Compare commits
28 Commits
Author | SHA1 | Date | |
---|---|---|---|
1985a2a4a3 | |||
3fd285a0e8 | |||
f52faa1822 | |||
e848e3089e | |||
1a2f826a06 | |||
02d9557e27 | |||
58f66fc1ff | |||
552f226e76 | |||
141ff08b82 | |||
c382641234 | |||
b12e39952d | |||
d8a9b29a69 | |||
f56b8c7e7a | |||
2735abfe81 | |||
82fbfa2772 | |||
b3d3551994 | |||
38c099a94e | |||
2af96a1b4e | |||
2bcd77f9ec | |||
1b0f9f8c50 | |||
f02669d601 | |||
e19262e818 | |||
3926d8d0c7 | |||
364590c563 | |||
79f0fc36fd | |||
c0d376cd5c | |||
8df24e2aa1 | |||
bff98d35a7 |
24
activateEnv.srcme
Executable file
24
activateEnv.srcme
Executable file
@ -0,0 +1,24 @@
|
||||
#!/bin/bash -u
|
||||
|
||||
#
|
||||
# Source python venv (installed via curl https://pyenv.run | bash) to use specific python-version for this project without affecting system
|
||||
# For Algorithms and Datastructures Class
|
||||
#
|
||||
# For WSLg support for matplotlib export="DISPLAY:0" and
|
||||
# echo "backend: TkAgg" > ~/.config/matplotlib/matplotlibrc
|
||||
|
||||
export PYENV_ROOT="$HOME/.pyenv"
|
||||
export PATH="$PYENV_ROOT/bin:$PATH"
|
||||
export PYTHONPATH=".:$PYTHONPATH"
|
||||
eval "$(pyenv init --path)"
|
||||
eval "$(pyenv init -)"
|
||||
eval "$(pyenv virtualenv-init -)"
|
||||
|
||||
# Create virtualenv if it doesn't exist
|
||||
if ! pyenv versions | grep -q AUD; then
|
||||
echo "Creating Python environment..."
|
||||
pyenv install -s 3.12.0
|
||||
pyenv virtualenv 3.12.0 AUD
|
||||
fi
|
||||
|
||||
pyenv activate AUD
|
@ -1,5 +0,0 @@
|
||||
Sabqponm
|
||||
abcryxxl
|
||||
accszExk
|
||||
acctuvwj
|
||||
abdefghi
|
@ -1,15 +0,0 @@
|
||||
###############
|
||||
#.......#....E#
|
||||
#.#.###.#.###.#
|
||||
#.....#.#...#.#
|
||||
#.###.#####.#.#
|
||||
#.#.#.......#.#
|
||||
#.#.#####.###.#
|
||||
#...........#.#
|
||||
###.#.#####.#.#
|
||||
#...#.....#.#.#
|
||||
#.#.#.###.#.#.#
|
||||
#.....#...#.#.#
|
||||
#.###.#.#.#.#.#
|
||||
#S..#.....#...#
|
||||
###############
|
@ -1,8 +0,0 @@
|
||||
"Höhleneingang";"Ost/West-Passage";5
|
||||
"Höhleneingang";"Nord/Süd-Passage";3
|
||||
"Nord/Süd-Passage";"Nebelraum";7
|
||||
"Steiniger Pfad";"Ost/West-Passage";2
|
||||
"Ost/West-Passage";"Schwefelgewölbe";4
|
||||
"Schwefelgewölbe";"Steiniger Pfad";1
|
||||
"Schatzkammer";"Nebelraum";2
|
||||
"Steiniger Pfad";"Schatzkammer";6
|
@ -1,9 +0,0 @@
|
||||
xxxxxxxxxxxxxxxxxxxxx
|
||||
x x
|
||||
x S x
|
||||
x x
|
||||
x xxxxxxxx x
|
||||
x x
|
||||
x x
|
||||
x A x
|
||||
xxxxxxxxxxxxxxxxxxxxx
|
@ -1,5 +0,0 @@
|
||||
xxxxxAxxxxxxxxx
|
||||
x xSx
|
||||
xxxxxxxxxx xx x
|
||||
x x
|
||||
xxxxxxxxxxxxxxx
|
13
myreqs.txt
Normal file
13
myreqs.txt
Normal file
@ -0,0 +1,13 @@
|
||||
contourpy==1.3.1
|
||||
cycler==0.12.1
|
||||
fonttools==4.56.0
|
||||
kiwisolver==1.4.8
|
||||
matplotlib==3.10.1
|
||||
numpy==2.2.4
|
||||
packaging==24.2
|
||||
pillow==11.1.0
|
||||
pygame==2.6.1
|
||||
pyparsing==3.2.3
|
||||
python-dateutil==2.9.0.post0
|
||||
six==1.17.0
|
||||
tk==0.1.0
|
@ -34,9 +34,27 @@ def fs(x: MemoryCell, i: Literal, m: Literal) -> Literal:
|
||||
return position % m
|
||||
|
||||
|
||||
class TestHashTableOpenAddressing(unittest.TestCase):
|
||||
|
||||
def test_hash_function(self):
|
||||
x = MemoryCell(22)
|
||||
m = Literal(20)
|
||||
self.assertEqual(11, h(x, m).value)
|
||||
|
||||
def test_probe_function(self):
|
||||
x = MemoryCell(22)
|
||||
i = Literal(0)
|
||||
m = Literal(20)
|
||||
self.assertEqual(11, f(x, i, m).value)
|
||||
i = Literal(1)
|
||||
self.assertEqual(17, f(x, i, m).value)
|
||||
i = Literal(2)
|
||||
self.assertEqual(13, f(x, i, m).value)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
#unittest.main()
|
||||
|
||||
print("*** Aufgabe 3 ***")
|
||||
size = Literal(20)
|
||||
|
@ -1,37 +0,0 @@
|
||||
import re
|
||||
from utils.project_dir import get_path
|
||||
from vorlesung.L08_graphen.graph import Graph, AdjacencyListGraph, AdjacencyMatrixGraph
|
||||
|
||||
|
||||
def read_cave_into_graph(graph: Graph, filename: str):
|
||||
"""Read a cave description from a file and insert it into the given graph."""
|
||||
filename = get_path(filename)
|
||||
with open(filename, "r") as file:
|
||||
lines = file.readlines()
|
||||
for line in lines:
|
||||
# match a line with two node names and an optional direction
|
||||
m = re.match(r"(^\s*\"(.*)\"\s*([<>]*)\s*\"(.*)\"\s*)", line)
|
||||
if m:
|
||||
startnode = m.group(2)
|
||||
endnode = m.group(4)
|
||||
opcode = m.group(3)
|
||||
graph.insert_vertex(startnode)
|
||||
graph.insert_vertex(endnode)
|
||||
if '>' in opcode:
|
||||
graph.connect(startnode, endnode)
|
||||
if '<' in opcode:
|
||||
graph.connect(endnode, startnode)
|
||||
|
||||
|
||||
graph = AdjacencyListGraph()
|
||||
# graph = AdjacencyMatrixGraph()
|
||||
read_cave_into_graph(graph, "data/hoehle.txt")
|
||||
_, predecessor_map = graph.bfs('Höhleneingang')
|
||||
path = graph.path('Schatzkammer', predecessor_map)
|
||||
print(path)
|
||||
_, predecessor_map = graph.bfs('Schatzkammer')
|
||||
path = graph.path('Höhleneingang', predecessor_map)
|
||||
print(path)
|
||||
graph.graph("Höhle")
|
||||
|
||||
|
@ -1,59 +0,0 @@
|
||||
from utils.project_dir import get_path
|
||||
from vorlesung.L08_graphen.graph import AdjacencyListGraph
|
||||
|
||||
DIRECTIONS = [(1,0), (0, 1), (-1, 0), (0, -1)]
|
||||
|
||||
class D16Solution:
|
||||
|
||||
def __init__(self):
|
||||
with open(get_path("data/aoc2416.txt"), "r") as file:
|
||||
self.puzzle = [line.strip() for line in file]
|
||||
self.cells = set()
|
||||
self.start = None
|
||||
self.end = None
|
||||
|
||||
def get_cells_start_end(self):
|
||||
for row in range(len(self.puzzle)):
|
||||
for col in range(len(self.puzzle[row])):
|
||||
if self.puzzle[row][col] != '#':
|
||||
self.cells.add((col, row))
|
||||
if self.puzzle[row][col] == 'S':
|
||||
self.start = (col, row)
|
||||
if self.puzzle[row][col] == 'E':
|
||||
self.end = (col, row)
|
||||
|
||||
def get_label(self, cell, direction):
|
||||
"""Generate a label for a cell based on its coordinates and direction."""
