_tree_node import AVLTreeNode
from vorlesung.L05_binaere_baeume.bin_tree import BinaryTree
import logging
class AVLTree(BinaryTree):
def __init__(self):
super().__init__()
def new_node(self, value):
return AVLTreeNode(value)
def balance(self, node: AVLTreeNode):
node.update_balance()
if node.balance == -2:
if node.left.balance <= 0:
node = node.right_rotate()
else:
node = node.left_right_rotate()
elif node.balance == 2:
if node.right.balance >= 0:
node = node.left_rotate()
else:
node = node.right_left_rotate()
if node.parent:
self.balance(node.parent)
else:
self.root = node
def insert(self, value):
insert_generator = self.insert_stepwise(value)
node, parent = None, None
while True:
try:
node, parent = next(insert_generator)
except StopIteration:
break
return node, parent
def insert_stepwise(self, value):
node, parent = super().insert(value)
yield None, None
node.parent = parent
if parent:
self.balance(parent)
return node, parent
def delete(self, value):
node, parent = super().delete(value)
if node:
node.parent = parent
if parent:
self.balance(parent)
def graph_filename(self):
return "AVLTree"
if __name__ == "__main__":
def print_node(node, indent=0, level=0):
print((indent * 3) * " ", node.value)
tree = AVLTree()
#values = [5, 3, 7, 2, 4, 6, 5, 8]
values = MemoryArray.create_array_from_file("data/seq2.txt")
for value in values:
tree.insert(value)
print("In-order traversal:")
tree.in_order_traversal(print_node)
print("\nLevel-order traversal:")
tree.level_order_traversal(print_node)
print("\nTree structure traversal:")
tree.tree_structure_traversal(print_node)
print("\nGraph traversal:")
tree.graph_traversal()
tree.insert(9)
tree.graph_traversal()
print("\nDeleting 5:")
tree.delete(5)
print("In-order traversal after deletion:")
tree.in_order_traversal(print_node)
print("\nLevel-order traversal after deletion:")
tree.level_order_traversal(print_node)
print("\nTree structure traversal after deletion:")
tree.tree_structure_traversal(print_node)

View File

@ -1,59 +0,0 @@
import random
import pygame
from utils.game import Game
from avl_tree import AVLTree
WHITE = (255, 255, 255)
BLUE = (0, 0, 255)
BLACK = (0, 0, 0)
WIDTH = 800
HEIGHT = 400
MARGIN = 20
class AVLTreeGame(Game):
def __init__(self):
super().__init__("AVLTree Game", fps=10, size=(WIDTH, HEIGHT))
random.seed()
self.z = list(range(1, 501))
random.shuffle(self.z)
self.finished = False
self.tree = AVLTree()
self.tree.get_height = lambda node: 0 if node is None else 1 + max(self.tree.get_height(node.left), self.tree.get_height(node.right))
self.height = self.tree.get_height(self.tree.root)
self.generator = None
def update_game(self):
if not self.finished:
if self.generator is None:
self.generator = self.tree.insert_stepwise(self.z.pop())
try:
next(self.generator)
except StopIteration:
self.generator = None
if self.generator is None and len(self.z) == 0:
self.finished = True
self.height = self.tree.get_height(self.tree.root)
return True
def draw_game(self):
self.screen.fill(WHITE)
if self.height > 0:
self.draw_tree(self.tree.root, WIDTH // 2, MARGIN, WIDTH // 4 - MARGIN)
super().draw_game()
def draw_tree(self, node, x, y, x_offset):
y_offset = (HEIGHT - (2 * MARGIN)) / self.height
if node is not None:
pygame.draw.circle(self.screen, BLUE, (x, y), 2)
if node.left is not None:
pygame.draw.line(self.screen, BLACK, (x, y), (x - x_offset, y + y_offset))
self.draw_tree(node.left, x - x_offset, y + y_offset, x_offset // 2)
if node.right is not None:
pygame.draw.line(self.screen, BLACK, (x, y), (x + x_offset, y + y_offset))
self.draw_tree(node.right, x + x_offset, y + y_offset, x_offset // 2)
if __name__ == "__main__":
tree_game = AVLTreeGame()
tree_game.run()