|
||||
return f"{cell[0]},{cell[1]}_{direction}"
|
||||
|
||||
def create_graph(self):
|
||||
graph = AdjacencyListGraph()
|
||||
for cell in self.cells:
|
||||
for direction in DIRECTIONS:
|
||||
label = self.get_label(cell, direction)
|
||||
graph.insert_vertex(label)
|
||||
for cell in self.cells:
|
||||
for d, direction in enumerate(DIRECTIONS):
|
||||
label = self.get_label(cell, direction)
|
||||
dx, dy = direction
|
||||
neighbor = (cell[0] + dx, cell[1] + dy)
|
||||
if neighbor in self.cells:
|
||||
graph.connect(label, self.get_label(neighbor, direction))
|
||||
direction_left = DIRECTIONS[(d - 1) % 4]
|
||||
direction_right = DIRECTIONS[(d + 1) % 4]
|
||||
graph.connect(label, self.get_label(cell, direction_left), 1000)
|
||||
graph.connect(label, self.get_label(cell, direction_right), 1000)
|
||||
return graph
|
||||
|
||||
if __name__ == "__main__":
|
||||
solution = D16Solution()
|
||||
solution.get_cells_start_end()
|
||||
graph = solution.create_graph()
|
||||
start = solution.get_label(solution.start, DIRECTIONS[0])
|
||||
print(f"Start: {start}")
|
||||
distance_map, predecessor_map = graph.dijkstra(start)
|
||||
end_labels = [solution.get_label(solution.end, direction) for direction in DIRECTIONS]
|
||||
end_vertices = [graph.get_vertex(label) for label in end_labels]
|
||||
min_weight = min([distance_map[vertex] for vertex in end_vertices])
|
||||
print(f"Minimum distance to End {solution.end}: {min_weight}")
|
||||
|
@ -1,32 +0,0 @@
|
||||
from vorlesung.L08_graphen.graph import Graph, AdjacencyMatrixGraph
|
||||
from utils.project_dir import get_path
|
||||
import re
|
||||
|
||||
def read_elektro_into_graph(graph: Graph, filename: str):
|
||||
pattern = re.compile(r'"([^"]+)";"([^"]+)";(\d+)')
|
||||
with (open(filename, "r") as file):
|
||||
for line in file:
|
||||
m = pattern.match(line)
|
||||
if m:
|
||||
start_name = m.group(1)
|
||||
end_name = m.group(2)
|
||||
cost = int(m.group(3))
|
||||
graph.insert_vertex(start_name)
|
||||
graph.insert_vertex(end_name)
|
||||
graph.connect(start_name, end_name, cost)
|
||||
graph.connect(end_name, start_name, cost)
|
||||
|
||||
if __name__ == "__main__":
|
||||
graph = AdjacencyMatrixGraph()
|
||||
read_elektro_into_graph(graph, get_path("data/elektro.txt"))
|
||||
|
||||
parents, cost = graph.mst_prim()
|
||||
print(f"Kosten nach Prim: {cost}")
|
||||
for node, parent in parents.items():
|
||||
if parent is not None:
|
||||
print(f"{node} - {parent}")
|
||||
|
||||
edges, cost = graph.mst_kruskal()
|
||||
print(f"Kosten nach Kruskal: {cost}")
|
||||
for start_name, end_name, _ in edges:
|
||||
print(f"{start_name} - {end_name}")
|
165
schoeffelbe/pr01.py
Normal file
165
schoeffelbe/pr01.py
Normal file
@ -0,0 +1,165 @@
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.literal import Literal
|
||||
from utils.constants import MIN_VALUE
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.memory_range import mrange
|
||||
|
||||
def max_sequence_1(z: MemoryArray):
|
||||
n = z.length()
|
||||
m = MemoryCell(MIN_VALUE)
|
||||
s = MemoryCell()
|
||||
l = MemoryCell()
|
||||
r = MemoryCell()
|
||||
for i in mrange(n):
|
||||
for j in mrange(i, n):
|
||||
s.set(0)
|
||||
for k in mrange(i, j):
|
||||
s += z[k]
|
||||
if s > m:
|
||||
m.set(s)
|
||||
l.set(i)
|
||||
r.set(j)
|
||||
return m, l, r
|
||||
|
||||
def max_sequence_2(z: MemoryArray):
|
||||
n = z.length()
|
||||
m = MemoryCell(MIN_VALUE)
|
||||
s = MemoryCell()
|
||||
l = MemoryCell()
|
||||
r = MemoryCell()
|
||||
for i in mrange(n):
|
||||
s.set(0)
|
||||
for j in mrange(i, n):
|
||||
s += z[j]
|
||||
if s > m:
|
||||
m.set(s)
|
||||
l.set(i)
|
||||
r.set(j)
|
||||
return m, l, r
|
||||
|
||||
def _max_sequence_3_sub(z: MemoryArray, l: Literal, m: Literal, r: Literal):
|
||||
# find max-sum from Middle to left
|
||||
linksMax = MemoryCell(MIN_VALUE)
|
||||
sum = MemoryCell(0)
|
||||
links = MemoryCell(l)
|
||||
rechts = MemoryCell(l)
|
||||
for i in mrange(m, MemoryCell(l)-Literal(1), -1):
|
||||
sum += z[i]
|
||||
if sum > linksMax :
|
||||
linksMax.set(sum)
|
||||
links.set(i)
|
||||
|
||||
# find max-sum from Middle to right
|
||||
rechtsMax = MemoryCell(MIN_VALUE)
|
||||
sum.set(0);
|
||||
# MRange is exclusive
|
||||
startRight = MemoryCell(1) + m
|
||||
for i in mrange(startRight, MemoryCell(1) + r):
|
||||
sum += z[i]
|
||||
if sum > rechtsMax:
|
||||
rechtsMax.set(sum)
|
||||
rechts.set(i)
|
||||
return (linksMax + rechtsMax), links, rechts
|
||||
|
||||
def _max_sequence_3(z: MemoryArray, l: Literal, r: Literal):
|
||||
# Calc-Vars -> illegal to use Literal(0) here? Probably
|
||||
# CAN ALLLL BE LITERALS
|
||||
linksMax = MemoryCell()
|
||||
linksL = MemoryCell()
|
||||
linksR = MemoryCell()
|
||||
rechtsMax = MemoryCell()
|
||||
rechtsL = MemoryCell()
|
||||
rechtsR = MemoryCell()
|
||||
zwiMax = MemoryCell()
|
||||
zwiL = MemoryCell()
|
||||
zwiR = MemoryCell()
|
||||
# Middle
|
||||
m = MemoryCell()
|
||||
# Rec-Term - Reached subarray of size 1
|
||||
if l == r:
|
||||
return (z[l], l, r)
|
||||
# calc middle
|
||||
m.set(MemoryCell(l) + r)
|
||||
# Use cutoff/floor here, did not check
|
||||
m //= Literal(2);
|
||||
# get maxLeft, then maxRight and then cross them (rec)
|
||||
(linksMax, linksL, linksR) = _max_sequence_3(z, l, m)
|
||||
startRight = MemoryCell(1) + m
|
||||
(rechtsMax, rechtsL, rechtsR) = _max_sequence_3(z, startRight, r)
|
||||
(zwiMax, zwiL, zwiR) = _max_sequence_3_sub(z, l, m, r)
|
||||
|
||||
if linksMax >= rechtsMax and linksMax >= zwiMax:
|
||||
return (linksMax, linksL, linksR)
|
||||
|
||||
if rechtsMax >= linksMax and rechtsMax >= zwiMax:
|
||||
return (rechtsMax, rechtsL, rechtsR)
|
||||
|
||||
return (zwiMax, zwiL, zwiR)
|
||||
|
||||
# Wrapper for Seq DivAndConquer to keep call/teststructure possible
|
||||
def max_sequence_3(z: MemoryArray):
|
||||
# Start with full range
|
||||
lstart = Literal(0)
|
||||
rend = Literal(len(z) - 1)
|
||||
return _max_sequence_3(z, lstart, rend)
|
||||
|
||||
def max_sequence_4(z: MemoryArray):
|
||||
n = z.length()
|
||||
max = MemoryCell(MIN_VALUE)
|
||||
aktLinks = MemoryCell()
|
||||
links = MemoryCell()
|
||||
rechts = MemoryCell()
|
||||
aktSum = MemoryCell()
|
||||
for i in mrange(n):
|
||||
aktSum += z[i]
|
||||
if aktSum > max:
|
||||
max.set(aktSum)
|
||||
links.set(aktLinks)
|
||||
rechts.set(i)
|
||||
# if negative we start new Sum -> Restart must be better than continue
|
||||
if aktSum < Literal(0):
|
||||
aktSum.set(0)
|
||||
aktLinks.set(MemoryCell(1) + i)
|
||||
return (max, links, rechts)
|
||||
|
||||
def example(max_sequence_func):
|
||||
l = [-59, 52, 46, 14, -50, 58, -87, -77, 34, 15]
|
||||
print(l)
|
||||
z = MemoryArray(l)
|
||||
m, l, r = max_sequence_func(z)
|
||||
print(m, l, r)
|
||||
assert(m == Literal(120))
|
||||
|
||||
|
||||
def seq(filename, max_sequence_func):
|
||||
z = MemoryArray.create_array_from_file(filename)
|
||||
m, l, r = max_sequence_func(z)
|
||||
print(m, l, r)
|
||||
|
||||
|
||||
def analyze_complexity(max_sequence_func, sizes):
|
||||
"""
|
||||
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
|
||||
|
||||
:param max_sequence_func: Die Funktion, die analysiert wird.