View File

@ -1,61 +0,0 @@
from vorlesung.L05_binaere_baeume.bin_tree_node import BinaryTreeNode
class AVLTreeNode(BinaryTreeNode):
def __init__(self, value):
super().__init__(value)
self.parent = None
self.balance = 0
def __repr__(self):
return f"TreeNode(id={id(self)} value={self.value}, left={self.left}, right={self.right})"
def graphviz_rep(self, row, col, dot):
dot.node(str(id(self)), label=str(self.value), pos=f"{col},{-row}!", xlabel=str(self.balance))
def update_balance(self):
left_height = self.left.height() if self.left else 0
right_height = self.right.height() if self.right else 0
self.balance = right_height - left_height
def right_rotate(self):
new_root = self.left
new_root.parent = self.parent
self.left = new_root.right
if self.left:
self.left.parent = self
new_root.right = self
self.parent = new_root
if new_root.parent:
if new_root.parent.left is self:
new_root.parent.left = new_root
else:
new_root.parent.right = new_root
self.update_balance()
new_root.update_balance()
return new_root
def left_rotate(self):
new_root = self.right
new_root.parent = self.parent
self.right = new_root.left
if self.right:
self.right.parent = self
new_root.left = self
self.parent = new_root
if new_root.parent:
if new_root.parent.left is self:
new_root.parent.left = new_root
else:
new_root.parent.right = new_root
self.update_balance()
new_root.update_balance()
return new_root
def right_left_rotate(self):
self.right = self.right.right_rotate()
return self.left_rotate()
def left_right_rotate(self):
self.left = self.left.left_rotate()
return self.right_rotate()

View File

@ -1,7 +1,8 @@
from vorlesung.L05_binaere_baeume.bin_tree_node import BinaryTreeNode
from utils.memory_manager import MemoryManager
from utils.memory_array import MemoryArray
from utils.project_dir import get_path
from datetime import datetime
import graphviz
class BinaryTree:
@ -68,7 +69,7 @@ class BinaryTree:
break
else:
# Wert nicht gefunden
return None, None
return
return self.delete_node(current, parent)
def delete_node(self, current, parent):
@ -143,35 +144,37 @@ class BinaryTree:
line = 0
tree_structure_traversal_recursive(callback, self.root, 0)
def graph_filename(self):
return "BinaryTree"
def graph_traversal(self):
def define_node(node, level, line):
nonlocal dot
nonlocal file
if node is not None:
node.graphviz_rep(level, line, dot)
file.write(node.gv_rep(level, line))
def graph_traversal_recursive(current):
nonlocal dot
nonlocal file
if current is not None:
if current.left:
dot.edge(str(id(current)), str(id(current.left)))
file.write(f"{id(current)} -> {id(current.left)}; \n")
graph_traversal_recursive(current.left)
if current.right:
dot.edge(str(id(current)), str(id(current.right)))
file.write(f"{id(current)} -> {id(current.right)}; \n")
graph_traversal_recursive(current.right)
dot = graphviz.Digraph( name="BinaryTree",
engine="neato",
node_attr={"shape": "circle", "fontname": "Arial"},
format="pdf" )
self.tree_structure_traversal(define_node)
graph_traversal_recursive(self.root)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{self.graph_filename()}_{timestamp}.gv"
timestamp = datetime.now().strftime("%Y%m%d_%H:%M:%S")
filename = f"graph_{timestamp}.gv"
filename = get_path(filename)
dot.render(filename)
with open(filename, "w") as file:
file.write("digraph BST {\n")
file.write("layout=neato;\n")
file.write("node [shape=circle, fontname=\"Arial\"];\n")
self.tree_structure_traversal(define_node)
graph_traversal_recursive(self.root)
file.write("}")
if __name__ == "__main__":
tree = BinaryTree()

View File

@ -1,54 +0,0 @@
import random
import pygame
from utils.game import Game
from bin_tree import BinaryTree
WHITE = (255, 255, 255)
BLUE = (0, 0, 255)
BLACK = (0, 0, 0)
WIDTH = 800
HEIGHT = 400
MARGIN = 20
class BinTreeGame(Game):
def __init__(self):
super().__init__("BinTree Game", fps=10, size=(WIDTH, HEIGHT))
random.seed()
self.z = list(range(1, 101))
random.shuffle(self.z)
self.finished = False
self.tree = BinaryTree()
self.tree.get_height = lambda node: 0 if node is None else 1 + max(self.tree.get_height(node.left), self.tree.get_height(node.right))
self.height = self.tree.get_height(self.tree.root)
def update_game(self):
if not self.finished:
i = self.z.pop()
self.tree.insert(i)
self.height = self.tree.get_height(self.tree.root)
if len(self.z) == 0:
self.finished = True
return True
def draw_game(self):
self.screen.fill(WHITE)
if self.height > 0:
self.draw_tree(self.tree.root, WIDTH // 2, MARGIN, WIDTH // 4 - MARGIN)
super().draw_game()
def draw_tree(self, node, x, y, x_offset):
y_offset = (HEIGHT - (2 * MARGIN)) / self.height
if node is not None:
pygame.draw.circle(self.screen, BLUE, (x, y), 2)
if node.left is not None:
pygame.draw.line(self.screen, BLACK, (x, y), (x - x_offset, y + y_offset))
self.draw_tree(node.left, x - x_offset, y + y_offset, x_offset // 2)
if node.right is not None:
pygame.draw.line(self.screen, BLACK, (x, y), (x + x_offset, y + y_offset))
self.draw_tree(node.right, x + x_offset, y + y_offset, x_offset // 2)
if __name__ == "__main__":
tree_game = BinTreeGame()
tree_game.run()

View File

@ -18,5 +18,7 @@ class BinaryTreeNode(MemoryCell):
def __str__(self):
return str(self.value)
def graphviz_rep(self, row, col, dot):
dot.node(str(id(self)), label=str(self.value), pos=f"{col},{-row}!")
def gv_rep(self, row, col):
"""Returns the graphviz representation of the node."""
return f"{id(self)} [label=\"{self.value}\", pos=\"{col},{-row}!\"];\n"

View File

@ -1,58 +0,0 @@
from utils.memory_manager import MemoryManager
from utils.memory_array import MemoryArray
from utils.literal import Literal
from b_tree import BTree
from b_tree_node import BTreeNode
class MemoryManagerBTree(MemoryManager):
"""
Diese Klasse erweitert den MemoryManager, um spezifische Statistiken für B-Bäume zu speichern.
"""
@staticmethod
def count_loads():
return sum([cell.loaded_count for cell in MemoryManager().cells if isinstance(cell, BTreeNode)])
@staticmethod
def count_saves():
return sum([cell.saved_count for cell in MemoryManager().cells if isinstance(cell, BTreeNode)])
@staticmethod
def save_stats(count):
data = { "cells": MemoryManager.count_cells(),
"reads": MemoryManager.count_reads(),
"writes": MemoryManager.count_writes(),
"compares": MemoryManager.count_compares(),
"adds": MemoryManager.count_adds(),
"subs": MemoryManager.count_subs(),
"muls": MemoryManager.count_muls(),
"divs": MemoryManager.count_divs(),
"bitops": MemoryManager.count_bitops(),
"loads": MemoryManagerBTree.count_loads(),
"saves": MemoryManagerBTree.count_saves() }
MemoryManager.stats[count] = data
def analyze_complexity(sizes):
"""
Analysiert die Komplexität
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
"""
for size in sizes:
MemoryManager.purge() # Speicher zurücksetzen
tree = BTree(5)
random_array = MemoryArray.create_random_array(size, -100, 100)
for i in range(size-1):
tree.insert(int(random_array[Literal(i)]))
MemoryManager.reset()
tree.insert(int(random_array[Literal(size-1)]))
MemoryManagerBTree.save_stats(size)
MemoryManager.plot_stats(["cells", "compares", "loads", "saves"])
if __name__ == "__main__":
sizes = range(1, 1001, 2)
analyze_complexity(sizes)