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
random_array = MemoryArray.create_random_array(size, -100, 100)
|
||||
max_sequence_func(random_array)
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "adds"])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# fn = max_sequence_4
|
||||
for fn in [max_sequence_1, max_sequence_2, max_sequence_3, max_sequence_4]:
|
||||
example(fn)
|
||||
# for filename in ["data/seq0.txt", "data/seq1.txt", "data/seq2.txt", "data/seq3.txt"]:
|
||||
for filename in ["data/seq0.txt", "data/seq1.txt"]:
|
||||
print(filename)
|
||||
seq(filename, fn)
|
||||
analyze_complexity(fn, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
|
125
schoeffelbe/pr02.py
Normal file
125
schoeffelbe/pr02.py
Normal file
@ -0,0 +1,125 @@
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
# logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
import time
|
||||
|
||||
def timeMS(func, *args, **kwargs):
|
||||
startTime = time.perf_counter()
|
||||
result = func(*args, **kwargs)
|
||||
endTime = time.perf_counter()
|
||||
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
|
||||
print(f"{func.__name__} took {elapsedMS:.2f} ms")
|
||||
return result
|
||||
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.literal import Literal
|
||||
from utils.constants import MIN_VALUE
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.memory_range import mrange
|
||||
|
||||
def example():
|
||||
initial = [6, 5, 3, 8, 1, 7, 2, 4]
|
||||
# initial = [-6, -5, -3, -8, 1, 7, 2, 4]
|
||||
toSort = MemoryArray(initial)
|
||||
# init_from_size not accessible?
|
||||
sorted = MemoryArray([-1] * len(initial))
|
||||
mergeSort(toSort, sorted)
|
||||
logger.debug(f"sorted {sorted} vs initial {initial}")
|
||||
assert all(sorted[Literal(i)] == Literal(i+1) for i in range(len(initial))), "Array not sorted correctly"
|
||||
|
||||
analyze_complexity(mergeSort, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
|
||||
|
||||
def merge(left: MemoryArray, right: MemoryArray, sort: MemoryArray):
|
||||
pointerLeft = MemoryCell(0)
|
||||
pointerRight = MemoryCell(0)
|
||||
pointerSort = MemoryCell(0)
|
||||
|
||||
compare = lambda x, y: x <= y
|
||||
|
||||
logger.debug(f"Merging left {left} with right {right} in sort {sort}")
|
||||
|
||||
while pointerLeft < left.length() and pointerRight < right.length():
|
||||
if compare(left[pointerLeft], right[pointerRight]):
|
||||
sort[pointerSort] = left[pointerLeft]
|
||||
pointerLeft += Literal(1)
|
||||
else:
|
||||
sort[pointerSort] = right[pointerRight]
|
||||
pointerRight += Literal(1)
|
||||
|
||||
logger.debug(f"Now are at sort {sort} with {pointerLeft} (l) and {pointerRight} (r)")
|
||||
pointerSort += Literal(1)
|
||||
|
||||
# Consume remaining elements
|
||||
while pointerLeft < left.length():
|
||||
logger.debug(f"Consuming left {left} from {pointerSort} at {pointerLeft}")
|
||||
sort[pointerSort] = left[pointerLeft]
|
||||
pointerLeft += Literal(1)
|
||||
pointerSort += Literal(1)
|
||||
|
||||
while pointerRight < right.length():
|
||||
logger.debug(f"Consuming right {right} from {pointerSort} at {pointerRight}")
|
||||
sort[pointerSort] = right[pointerRight]
|
||||
pointerRight += Literal(1)
|
||||
pointerSort += Literal(1)
|
||||
|
||||
# Sort the array passed as "toSort" and place the result in array "sort"
|
||||
# Does not change the original Array
|
||||
def mergeSort(toSort: MemoryArray, sort: MemoryArray):
|
||||
logger.debug(toSort)
|
||||
toSortLength = MemoryCell(toSort.length())
|
||||
|
||||
# Splitting
|
||||
# Rec-Term -> Reached single Element. Single Element is already sorted so we place it!
|
||||
if toSortLength <= Literal(1):
|
||||
# still working for empty array
|
||||
if toSortLength == Literal(1):
|
||||
sort[Literal(0)] = toSort[Literal(0)]
|
||||
return
|
||||
|
||||
# TODO - Use a global var or a reference to an array passed as argument for this
|
||||
# TODO - Tried non-temp-array approach with alternating Work-Arrays passed to the function, but made code really unreadable. Decided not worth it for now
|
||||
# Temporary Arrays to hold the split arrays
|
||||
mid : Literal = toSortLength // Literal(2)
|
||||
left : MemoryArray = MemoryArray([toSort[i] for i in mrange(mid)])
|
||||
right : MemoryArray = MemoryArray([toSort[i] for i in mrange(mid, toSortLength)])
|
||||
|
||||
# Temporary arrays for sorted halves
|
||||
leftSort = MemoryArray([-1] * mid.get())
|
||||
rightSort = MemoryArray([-1] * (toSortLength - mid).get())
|
||||
|
||||
# Split further
|
||||
mergeSort(left, leftSort)
|
||||
mergeSort(right, rightSort)
|
||||
|
||||
# Recreate the array from the seperated parts
|
||||
merge(leftSort, rightSort, sort)
|
||||
|
||||
def analyze_complexity(fn, sizes):
|
||||
"""
|
||||
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
|
||||
|
||||
:param max_sequence_func: Die Funktion, die analysiert wird.
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
random_array = MemoryArray.create_random_array(size, -100, 100)
|
||||
other_array = MemoryArray([-1] * size)
|
||||
fn(random_array, other_array)
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "adds", "compares"])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# For debug, assert if working and complexity-analysis
|
||||
# example()
|
||||
|
||||
for filename in ["data/seq0.txt", "data/seq1.txt", "data/seq2.txt", "data/seq3.txt"]:
|
||||
print(filename)
|
||||
toSort = MemoryArray.create_array_from_file(filename)
|
||||
sorted = MemoryArray([-1] * toSort.length().get())
|
||||
timeMS(mergeSort, toSort, sorted)
|
||||
# print(sorted)
|
190
schoeffelbe/pr03.py
Normal file
190
schoeffelbe/pr03.py
Normal file
@ -0,0 +1,190 @@
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
# logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
import time
|
||||
|
||||
def timeMS(func, *args, **kwargs):
|
||||
startTime = time.perf_counter()
|
||||
result = func(*args, **kwargs)
|
||||
endTime = time.perf_counter()
|
||||
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
|
||||
print(f"{func.__name__} took {elapsedMS:.2f} ms")
|
||||
return result
|
||||
|
||||
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.literal import Literal
|
||||
from utils.constants import MIN_VALUE
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.memory_range import mrange
|
||||
|
||||
def example():
|
||||
initial = [6, 5, 3, 8, 1, 7, 2, 4]
|
||||
# initial = [-6, -5, -3, -8, 1, 7, 2, 4]
|
||||
toSort = MemoryArray(initial)
|
||||
quickSortIterative(toSort, Literal(0), toSort.length().pred())
|
||||
logger.debug(f"sorted {toSort} vs initial {initial}")
|
||||
assert all(toSort[Literal(i)] == Literal(i+1) for i in range(len(initial))), "Array not sorted correctly"
|
||||
|
||||
# analyze_complexity(quickSort, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
|
||||
|
||||
def getPivot(z: MemoryArray, l: Literal, r: Literal, mode) -> Literal:
|
||||
if mode == 0:
|
||||
return r
|
||||
else:
|
||||
mid_offset = r.value - l.value
|
||||
mid_offset = mid_offset // 2
|
||||
mid = Literal(l.value + mid_offset)
|
||||
|
||||
# Return median of left, middle, and right elements
|
||||
if ((z[l] <= z[mid] and z[mid] <= z[r]) or
|
||||
(z[r] <= z[mid] and z[mid] <= z[l])):
|
||||
return mid
|
||||
elif ((z[mid] <= z[l] and z[l] <= z[r]) or
|
||||
(z[r] <= z[l] and z[l] <= z[mid])):
|
||||
return l
|
||||
else:
|
||||
return r
|
||||
|
||||
|
||||
def swap(z: MemoryArray, i: int, j: int):
|
||||
tmp = z[Literal(i)].value
|
||||
z[Literal(i)] = z[Literal(j)]
|
||||
z[Literal(j)].set(tmp)
|
||||
|
||||
# toSort[] --> Array to be sorted,
|
||||
# left --> Starting index,
|
||||
# right --> Ending index
|
||||
# adapted from https://stackoverflow.com/questions/68524038/is-there-a-python-implementation-of-quicksort-without-recursion
|
||||
def quickSortIterative(toSort : MemoryArray, left : Literal, right : Literal, mode=0):
|
||||
# Create a manually managed stack and avoid pythons recursion-limit
|
||||
size = right.value - left.value + 1
|
||||
stack : MemoryArray = MemoryArray([0] * size)
|
||||
top : MemoryCell = MemoryCell(-1)
|
||||
|
||||
# push initial values of l and h to stack
|
||||
top += Literal(1)
|
||||
stack[top] = left
|
||||
top += Literal(1)
|
||||
stack[top] = right
|
||||
|
||||
# Keep popping from stack until its empty
|
||||
while top >= Literal(0):
|
||||
logger.debug(f"size {size}, stack {stack}, right {right} and left {left}, top {top}")
|
||||
|
||||
# Pop h and l - Ensure we are not getting them by Ref, this will produce weird "JUST A LITTLE OF" Results
|
||||
right = Literal(stack[top].get())
|
||||
top -= Literal(1)
|
||||
left = Literal(stack[top].get())
|
||||
top -= Literal(1)
|
||||
|
||||
# Set pivot element at its correct position in sorted array
|
||||
p = partitionIterative(toSort, left, right, mode)
|
||||
|
||||
# If there are elements on left side of pivot, then push left side to stack
|
||||
if p.pred() > left:
|
||||
top += Literal(1)
|
||||
stack[top] = left
|
||||
top += Literal(1)
|
||||
stack[top] = p.pred()
|
||||
|
||||
# If there are elements on right side of pivot, then push right side to stack
|
||||
if p.succ() < right:
|
||||
top += Literal(1)
|
||||
stack[top] = p.succ()
|
||||
top += Literal(1)
|
||||
stack[top] = right
|
||||
|
||||
def partitionIterative(arr : MemoryArray, l : Literal, h : Literal, mode=0):
|
||||
logger.debug(f"Partitioning {arr}, {l} and {h}")
|
||||
pivot_idx : Literal = getPivot(arr, l, h, mode)
|
||||
|
||||
# If pivot isn't at the high end, swap it there
|
||||
if pivot_idx != h:
|
||||
swap(arr, int(pivot_idx), int(h))
|
||||
|
||||
# Carefull that we do not use a reference. I suppose python would return one here if we just assign without value>Literal cast.