View File

@ -1,120 +0,0 @@
from utils.literal import Literal
from utils.memory_cell import MemoryCell
from utils.memory_array import MemoryArray
from b_tree_node import BTreeNode
class BTree:
def __init__(self, m: int):
self.m = m
self.root = BTreeNode(m)
def search(self, value, start: BTreeNode = None) -> BTreeNode | None:
if not start:
start = self.root
start.load()
i = 0
if not isinstance(value, MemoryCell):
value = MemoryCell(value)
while i < start.n and value > start.value[Literal(i)]:
i += 1
if i < start.n and value == start.value[Literal(i)]:
return start
if start.leaf:
return None
return self.search(value, start.children[i])
def split_child(self, parent: BTreeNode, i: int):
child = parent.children[i]
child.load()
h = BTreeNode(self.m)
h.leaf = child.leaf
h.n = self.m - 1
for j in range(self.m - 1):
h.value[Literal(j)] = child.value[Literal(j + self.m)]
if not h.leaf:
for j in range(self.m):
h.children[j] = child.children[j + self.m]
for j in range(self.m, child.n + 1):
child.children[j] = None
child.n = self.m - 1
child.save()
h.save()
for j in range(parent.n, i, -1):
parent.children[j + 1] = parent.children[j]
parent.value[Literal(j)] = parent.value[Literal(j - 1)]
parent.children[i + 1] = h
parent.value[Literal(i)] = child.value[Literal(self.m - 1)]
parent.n += 1
parent.save()
def insert(self, value):
if not isinstance(value, MemoryCell):
value = MemoryCell(value)
r = self.root
if r.n == 2 * self.m - 1:
h = BTreeNode(self.m)
self.root = h
h.leaf = False
h.n = 0
h.children[0] = r
self.split_child(h, 0)
self.insert_in_node(h, value)
else:
self.insert_in_node(r, value)
def insert_in_node(self, start: BTreeNode, value):
start.load()
i = start.n
if start.leaf:
while i >= 1 and value < start.value[Literal(i-1)]:
start.value[Literal(i)] = start.value[Literal(i-1)]
i -= 1
start.value[Literal(i)].set(value)
start.n += 1
start.save()
else:
j = 0
while j < start.n and value > start.value[Literal(j)]:
j += 1
if start.children[j].n == 2 * self.m - 1:
self.split_child(start, j)
if value > start.value[Literal(j)]:
j += 1
self.insert_in_node(start.children[j], value)
def traversal(self, callback):
def traversal_recursive(node, callback):
i = 0
while i < node.n:
if not node.leaf:
traversal_recursive(node.children[i], callback)
callback(node.value[Literal(i)])
i += 1
if not node.leaf:
traversal_recursive(node.children[i], callback)
traversal_recursive(self.root, callback)
def walk(self):
def print_key(key):
print(key, end=" ")
self.traversal(print_key)
def height(self, start: BTreeNode = None):
if not start:
start = self.root
if start.leaf:
return 0
return 1 + self.height(start.children[0])
if __name__ == "__main__":
a = MemoryArray.create_array_from_file("data/seq3.txt")
tree = BTree(3)
for cell in a:
tree.insert(cell)
print(f"Height: {tree.height()}")
tree.walk()
s = tree.search(0)
print(f"\nKnoten mit 0: {str(s)}")

View File

@ -1,29 +0,0 @@
from utils.literal import Literal
from utils.memory_cell import MemoryCell
from utils.memory_array import MemoryArray
class BTreeNode(MemoryCell):
def __init__(self, m: int):
super().__init__()
self.m = m
self.n = 0
self.leaf = True
self.value = MemoryArray(Literal(2 * m - 1))
self.children = [None] * (2 * m)
self.loaded_count = 0
self.saved_count = 0
def reset_counters(self):
super().reset_counters()
self.loaded_count = 0
self.saved_count = 0
def load(self):
self.loaded_count += 1
def save(self):
self.saved_count += 1
def __str__(self):
return "(" + " ".join([str(self.value[Literal(i)]) for i in range(self.n)]) + ")"

View File

@ -1,60 +0,0 @@
import math
import random
from utils.literal import Literal
from utils.memory_cell import MemoryCell
from utils.memory_array import MemoryArray
from utils.memory_manager import MemoryManager
from vorlesung.L07_hashtable.hashtable import HashTableOpenAddressing
#Goldener Schnitt
a = Literal((math.sqrt(5) - 1) / 2)
# Hashfunktion nach multiplikativer Methode
def h(x: MemoryCell, m: Literal) -> Literal:
with MemoryCell(int(x * a)) as integer_part, MemoryCell(x * a) as full_product:
with MemoryCell(full_product - integer_part) as fractional_part:
return Literal(abs(int(fractional_part * m)))
# Quadratische Sondierung
def f(x: MemoryCell, i: Literal, m: Literal) -> Literal:
c1 = 1
c2 = 5
with MemoryCell(h(x, m)) as initial_hash, MemoryCell(c2 * int(i) * int(i)) as quadratic_offset:
with MemoryCell(initial_hash + quadratic_offset) as probe_position:
probe_position += Literal(c1 * int(i)) # Linear component
return probe_position % m
# Symmetrische quadratische Sondierung
def fs(x: MemoryCell, i: Literal, m: Literal) -> Literal:
with MemoryCell(h(x, m)) as base_hash, MemoryCell(int(i) * int(i)) as square:
if int(i) % 2 == 0: # gerades i: Vorwärtssondierung
with MemoryCell(base_hash + square) as position:
return position % m
else: # ungerades i: Rückwärtssondierung
with MemoryCell(base_hash - square) as position:
return position % m
def analyze_complexity(sizes):
"""
Analysiert die Komplexität
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
"""
for size in sizes:
MemoryManager.purge() # Speicher zurücksetzen
ht = HashTableOpenAddressing(size, f)
random_array = MemoryArray.create_random_array(size, -100, 100)
for cell in random_array:
ht.insert(cell)
MemoryManager.reset()
cell = random.choice(random_array.cells)
ht.search(cell)
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "compares"])
if __name__ == "__main__":
sizes = range(1, 1001, 10)
analyze_complexity(sizes)

View File

@ -1,76 +0,0 @@
from collections.abc import Callable
from utils.literal import Literal
from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell
from utils.memory_range import mrange
UNUSED_MARK = "UNUSED"
DELETED_MARK = "DELETED"
class HashTableOpenAddressing:
def __init__(self, m: Literal, f: Callable[[MemoryCell, Literal, Literal], Literal]):
if not isinstance(m, Literal):
m = Literal(m)
self.m = m
self.f = f
self.table = MemoryArray(m)
for i in mrange(m):
self.table[i].value = UNUSED_MARK
def insert(self, x: MemoryCell):
with MemoryCell(0) as i:
while i < self.m:
j = self.f(x, i, self.m)
if self.is_free(j):
self.table[j].set(x)
return True
i.set(i.succ())
return False
def search(self, x: MemoryCell):
with MemoryCell(0) as i:
while i < self.m:
j = self.f(x, i, self.m)
if self.is_unused(j):
return False
if self.table[j] == x:
return True
i.set(i.succ())
return False
def delete(self, x: MemoryCell):
with MemoryCell(0) as i:
while i < self.m:
j = self.f(x, i, self.m)
if self.is_unused(j):
return False
if self.table[j] == x:
self.table[j].value = DELETED_MARK
return True
i.set(i.succ())
return False
def __str__(self):
return str(self.table)
def alpha(self):
with MemoryCell(0) as i:
used = 0
while i < self.m:
used += 0 if self.is_free(i) else 1
i.set(i.succ())
return used / int(self.m)
def is_unused(self, i: Literal):
if self.table[i].value == UNUSED_MARK:
return True
return False
def is_deleted(self, i: Literal):
if self.table[i].value == DELETED_MARK:
return True
return False
def is_free(self, i: Literal):
return self.is_unused(i) or self.is_deleted(i)

View File

@ -1,45 +0,0 @@
from vorlesung.L08_graphen.graph import Graph, AdjacencyMatrixGraph
from utils.project_dir import get_path
graph = AdjacencyMatrixGraph()
start = ""
end = ""
def read_file(filename: str = "data/aoc2212.txt"):
"""Read a file and return the content as a string."""
def adjust_char(char):
"""Adjust character for comparison."""
if char == 'S':
return 'a'
elif char == 'E':
return 'z'
return char
global start, end
with open(get_path(filename), "r") as file:
quest = file.read().strip().splitlines()
for row, line in enumerate(quest):
for col, char in enumerate(line):
label = f"{row},{col}"
graph.insert_vertex(label)
if char == "S":
start = label
if char == "E":
end = label
for row, line in enumerate(quest):
for col, char in enumerate(line):
for neighbor in [(row - 1, col), (row, col - 1), (row + 1, col), (row, col + 1)]:
if 0 <= neighbor[0] < len(quest) and 0 <= neighbor[1] < len(line):
if ord(adjust_char(quest[neighbor[0]][neighbor[1]])) <= ord(adjust_char(char)) + 1:
label1 = f"{row},{col}"
label2 = f"{neighbor[0]},{neighbor[1]}"
graph.connect(label1, label2)
# Lösung des Adventskalenders 2022, Tag 12
read_file("data/aoc2212test.txt")
graph.graph()
distance_map, predecessor_map = graph.bfs(start)
print(distance_map[graph.get_vertex(end)])
print(graph.path(end, predecessor_map))