|
||||
# At least this helped fix weird issue
|
||||
pivotValue : Literal = arr[h]
|
||||
i : MemoryCell = MemoryCell(l.pred())
|
||||
|
||||
for j in mrange(l, h):
|
||||
if arr[j] <= pivotValue:
|
||||
i += Literal(1) # increment index of smaller element
|
||||
swap(arr, int(i), int(j))
|
||||
|
||||
swap(arr, i.succ().value, h.value)
|
||||
return i.succ()
|
||||
|
||||
def LEGACY_quickSort(z: MemoryArray, l: Literal = Literal(0), r: Literal = Literal(-1), mode=0):
|
||||
if r == Literal(-1):
|
||||
r = z.length().pred();
|
||||
if l < r:
|
||||
q = LEGACY_partition(z, l, r, mode)
|
||||
LEGACY_quickSort(z, l, q.pred())
|
||||
LEGACY_quickSort(z, q.succ(), r)
|
||||
|
||||
def LEGACY_partition(z: MemoryArray, l: Literal, r: Literal, mode):
|
||||
# Get pivot
|
||||
pivot_idx = getPivot(z, l, r, mode)
|
||||
|
||||
# If pivot is not already at the right end, swap it there
|
||||
if pivot_idx != r:
|
||||
swap(z, int(pivot_idx), int(r))
|
||||
|
||||
with MemoryCell(z[r]) as pivot, MemoryCell(l) as i, MemoryCell(r.pred()) as j:
|
||||
while i < j:
|
||||
while z[i] < pivot:
|
||||
i.set(i.succ())
|
||||
while j > l and z[j] >= pivot:
|
||||
j.set(j.pred())
|
||||
if i < j:
|
||||
swap(z, int(i), int(j))
|
||||
i.set(i.succ())
|
||||
j.set(j.pred())
|
||||
if i == j and z[i] < pivot:
|
||||
i.set(i.succ())
|
||||
if z[i] != pivot:
|
||||
swap(z, int(i), int(r))
|
||||
return Literal(i)
|
||||
|
||||
|
||||
def analyze_complexity(fn, sizes):
|
||||
"""
|
||||
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
|
||||
|
||||
:param max_sequence_func: Die Funktion, die analysiert wird.
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
random_array = MemoryArray.create_random_array(size, -100, 100)
|
||||
fn(random_array, Literal(0), random_array.length().pred())
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "adds", "compares", "reads", "writes"])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# For debug, assert if working and complexity-analysis
|
||||
example()
|
||||
|
||||
print("I ran into a MaxRecursionDepth Error. From what I read on the Internet python does not do Tailcall Optimizations")
|
||||
print("Increasing recursion-limit seems like a poor Idea, therefore tried an iterative approach with manual stack-keeping")
|
||||
|
||||
toSort = MemoryArray.create_array_from_file("data/seq0.txt")
|
||||
print(toSort)
|
||||
quickSortIterative(toSort, Literal(0), toSort.length().pred())
|
||||
print(toSort)
|
||||
|
||||
# analyze_complexity(quickSortIterative, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
|
||||
for filename in ["data/seq0.txt", "data/seq1.txt", "data/seq2.txt" ,"data/seq3.txt"]:
|
||||
# for filename in [ "data/seq1.txt"]:
|
||||
print(filename)
|
||||
toSort = MemoryArray.create_array_from_file(filename)
|
||||
timeMS(quickSortIterative, toSort, Literal(0), toSort.length().pred(), mode=1)
|
||||
print(toSort)
|
||||
|
||||
print("Kann durch die Modifikation eine besser Laufzeit als nlog(n) erreicht werden? Nein! nlog(n) ist das Minimum. Durch die Änderung kann aber der Worst-Case fall von n^2 für z.B. bereits vorsortierte Arrays oder Arrays mit vielen Duplikaten vermieden werden.")
|
293
schoeffelbe/pr04.py
Normal file
293
schoeffelbe/pr04.py
Normal file
@ -0,0 +1,293 @@
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
# logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
import time
|
||||
|
||||
def timeMS(func, *args, **kwargs):
|
||||
startTime = time.perf_counter()
|
||||
result = func(*args, **kwargs)
|
||||
endTime = time.perf_counter()
|
||||
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
|
||||
print(f"{func.__name__} took {elapsedMS:.2f} ms")
|
||||
return result
|
||||
|
||||
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.literal import Literal
|
||||
from utils.constants import MAX_VALUE
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.memory_range import mrange
|
||||
|
||||
# Impl of MemoryArray says we cant add our own Datatypes beside Literal and List
|
||||
# BUUUUT we can just wrap our Datatype in a List :-)
|
||||
# We store them in a MemoryArray internaly tho anyhow so we increment our Counters for the RAM
|
||||
class HeapEntry:
|
||||
def __init__(self, item, priority=1):
|
||||
self.data = MemoryArray(Literal(2))
|
||||
# 0: Content, 1: Prio
|
||||
self.data[Literal(0)] = Literal(item)
|
||||
self.data[Literal(1)] = Literal(priority)
|
||||
|
||||
def getItem(self):
|
||||
return self.data[Literal(0)]
|
||||
|
||||
def getPriority(self):
|
||||
return self.data[Literal(1)]
|
||||
|
||||
def setPriority(self, priority):
|
||||
self.data[Literal(1)] = Literal(priority)
|
||||
|
||||
def __lt__(self, other):
|
||||
if other is None:
|
||||
return True
|
||||
if isinstance(other, (int, float)):
|
||||
return self.getPriority().value > other
|
||||
return self.getPriority() > other.getPriority()
|
||||
|
||||
def __gt__(self, other):
|
||||
if other is None:
|
||||
return False
|
||||
if isinstance(other, (int, float)):
|
||||
return self.getPriority().value < other
|
||||
return self.getPriority() < other.getPriority()
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.getPriority() == other.getPriority()
|
||||
|
||||
def __str__(self):
|
||||
return f"({self.getItem()}, prio={self.getPriority()})"
|
||||
|
||||
class PriorityQueue:
|
||||
def __init__(self, max_size : Literal = Literal(100)):
|
||||
self.heap = MemoryArray(max_size)
|
||||
# Add uninitialized HeapEntry Values so the Adds/Compares do not fail on emtpy stack.
|
||||
# Would have to switch to MIN_VALUE if we switch what is a "Higher" Prio
|
||||
for i in mrange(max_size.value):
|
||||
self.heap[i].set([HeapEntry(MAX_VALUE, MAX_VALUE)])
|
||||
self.size = MemoryCell(0)
|
||||
|
||||
def parent(self, i: Literal) -> Literal:
|
||||
return MemoryCell(i.pred()) // Literal(2)
|
||||
|
||||
def leftChild(self, i: Literal) -> Literal:
|
||||
return MemoryCell(MemoryCell(2) * i) + Literal(1)
|
||||
|
||||
def rightChild(self, i: Literal) -> Literal:
|
||||
return MemoryCell(MemoryCell(2) * i) + Literal(2)
|
||||
|
||||
# Swap the Lists -> Therefore get the value which is the List and then Set it again
|
||||
def swap(self, i: Literal, j: Literal):
|
||||
tmp_i = self.heap[i].value
|
||||
tmp_j = self.heap[j].value
|
||||
self.heap[i].set(tmp_j)
|
||||
self.heap[j].set(tmp_i)
|
||||
|
||||
def maxHeapify(self, i: Literal):
|
||||
left = self.leftChild(i)
|
||||
right = self.rightChild(i)
|
||||
largest = i
|
||||
|
||||
if left < Literal(self.size.value) and self.heap[left].value[0] > self.heap[largest].value[0]:
|
||||
largest = left
|
||||
|
||||
if right < Literal(self.size.value) and self.heap[right].value[0] > self.heap[largest].value[0]:
|
||||
largest = right
|
||||
|
||||
if largest != i:
|
||||
self.swap(i, largest)
|
||||
self.maxHeapify(largest)
|
||||
|
||||
def insert(self, entry : HeapEntry):
|
||||
if self.size >= self.heap.length():
|
||||
raise IndexError("Heap full")
|
||||
|
||||
i = self.size
|
||||
self.heap[i].set([entry])
|
||||
|
||||
while i > Literal(0) and self.heap[self.parent(i)].value[0] < self.heap[i].value[0]:
|
||||
self.swap(i, self.parent(i))
|
||||
i = self.parent(i)
|
||||
|
||||
self.size += Literal(1)
|
||||
|
||||
def pop(self):
|
||||
if self.isEmpty():
|
||||
raise IndexError("Queue is empty!")