View File

@ -1,366 +0,0 @@
from collections import deque
from typing import List
from enum import Enum
import graphviz
import math
import heapq
from datetime import datetime
from utils.project_dir import get_path
from utils.priority_queue import PriorityQueue
from vorlesung.L09_mst.disjoint import DisjointValue
class NodeColor(Enum):
"""Enumeration for node colors in a graph traversal."""
WHITE = 1 # WHITE: not visited
GRAY = 2 # GRAY: visited but not all neighbors visited
BLACK = 3 # BLACK: visited and all neighbors visited
class Vertex:
"""A vertex in a graph."""
def __init__(self, value):
self.value = value
def __str__(self):
return str(self.value)
def __repr__(self):
return f"Vertex({self.value})"
class Graph:
"""A graph."""
def insert_vertex(self, name: str):
raise NotImplementedError("Please implement this method in subclass")
def connect(self, name1: str, name2: str, weight: float = 1):
raise NotImplementedError("Please implement this method in subclass")
def all_vertices(self) -> List[Vertex]:
raise NotImplementedError("Please implement this method in subclass")
def get_vertex(self, name: str) -> Vertex:
raise NotImplementedError("Please implement this method in subclass")
def get_adjacent_vertices(self, name: str) -> List[Vertex]:
raise NotImplementedError("Please implement this method in subclass")
def get_adjacent_vertices_with_weight(self, name: str) -> List[tuple[Vertex, float]]:
raise NotImplementedError("Please implement this method in subclass")
def all_edges(self) -> List[tuple[str, str, float]]:
raise NotImplementedError("Please implement this method in subclass")
def bfs(self, start_name: str):
"""
Perform a breadth-first search starting at the given vertex.
:param start_name: the name of the vertex to start at
:return: a tuple of two dictionaries, the first mapping vertices to distances from the start vertex,
the second mapping vertices to their predecessors in the traversal tree
"""
color_map = {} # maps vertices to their color
distance_map = {} # maps vertices to their distance from the start vertex
predecessor_map = {} # maps vertices to their predecessor in the traversal tree
# Initialize the maps
for vertex in self.all_vertices():
color_map[vertex] = NodeColor.WHITE
distance_map[vertex] = None
predecessor_map[vertex] = None
# Start at the given vertex
start_node = self.get_vertex(start_name)
color_map[start_node] = NodeColor.GRAY
distance_map[start_node] = 0
# Initialize the queue with the start vertex
queue = deque()
queue.append(start_node)
# Process the queue
while len(queue) > 0:
vertex = queue.popleft()
for dest in self.get_adjacent_vertices(vertex.value):
if color_map[dest] == NodeColor.WHITE:
color_map[dest] = NodeColor.GRAY
distance_map[dest] = distance_map[vertex] + 1
predecessor_map[dest] = vertex
queue.append(dest)
color_map[vertex] = NodeColor.BLACK
# Return the distance and predecessor maps
return distance_map, predecessor_map
def dfs(self):
"""
Perform a depth-first search starting at the first vertex.
:return: a tuple of two dictionaries, the first mapping vertices to distances from the start vertex,
the second mapping vertices to their predecessors in the traversal tree
"""
color_map : dict[Vertex, NodeColor]= {}
enter_map : dict[Vertex, int] = {}
leave_map : dict[Vertex, int] = {}
predecessor_map : dict[Vertex, Vertex | None] = {}
white_vertices = set(self.all_vertices())
time_counter = 0
def dfs_visit(vertex):
nonlocal time_counter
color_map[vertex] = NodeColor.GRAY
white_vertices.remove(vertex)
time_counter += 1
enter_map[vertex] = time_counter
for dest in self.get_adjacent_vertices(vertex.value):
if color_map[dest] == NodeColor.WHITE:
predecessor_map[dest] = vertex
dfs_visit(dest)
color_map[vertex] = NodeColor.BLACK
time_counter += 1
leave_map[vertex] = time_counter
# Initialize the maps
for vertex in self.all_vertices():
color_map[vertex] = NodeColor.WHITE
predecessor_map[vertex] = None
while white_vertices:
v = white_vertices.pop()
dfs_visit(v)
return enter_map, leave_map, predecessor_map
def path(self, destination, map):
"""
Compute the path from the start vertex to the given destination vertex.
The map parameter is the predecessor map
"""
path = []
destination_node = self.get_vertex(destination)
while destination_node is not None:
path.insert(0, destination_node.value)
destination_node = map[destination_node]
return path
def graph(self, filename: str = "Graph"):
dot = graphviz.Digraph( name=filename,
node_attr={"fontname": "Arial"},
format="pdf" )
for vertex in self.all_vertices():
dot.node(str(id(vertex)), label=str(vertex.value))
for edge in self.all_edges():
dot.edge(str(id(self.get_vertex(edge[0]))), str(id(self.get_vertex(edge[1]))), label=str(edge[2]))
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{filename}_{timestamp}.gv"
filename = get_path(filename)
dot.render(filename)
def dijkstra(self, start_name: str) -> tuple[dict[Vertex, float], dict[Vertex, Vertex | None]]:
"""
Führt den Dijkstra-Algorithmus für kürzeste Pfade durch, implementiert mit Knotenfarben.
Args:
start_name: Name des Startknotens
Returns:
Ein Tupel aus zwei Dictionaries:
- distance_map: Abbildung von Knoten auf ihre kürzeste Distanz vom Startknoten
- predecessor_map: Abbildung von Knoten auf ihre Vorgänger im kürzesten Pfad
"""
def relax(vertex, dest, weight):
"""
Entspannt die Kante zwischen vertex und dest.
Aktualisiert die Distanz und den Vorgänger, wenn ein kürzerer Pfad gefunden wird.
"""
if distance_map[vertex] + weight < distance_map[dest]:
distance_map[dest] = distance_map[vertex] + weight
predecessor_map[dest] = vertex
queue.add_or_update(dest, distance_map[dest])
# Initialisierung der Maps
distance_map = {} # Speichert kürzeste Distanzen
predecessor_map = {} # Speichert Vorgänger
# Initialisiere alle Knoten
queue = PriorityQueue()
for vertex in self.all_vertices():
distance_map[vertex] = float('inf') # Initiale Distanz unendlich
predecessor_map[vertex] = None # Initialer Vorgänger None
queue.add_or_update(vertex, distance_map[vertex]) # Füge Knoten zur Prioritätswarteschlange hinzu
# Setze Startknoten
start_node = self.get_vertex(start_name)
distance_map[start_node] = 0
queue.add_or_update(start_node, distance_map[start_node])
while True:
entry = queue.pop()
if entry is None:
break
vertex = entry[0]
for dest, weight in self.get_adjacent_vertices_with_weight(vertex.value):
relax(vertex, dest, weight)
return distance_map, predecessor_map
def mst_prim(self, start_name: str = None):
""" Compute the minimum spanning tree of the graph using Prim's algorithm. """
distance_map = {} # maps vertices to their current distance from the spanning tree
parent_map = {} # maps vertices to their predecessor in the spanning tree
Vertex.__lt__ = lambda self, other: distance_map[self] < distance_map[other]
queue = []
if start_name is None:
start_name = self.all_vertices()[0].value
# Initialize the maps
for vertex in self.all_vertices():
distance_map[vertex] = 0 if vertex.value == start_name else math.inf
parent_map[vertex] = None
queue.append(vertex)
heapq.heapify(queue) # Convert the list into a heap
# Process the queue
cost = 0 # The cost of the minimum spanning tree
while len(queue) > 0:
vertex = heapq.heappop(queue)
cost += distance_map[vertex] # Add the cost of the edge to the minimum spanning tree
for (dest, w) in self.get_adjacent_vertices_with_weight(vertex.value):
if dest in queue and distance_map[dest] > w:
# Update the distance and parent maps
queue.remove(dest)
distance_map[dest] = w
parent_map[dest] = vertex
queue.append(dest) # Add the vertex back to the queue
heapq.heapify(queue) # Re-heapify the queue
# Return the distance and predecessor maps
return parent_map, cost
def mst_kruskal(self, start_name: str = None):