|
||||
|
||||
max_item = self.heap[Literal(0)].value[0]
|
||||
|
||||
self.heap[Literal(0)] = self.heap[self.size - Literal(1)]
|
||||
self.size -= Literal(1)
|
||||
|
||||
self.maxHeapify(Literal(0))
|
||||
|
||||
return max_item
|
||||
|
||||
def peek(self):
|
||||
if self.isEmpty():
|
||||
raise IndexError("Queue is empty")
|
||||
return self.heap[Literal(0)].value[0]
|
||||
|
||||
def isEmpty(self):
|
||||
return self.size == Literal(0)
|
||||
|
||||
def __len__(self):
|
||||
return self.size
|
||||
|
||||
def __str__(self):
|
||||
entries = []
|
||||
for i in mrange(self.size.value):
|
||||
entry = self.heap[i].value[0]
|
||||
if entry.getItem() != MAX_VALUE:
|
||||
entries.append(str(entry))
|
||||
return "[" + ", ".join(entries) + "]"
|
||||
|
||||
# Insert here so we dont run into import problems, but can deliver this file Standalone
|
||||
class BinaryTreeNode(MemoryCell):
|
||||
def __init__(self, value):
|
||||
super().__init__(value)
|
||||
self.left = None
|
||||
self.right = None
|
||||
|
||||
def __repr__(self):
|
||||
return f"BinaryTreeNode(value={self.value}, left={self.left}, right={self.right})"
|
||||
|
||||
def __str__(self):
|
||||
return str(self.value)
|
||||
|
||||
class BinaryTree:
|
||||
def __init__(self):
|
||||
self.root: BinaryTreeNode | None = None
|
||||
|
||||
def insert(self, value: BinaryTreeNode):
|
||||
# Insert at Leaf, if smaller then left one, otherwise right one
|
||||
def _insert(node: BinaryTreeNode | None, value) -> BinaryTreeNode:
|
||||
if node is None:
|
||||
return BinaryTreeNode(value)
|
||||
if value < node:
|
||||
node.left = _insert(node.left, value) # type: ignore -> Ignoring pywright errors
|
||||
else:
|
||||
node.right = _insert(node.right, value) # type: ignore -> Ignoring pywright errors
|
||||
return node
|
||||
|
||||
self.root = _insert(self.root, value)
|
||||
|
||||
def traverse(self, mode="in", visual=False):
|
||||
mode = mode.lower()
|
||||
# Have internal depth counting
|
||||
def InternalTraverse(node, prefix="", is_left=True, depth=0):
|
||||
if node is None:
|
||||
return [] if not visual else []
|
||||
|
||||
result = []
|
||||
node_str = str(node)
|
||||
|
||||
prefixAcc = prefix + ("| " if is_left and depth > 0 else " ")
|
||||
|
||||
if visual:
|
||||
connector = "+-- " if is_left else "L-- "
|
||||
line = prefix + connector + node_str if depth > 0 else node_str
|
||||
result.append(line)
|
||||
else:
|
||||
result.append(node_str)
|
||||
|
||||
if mode == "pre":
|
||||
result += InternalTraverse(node.left, prefixAcc, True, depth + 1)
|
||||
result += InternalTraverse(node.right, prefixAcc, False, depth + 1)
|
||||
elif mode == "in":
|
||||
result += InternalTraverse(node.left, prefixAcc, True, depth + 1)
|
||||
result += InternalTraverse(node.right, prefixAcc, False, depth + 1)
|
||||
elif mode == "post":
|
||||
result += InternalTraverse(node.left, prefixAcc, True, depth + 1)
|
||||
result += InternalTraverse(node.right, prefixAcc, False, depth + 1)
|
||||
|
||||
return result
|
||||
|
||||
if self.root is None:
|
||||
return "(empty tree)" if visual else []
|
||||
|
||||
result = InternalTraverse(self.root)
|
||||
return "\n".join(result) if visual else result
|
||||
|
||||
|
||||
def levelOrderWithPriorityQueue(self):
|
||||
if not self.root:
|
||||
return []
|
||||
|
||||
# Create a priority queue, using a reduced prio for every new entry -> behaviour as regular queue FIFO
|
||||
pq = PriorityQueue(Literal(1000))
|
||||
|
||||
# Again we cannot create a MemoryArray of dynamic sizes and also cannot create a string as MemoryCell does not like it
|
||||
# Again we just create a list holding a single dummy Entry (to set its size to 1) and then just use this "list" as our string
|
||||
# Appending to it is easy as it is just a regular list and in the end we return it
|
||||
# Like MemoryCell("").value.append("STRING") will fail. But list-wrap works.
|
||||
#
|
||||
# Sorry for Syntax, dont know any better way to have everything as RAM-Managed memory:-(
|
||||
result = MemoryArray(["MYSTRING"])
|
||||
result[Literal(0)].set([]);
|
||||
|
||||
counter = MemoryCell(0)
|
||||
def nextPriority():
|
||||
val = counter.value
|
||||
counter.set(Literal(val + 1))
|
||||
return val
|
||||
pq.insert(HeapEntry([self.root], nextPriority()))
|
||||
|
||||
while not pq.isEmpty():
|
||||
entry = pq.pop()
|
||||
node = entry.getItem().value
|
||||
|
||||
result[Literal(0)].value.append(str(node[0]))
|
||||
|
||||
if node[0].left:
|
||||
pq.insert(HeapEntry([node[0].left], nextPriority()))
|
||||
if node[0].right:
|
||||
pq.insert(HeapEntry([node[0].right], nextPriority()))
|
||||
|
||||
return result[Literal(0)]
|
||||
|
||||
|
||||
def __str__(self):
|
||||
return str(self.traverse(mode="PrE", visual=True))
|
||||
|
||||
def analyze_complexity(fn, sizes):
|
||||
"""
|
||||
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
|
||||
|
||||
:param max_sequence_func: Die Funktion, die analysiert wird.
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
random_array = MemoryArray.create_random_array(size, -100, 100)
|
||||
fn(random_array, Literal(0), random_array.length().pred())
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "adds", "compares", "reads", "writes"])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# For debug, assert if working and complexity-analysis
|
||||
# example()
|
||||
|
||||
print("Sorry for the Syntax and the large file, tried to keep everything as a standalone file to help make it \" download and run \".\n \
|
||||
Also did - once again - not find a better way to have a queue managed by the RAM contain the values of non-integer-attributes I \n\
|
||||
needed it to. Therefore i reused my Priorityqueue and its accesses via the unspecified wrapped list.");
|
||||
|
||||
# for filename in ["data/seq0.txt", "data/seq1.txt", "data/seq2.txt" ,"data/seq3.txt"]:
|
||||
for filename in [ "data/seq0.txt"]:
|
||||
print(filename)
|
||||
binTreeData = MemoryArray.create_array_from_file(filename)
|
||||
binTree = BinaryTree()
|
||||
for value in binTreeData:
|
||||
binTree.insert(BinaryTreeNode(value))
|
||||
|
||||
# Print overlaoded InOrder traversal
|
||||
print(binTree)
|
||||
# print(binTree.traverse(mode="pre", visual=False))
|
||||
# print(binTree.traverse(mode="in", visual=False))
|
||||
# print(binTree.traverse(mode="post", visual=False))
|
||||
# Print Levelorder traversal:
|
||||
print(binTree.levelOrderWithPriorityQueue())
|
246
schoeffelbe/pr05.py
Normal file
246
schoeffelbe/pr05.py
Normal file
@ -0,0 +1,246 @@
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
# logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
import time
|
||||
|
||||
def timeMS(func, *args, **kwargs):
|
||||
startTime = time.perf_counter()
|
||||
result = func(*args, **kwargs)
|
||||
endTime = time.perf_counter()
|
||||
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
|
||||
print(f"{func.__name__} took {elapsedMS:.2f} ms")
|
||||
return result
|
||||
|
||||
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.literal import Literal
|
||||
from utils.memory_manager import MemoryManager
|
||||
from vorlesung.L05_binaere_baeume.bin_tree import BinaryTree
|
||||
from vorlesung.L05_binaere_baeume.bin_tree_node import BinaryTreeNode
|
||||
|
||||
def analyze_complexity(fn, sizes):
|
||||
"""
|
||||
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
|
||||
|
||||
:param max_sequence_func: Die Funktion, die analysiert wird.