""" Compute the minimum spanning tree of the graph using Kruskal's algorithm. """
cost = 0
result = []
edges = self.all_edges()
# Create a disjoint set for each vertex
vertex_map = {v.value: DisjointValue(v) for v in self.all_vertices()}
# Sort the edges by weight
edges.sort(key=lambda edge: edge[2])
# Process the edges
for edge in edges:
start_name, end_name, weight = edge
# Check if the edge creates a cycle
if not vertex_map[start_name].same_set(vertex_map[end_name]):
result.append(edge)
vertex_map[start_name].union(vertex_map[end_name])
cost += weight
return result, cost
class AdjacencyListGraph(Graph):
"""A graph implemented as an adjacency list."""
def __init__(self):
self.adjacency_map = {} # maps vertex names to lists of adjacent vertices
self.vertex_map = {} # maps vertex names to vertices
def insert_vertex(self, name: str):
if name not in self.vertex_map:
self.vertex_map[name] = Vertex(name)
if name not in self.adjacency_map:
self.adjacency_map[name] = []
def connect(self, name1: str, name2: str, weight: float = 1):
adjacency_list = self.adjacency_map[name1]
dest = self.vertex_map[name2]
adjacency_list.append((dest, weight))
def all_vertices(self) -> List[Vertex]:
return list(self.vertex_map.values())
def get_vertex(self, name: str) -> Vertex:
return self.vertex_map[name]
def get_adjacent_vertices(self, name: str) -> List[Vertex]:
return list(map(lambda x: x[0], self.adjacency_map[name]))
def get_adjacent_vertices_with_weight(self, name: str) -> List[tuple[Vertex, float]]:
return self.adjacency_map[name]
def all_edges(self) -> List[tuple[str, str, float]]:
result = []
for name in self.adjacency_map:
for (dest, weight) in self.adjacency_map[name]:
result.append((name, dest.value, weight))
return result
class AdjacencyMatrixGraph(Graph):
"""A graph implemented as an adjacency matrix."""
def __init__(self):
self.index_map = {} # maps vertex names to indices
self.vertex_list = [] # list of vertices
self.adjacency_matrix = [] # adjacency matrix
def insert_vertex(self, name: str):
if name not in self.index_map:
self.index_map[name] = len(self.vertex_list)
self.vertex_list.append(Vertex(name))
for row in self.adjacency_matrix: # add a new column to each row
row.append(None)
self.adjacency_matrix.append([None] * len(self.vertex_list)) # add a new row
def connect(self, name1: str, name2: str, weight: float = 1):
index1 = self.index_map[name1]
index2 = self.index_map[name2]
self.adjacency_matrix[index1][index2] = weight
def all_vertices(self) -> List[Vertex]:
return self.vertex_list
def get_vertex(self, name: str) -> Vertex:
index = self.index_map[name]
return self.vertex_list[index]
def get_adjacent_vertices(self, name: str) -> List[Vertex]:
index = self.index_map[name]
result = []
for i in range(len(self.vertex_list)):
if self.adjacency_matrix[index][i] is not None:
name = self.vertex_list[i].value
result.append(self.get_vertex(name))
return result
def get_adjacent_vertices_with_weight(self, name: str) -> List[tuple[Vertex, float]]:
index = self.index_map[name]
result = []
for i in range(len(self.vertex_list)):
if self.adjacency_matrix[index][i] is not None:
name = self.vertex_list[i].value
result.append((self.get_vertex(name), self.adjacency_matrix[index][i]))
return result
def all_edges(self) -> List[tuple[str, str, float]]:
result = []
for i in range(len(self.vertex_list)):
for j in range(len(self.vertex_list)):
if self.adjacency_matrix[i][j] is not None:
result.append((self.vertex_list[i].value, self.vertex_list[j].value, self.adjacency_matrix[i][j]))
return result

View File

@ -1,18 +0,0 @@
class DisjointValue():
def __init__(self, value):
self.value = value
self.parent = None
def canonical(self):
if self.parent:
return self.parent.canonical()
return self
def same_set(self, other):
return self.canonical() == other.canonical()
def union(self, other):
self.canonical().parent = other.canonical()