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
random_array = MemoryArray.create_random_array(size, -100, 100)
|
||||
fn(random_array, Literal(0), random_array.length().pred())
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "adds", "compares", "reads", "writes"])
|
||||
|
||||
lineAccumulator = []
|
||||
|
||||
# Returnvalue does not get forwarded so we can not work with return.
|
||||
# Will try glob vars to append the string
|
||||
# Signature: def print_node(node, indent=0, line=None):
|
||||
def clbk_graphvizify(toDecorate : BinaryTreeNode, indent=0, line=None):
|
||||
global lineAccumulator
|
||||
|
||||
if isinstance(toDecorate, AVLTreeNode):
|
||||
lineAccumulator.append(f'n_{id(toDecorate)} [label=<{toDecorate.value}<BR/><FONT COLOR="RED" POINT-SIZE="10.0" FACE="ambrosia">B: {toDecorate.balanceFactor}</FONT>>]')
|
||||
else:
|
||||
lineAccumulator.append(f"n_{id(toDecorate)} [label={toDecorate.value}]")
|
||||
|
||||
# Create edges for nodes with Child (use l - r)
|
||||
if toDecorate.left is not None:
|
||||
lineAccumulator.append(f"n_{id(toDecorate)} -> n_{id(toDecorate.left)}")
|
||||
|
||||
if toDecorate.right is not None:
|
||||
lineAccumulator.append(f"n_{id(toDecorate)} -> n_{id(toDecorate.right)}")
|
||||
|
||||
|
||||
def graphvizify() -> str:
|
||||
# Header
|
||||
result = "digraph {\n\t"
|
||||
# Body
|
||||
result += ('\n\t'.join(str(item) for item in lineAccumulator))
|
||||
# Footer
|
||||
result += "\n}"
|
||||
return result
|
||||
|
||||
class AVLTreeNode(BinaryTreeNode):
|
||||
def __init__(self, value):
|
||||
super().__init__(value)
|
||||
self.parentRef = None
|
||||
# Start balanced as we probably have no children right after insert
|
||||
self.balanceFactor = Literal(0)
|
||||
|
||||
def rightRotate(self, node) -> 'AVLTreeNode|None':
|
||||
if node is None:
|
||||
return None
|
||||
|
||||
oLeft = node.left;
|
||||
oLeft.parentRef = node.parentRef;
|
||||
node.left = oLeft.right;
|
||||
|
||||
if node.left is not None:
|
||||
node.left.parentRef = node;
|
||||
|
||||
oLeft.right = node;
|
||||
node.parentRef = oLeft;
|
||||
|
||||
if oLeft.parentRef is not None:
|
||||
if oLeft.parentRef.right is node:
|
||||
oLeft.parentRef.right = oLeft;
|
||||
elif oLeft.parentRef.left is node:
|
||||
oLeft.parentRef.left = oLeft;
|
||||
|
||||
node.getSetBalanceFactor()
|
||||
oLeft.getSetBalanceFactor()
|
||||
|
||||
return oLeft
|
||||
|
||||
def leftRotate(self, node) -> 'AVLTreeNode|None':
|
||||
if node is None:
|
||||
return None
|
||||
|
||||
oRight = node.right
|
||||
oRight.parentRef = node.parentRef
|
||||
node.right = oRight.left
|
||||
|
||||
if node.right is not None:
|
||||
node.right.parentRef = node
|
||||
|
||||
oRight.left = node
|
||||
node.parentRef = oRight
|
||||
|
||||
if oRight.parentRef is not None:
|
||||
if oRight.parentRef.right is node:
|
||||
oRight.parentRef.right = oRight
|
||||
elif oRight.parentRef.left is node:
|
||||
oRight.parentRef.left = oRight
|
||||
|
||||
node.getSetBalanceFactor()
|
||||
oRight.getSetBalanceFactor()
|
||||
|
||||
return oRight
|
||||
|
||||
def getSetBalanceFactor(self) -> Literal:
|
||||
leftHeight = self.left.height() if self.left else 0
|
||||
rightHeight = self.right.height() if self.right else 0
|
||||
self.balanceFactor = Literal(rightHeight - leftHeight)
|
||||
return self.balanceFactor
|
||||
|
||||
def rightLeftRotate(self, node) -> 'AVLTreeNode|None':
|
||||
node.right = self.rightRotate(node.right)
|
||||
return self.leftRotate(node)
|
||||
|
||||
def leftRightRotate(self, node) -> 'AVLTreeNode|None':
|
||||
node.left = self.leftRotate(node.left)
|
||||
return self.rightRotate(node)
|
||||
|
||||
|
||||
def debugTraverse(node, source=1):
|
||||
if node is None:
|
||||
return None
|
||||
logger.debug(f"{node.value} {node.getSetBalanceFactor()} {source}")
|
||||
debugTraverse(node.left, 10);
|
||||
debugTraverse(node.right, 20);
|
||||
|
||||
|
||||
class AVLTree(BinaryTree):
|
||||
# @override
|
||||
def new_node(self, value) -> AVLTreeNode:
|
||||
return AVLTreeNode(value)
|
||||
|
||||
def balanceAVLTree(self, node : AVLTreeNode):
|
||||
# balance < -1 means imbalance to the left, > 1 means imbalance to the right
|
||||
logger.debug("in")
|
||||
if node is None:
|
||||
return None
|
||||
logger.debug("out")
|
||||
|
||||
node.getSetBalanceFactor()
|
||||
logger.debug(f"Parent Balancing for {node.value} -> {node.balanceFactor} {node.left.height() if node.left else None} and {node.right.height() if node.right else None}")
|
||||
|
||||
# imbalance to left -> If we enter this we cannot LOGICALLY have a left=None node -> No need to chekc
|
||||
if node.balanceFactor < Literal(-1):
|
||||
# Left-Left
|
||||
if node.left.balanceFactor <= Literal(0): # type: ignore -> Ignoring pywright error, see comment above
|
||||
# Wow, this syntax is sketchy ^^
|
||||
# TODO Maybe declare as static if python supports this? Or just leaf param be?
|
||||
logger.debug("rr")
|
||||
node = node.rightRotate(node)
|
||||
# Left-Right
|
||||
else:
|
||||
# TODO Maybe declare as static if python supports this? Or just leaf param be?
|
||||
logger.debug("lrr")
|
||||
node = node.leftRightRotate(node)
|
||||
|
||||
# Right heavy
|
||||
# imbalance to right -> If we enter this we cannot LOGICALLY have a right=None node -> No need to chekc
|
||||
if node.balanceFactor > Literal(1):
|
||||
# Right-Right case
|
||||
if node.right.balanceFactor >= Literal(0): # type: ignore -> Ignoring pywright error, see comment above
|
||||
# TODO Maybe declare as static if python supports this? Or just leaf param be?
|
||||
logger.debug("lr")
|
||||
node = node.leftRotate(node)
|
||||
# Right-Left case
|
||||
else:
|
||||
# TODO Maybe declare as static if python supports this? Or just leaf param be?
|
||||
logger.debug("rlr")
|
||||
node = node.rightLeftRotate(node)
|
||||
|
||||
logger.debug(f"Reached {node.parentRef}")
|
||||
if node.parentRef is not None:
|
||||
logger.debug(f"Calling again for {node.parentRef.value}");
|
||||
self.balanceAVLTree(node.parentRef);
|
||||
else:
|
||||
self.root = node;
|
||||
|
||||
# Node is balanced
|
||||
return node
|
||||
|
||||
# @override
|
||||
def insert(self, value):
|
||||
node, parent = super().insert(value)
|
||||
# NOTE Python does not have a Problem with NOT tellin us that we override something important
|
||||
# or something that does not exist.... This Makes for AWESOME debugging .... ... ...
|
||||
node.parentRef = parent
|
||||
|
||||
if parent:
|
||||
node = self.balanceAVLTree(node.parentRef)
|
||||
|
||||
return node, parent
|
||||
|
||||
if __name__ == '__main__':
|
||||
tree = AVLTree()
|
||||
|
||||
### Force RR
|
||||
# testData = [30, 20, 10];
|
||||
# for value in testData:
|
||||
# tree.insert(MemoryCell(value));
|
||||
|
||||
### Force LR
|
||||
# testData = [10, 20, 30];
|
||||
# for value in testData:
|
||||
# tree.insert(MemoryCell(value));
|
||||
|
||||
### Force LRR
|
||||
# testData = [30, 10, 20]
|
||||
# for value in testData:
|
||||
# tree.insert(MemoryCell(value))
|
||||
|
||||
### Force RLR
|
||||
# testData = [10, 30, 20]
|
||||
# for value in testData:
|
||||
# tree.insert(MemoryCell(value))
|
||||
|
||||
# Force rebuild of our balanceFactor indices...
|
||||
# debugTraverse(tree.root)
|
||||
|
||||
binTreeData = MemoryArray.create_array_from_file("data/seq0.txt")
|
||||
for value in binTreeData:
|
||||
tree.insert(value)
|
||||
|
||||
|
||||
lineAccumulator.clear();
|
||||
tree.in_order_traversal(clbk_graphvizify)
|
||||
# tree.tree_structure_traversal(clbk_graphvizify)
|
||||
print(graphvizify())
|
334
schoeffelbe/pr06.py
Normal file
334
schoeffelbe/pr06.py
Normal file
@ -0,0 +1,334 @@
|
||||
import logging
|
||||
from graphviz import Digraph
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
import time
|
||||
|
||||
def timeMS(func, *args, **kwargs):
|
||||
startTime = time.perf_counter()
|
||||
result = func(*args, **kwargs)
|
||||
endTime = time.perf_counter()
|
||||
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
|
||||
print(f"{func.__name__} took {elapsedMS:.2f} ms")
|
||||
return result
|
||||
|
||||
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.literal import Literal
|
||||
from utils.memory_range import mrange
|
||||
from utils.memory_manager import MemoryManager
|
||||
|
||||
# We often want to "dynamically" extend our array, but thats not really what it was intended for
|
||||
# Therefore we write a function to do so reusably
|
||||
def memArrayInsert(array: MemoryArray, position: Literal, value) -> MemoryArray:
|
||||
logger.debug(f"Pre-Insert: {array}")
|
||||
newSize : Literal = array.length().succ()
|
||||
newArray = MemoryArray(newSize)
|
||||
|
||||
# Copy elements til position
|
||||
for i in mrange(position):
|
||||
newArray[i] = array[i]
|
||||
|
||||
# Insert new value with check for MemCell Type
|
||||
newArray[position] = value if isinstance(value, MemoryCell) else MemoryCell(value)
|
||||
|
||||
for i in mrange(position.succ(), newSize):
|
||||
newArray[i] = array[i.pred()]
|
||||
|
||||
logger.debug(f"Post-Insert: {array}")
|
||||
return newArray
|
||||
|
||||
# Likewise for the Split
|
||||
# Here we split the array at the position EXCLUSIVELY for the first MemoryArray
|
||||
def memArraySplit(array: MemoryArray, position: Literal) -> tuple[MemoryArray, MemoryArray]:
|
||||
leftSize = position
|
||||
rightSize = MemoryCell(array.length()) - position
|
||||
|
||||
left = MemoryArray(leftSize)
|
||||
right = MemoryArray(rightSize)
|
||||
|
||||
for i in mrange(leftSize):
|
||||
left[i] = array[i]
|
||||
|
||||
for i in mrange(rightSize):
|
||||
right[i] = array[Literal(i.value + position.value)]
|
||||
|
||||
return left, right
|
||||
|
||||
class BTreeNode(MemoryCell):
|
||||
def __init__(self):
|
||||
super().__init__(value=None)
|
||||
self.value = MemoryArray([])
|
||||
self.children = MemoryArray([])
|
||||
self.leaf = True
|
||||
|
||||
def __str__(self):
|
||||
return "( " + " ".join(str(val) for val in self.value) + " )"
|
||||
|
||||
def isLeaf(self):
|
||||
return self.children.length() == Literal(0)
|
||||
|
||||
class BTree:
|
||||
def __init__(self, order):
|
||||
self.order = Literal(order)
|
||||
self.root = BTreeNode()
|
||||
|
||||
def _insertNonFull(self, node, key):
|
||||
if node.leaf:
|
||||
i = node.value.length()
|
||||
|
||||
# pos for new Key
|
||||
while i > Literal(0) and key < node.value[i.pred()]:
|
||||
i = i.pred()
|
||||
|
||||
# insert key at pos using helper fkt
|
||||
node.value = memArrayInsert(node.value, i, key)
|
||||
else:
|
||||
j = Literal(0)
|
||||
while j < node.value.length() and node.value[j] < key:
|
||||
j = j.succ()
|
||||
|
||||
child = node.children[j].value[0]
|
||||
|
||||
# Splt if full
|
||||
if child.value.length() == Literal(2 * self.order.value - 1):
|
||||
self._splitChild(node, j)
|
||||
if key > node.value[j]:
|
||||
j = j.succ()
|
||||
child = node.children[j].value[0]
|
||||
|
||||
# insert rec in selected Child
|
||||
self._insertNonFull(child, key)
|
||||
|
||||
def insert(self, key):
|
||||
if not isinstance(key, MemoryCell):
|
||||
key = MemoryCell(key)
|
||||
rootRef = self.root
|
||||
if rootRef.value.length() == MemoryCell(2 * self.order.value - 1):
|
||||
newRoot = BTreeNode()
|
||||
newRoot.leaf = False
|
||||
newRoot.children = MemoryArray(["DUMMY"])
|
||||
newRoot.children[Literal(0)].set([rootRef])
|
||||
self._splitChild(newRoot, Literal(0))
|
||||
self.root = newRoot
|
||||
self._insertNonFull(newRoot, key)
|
||||
else:
|
||||
logger.debug("Inserting in non-full");
|
||||
self._insertNonFull(rootRef, key)
|
||||
|
||||
def _splitChild(self, parent: BTreeNode, index: Literal):
|
||||
child = parent.children[index].value[0]
|
||||
|
||||
newRight = BTreeNode()
|
||||
newRight.leaf = child.leaf
|
||||
|
||||
# median index
|
||||
mid = Literal(self.order.value - 1)
|
||||
medianKey = child.value[mid]
|
||||
|
||||
# Childs keys in l and r
|
||||
leftKeys, rightKeys = memArraySplit(child.value, mid)
|
||||
|
||||
child.value = leftKeys
|
||||
|
||||
newRight.value = MemoryArray(rightKeys.length().pred())
|
||||
for j in mrange(rightKeys.length().pred()):
|
||||
newRight.value[j] = rightKeys[j.succ()]
|
||||
|
||||
# if child is not leaf distribute itschildren
|
||||
if not child.leaf:
|
||||
leftChildren, rightChildren = memArraySplit(child.children, mid.succ())
|
||||
child.children = leftChildren
|
||||
newRight.children = rightChildren
|
||||
|
||||
# Insert median key in parent and insert new right as i+1's chld
|
||||
parent.value = memArrayInsert(parent.value, index, medianKey)
|
||||
parent.children = memArrayInsert(parent.children, index.succ(), [newRight])
|
||||
|
||||
def search(self, key) -> BTreeNode:
|
||||
return BTreeNode()
|
||||
|
||||
# Depth-Search
|
||||
def _traversalInOrder(self, node : BTreeNode, result):
|
||||
logger.debug(type(node.value))
|
||||
logger.debug(node.value)
|
||||
for i in mrange(node.value.length()):
|
||||
# RecTerm
|
||||
if not node.isLeaf():
|
||||
self._traversalInOrder(node.children[i].value[0], result)
|
||||
result.append(str(node.value[i]))
|
||||
# RecTerm
|
||||
if not node.isLeaf():
|
||||
self._traversalInOrder(node.children[Literal(len(node.value))].value[0], result)
|
||||
|
||||
def structureTraversal(self, callback):
|
||||
def traverse(node):
|
||||
if node is None:
|
||||
return
|
||||
callback(node)
|
||||
if not node.isLeaf():
|
||||
for i in range(len(node.children)):
|
||||
child = node.children[Literal(i)].value[0]
|
||||
traverse(child)
|
||||
traverse(self.root)
|
||||
|
||||
def traversal(self) -> list:
|
||||
resultAcc = []
|
||||
self._traversalInOrder(self.root, resultAcc)
|
||||
return resultAcc
|
||||
|
||||
def search(self, searchVal : Literal) -> BTreeNode|None:
|
||||
if self.root is None:
|
||||
return None
|
||||
|
||||
current = self.root
|
||||
while not current.isLeaf():
|
||||
# Exit early if we are already way to large for our current Node. Should improve runtime
|
||||
if searchVal > current.value[current.value.length().pred()]:
|
||||
current = current.children[current.value.length()].value[0]
|
||||
continue
|
||||
|
||||
# Go thru every value in the Node until we find anything
|
||||
i = MemoryCell(0)
|
||||
while i < current.value.length() and searchVal > current.value[i]:
|
||||
i = i.succ()
|
||||
|
||||
# return exact match
|
||||
if i < current.value.length() and searchVal == current.value[i]:
|
||||
return current
|
||||
|
||||
# go to appropriate child
|
||||
# If searchVal smaller than first value (i=0) -> leftmost child
|
||||
# if searchVal larger than all values (i=len) -> rightmost child
|
||||
# Otherwise -> child between values
|
||||
current = current.children[Literal(i)].value[0]
|
||||
|
||||
# Final check in leaf node
|
||||
for i in mrange(current.value.length()):
|
||||
if searchVal == current.value[i]:
|
||||
return current
|
||||
|
||||
return None
|
||||
|
||||
def height(self) -> Literal:
|
||||
if self.root is None:
|
||||
return Literal(0)
|
||||
|
||||
current = self.root
|
||||
height = MemoryCell(1)
|
||||
|
||||
while not current.isLeaf():
|
||||
height = height.succ()
|
||||
current = current.children[Literal(0)].value[0]
|
||||
|
||||
return height
|
||||
|
||||
def clbk_graphvizify(toDecorate: BTreeNode, indent=0, line=None):
|
||||
global dotAcc
|
||||
|
||||
values_str = "|".join(str(val) for val in toDecorate.value)
|
||||
dotAcc.node(f'n_{id(toDecorate)}', values_str, shape='record')
|
||||
|
||||
# Create edges for all children
|
||||
if not toDecorate.isLeaf():
|
||||
for i in mrange(toDecorate.children.length()):
|
||||
child = toDecorate.children[i].value[0]
|
||||
dotAcc.edge(f'n_{id(toDecorate)}', f'n_{id(child)}')
|
||||
|
||||
def visualizeBTree(tree: BTree, filename='build/schoeffel_btree'):
|
||||
try:
|
||||
import graphviz
|
||||
except ImportError:
|
||||
raise AssertionError("Graphviz installed? Try commenting visualizeBTree or install 'pip install graphviz'")
|
||||
global dotAcc
|
||||
dotAcc = Digraph()
|
||||
dotAcc.attr(rankdir='TB')
|
||||
dotAcc.attr('node', shape='record', style='filled', fillcolor='lightgray')
|
||||
dotAcc.attr('edge', arrowsize='0.5')
|
||||
|
||||
tree.structureTraversal(clbk_graphvizify)
|
||||
try:
|
||||
dotAcc.render(filename, view=True)
|
||||
except Exception as e:
|
||||
print(f"Could not display graph: {e}")
|
||||
print("Saving graph file without viewing (Running WSL?)")
|
||||
try:
|
||||
dotAcc.render(filename, view=False)
|
||||
except Exception as e:
|
||||
print(f"Could not save graph file: {e}")
|
||||
|
||||
def graphvizify() -> str:
|
||||
result = """digraph {
|
||||
rankdir=TB;
|
||||
node [shape=record, style=filled, fillcolor=lightgray];
|
||||
edge [arrowsize=0.5];
|
||||
"""
|
||||
# Body
|
||||
result += '\n\t'.join(str(item) for item in dotAcc)
|
||||
# Footer
|
||||
result += "\n}"
|
||||
return result
|
||||
|
||||
def analyze_complexity(fn, sizes):
|
||||
"""
|
||||
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
|
||||
|
||||
:param max_sequence_func: Die Funktion, die analysiert wird.
|
||||
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
|
||||
"""
|
||||
for size in sizes:
|
||||
MemoryManager.purge() # Speicher zurücksetzen
|
||||
random_array = MemoryArray.create_random_array(size, -100, 100)
|
||||
for value in random_array:
|
||||
fn(value)
|
||||
MemoryManager.save_stats(size)
|
||||
|
||||
MemoryManager.plot_stats(["cells", "compares", "reads", "writes"])
|
||||
|
||||
if __name__ == '__main__':
|
||||
tree = BTree(order=3)
|
||||
tree.insert(Literal(10));
|
||||
tree.insert(Literal(11));
|
||||
tree.insert(Literal(12));
|
||||
print(tree.traversal());
|
||||
|
||||
binTreeData = MemoryArray.create_array_from_file("data/seq0.txt")
|
||||
j = 0
|
||||
for value in binTreeData:
|
||||
tree.insert(value)
|
||||
j = j +1
|
||||
# Uncomment to view progress in insertion at every step saved as PDF
|
||||
# visualizeBTree(tree, f"build/schoeffel_btree{j}")
|
||||
|
||||
logger.debug(tree.root.children)
|
||||
# Graphvizify Wrapper
|
||||
visualizeBTree(tree)
|
||||
print(f"InOrder Traversal: {tree.traversal()}")
|
||||
print(tree.search(Literal(50)))
|
||||
print(tree.height())
|
||||
|
||||
tree3 = BTree(order=3)
|
||||
tree5 = BTree(order=5)
|
||||
binTreeData = MemoryArray.create_array_from_file("data/seq2.txt")
|
||||
for value in binTreeData:
|
||||
tree3.insert(value)
|
||||
tree5.insert(value)
|
||||
|
||||
print(f"Order three for Seq2 produces height {tree3.height()}")
|
||||
print(f"Order five for Seq2 produces height {tree5.height()}")
|
||||
order3 = tree3.traversal()
|
||||
order5 = tree5.traversal()
|
||||
assert all(int(order3[i]) <= int(order3[i+1]) for i in range(len(order3)-1)), "Order3 not in ascending order"
|
||||
assert all(int(order5[i]) <= int(order5[i+1]) for i in range(len(order5)-1)), "Order5 not in ascending order"
|
||||
print(tree3.search(Literal(0)))
|
||||
print(tree5.search(Literal(0)))
|
||||
|
||||
|
||||
MemoryManager.purge()
|
||||
analyze_complexity(tree3.insert, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
|
||||
# tree.tree_structure_traversal(clbk_graphvizify)
|
||||
# print(graphvizify())
|
||||
|
266
schoeffelbe/pr07.py
Normal file
266
schoeffelbe/pr07.py
Normal file
@ -0,0 +1,266 @@
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
import time
|
||||
|
||||
def timeMS(func, *args, **kwargs):
|
||||
startTime = time.perf_counter()
|
||||
result = func(*args, **kwargs)
|
||||
endTime = time.perf_counter()
|
||||
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
|
||||
print(f"{func.__name__} took {elapsedMS:.2f} ms")
|
||||
return result
|
||||
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.literal import Literal
|
||||
from utils.memory_range import mrange
|
||||
from utils.memory_manager import MemoryManager
|
||||
|
||||
def getHashFunction(m : Literal):
|
||||
# Hash function using golden ratio
|
||||
# Golden ratio (sqrt(5) - 1) / 2; Allowed to to this way as it is a one-time calc ^^
|
||||
A : Literal = Literal((5 ** 0.5 - 1) / 2)
|
||||
def hashFunctionGoldenRatio(key : Literal|MemoryCell) -> Literal:
|
||||
if not isinstance(key, MemoryCell):
|
||||
key = MemoryCell(key)
|
||||
|
||||
assert(isinstance(key, MemoryCell))
|
||||
|
||||
product : Literal = key * A
|
||||
|
||||
# discard decimal part
|
||||
intPart = Literal(int(product.value))
|
||||
fracPart = MemoryCell(product) - intPart
|
||||
|
||||
# Scale by m
|
||||
hashVal = Literal(int(fracPart.value * m.value))
|
||||
|
||||
return hashVal
|
||||
|
||||
return hashFunctionGoldenRatio
|
||||
|
||||
# Probing function h + i + 5i^2
|
||||
def getProbingFunction(hashFunc, m: Literal, probingMethod="quadratic"):
|
||||
def quadraticProbe(key, i: Literal|MemoryCell):
|
||||
if not isinstance(i, MemoryCell):
|
||||
i = MemoryCell(i)
|
||||
|
||||
# TODO Can save operation/allocation of MemCEll here, but for better flow leave this way
|
||||
hPrime_x = MemoryCell(hashFunc(key))
|
||||
iSquared = MemoryCell(i * i)
|
||||
|
||||
result = MemoryCell(MemoryCell(hPrime_x + i) + iSquared * Literal(5)) % m
|
||||
return result
|
||||
|
||||
|
||||
def symmetricProbe(key, i: Literal|MemoryCell):
|
||||
if not isinstance(i, MemoryCell):
|
||||
i = MemoryCell(i)
|
||||
|
||||
hPrime_x = MemoryCell(hashFunc(key))
|
||||
iSquared = MemoryCell(i * i)
|
||||
|
||||
if i % Literal(2) == Literal(0):
|
||||
result = MemoryCell(hPrime_x + iSquared) % m
|
||||
else:
|
||||
result = MemoryCell(hPrime_x - iSquared) % m
|
||||
return result
|
||||
|
||||
if probingMethod == "symmetric":
|
||||
return symmetricProbe
|
||||
else:
|
||||
return quadraticProbe
|
||||
|
||||
class HashTable:
|
||||
# marker for deleted entries
|
||||
DELETED = MemoryCell("DELETED")
|
||||
|
||||
def __init__(self, size, probingMethod="quadratic"):
|
||||
if not isinstance (size, Literal|MemoryCell):
|
||||
size = Literal(size)
|
||||
self.size = size
|
||||
|
||||
self.table = MemoryArray(self.size)
|
||||
for i in mrange(self.size):
|
||||
self.table[i].set(None)
|
||||
|
||||
self.count = Literal(0) # Count of actual elements
|
||||
self.deletedCount = Literal(0) # Count of deleted slots
|
||||
|
||||
# Initialize hash and probe function
|
||||
self.hashFunc = getHashFunction(self.size)
|
||||
self.probe = getProbingFunction(self.hashFunc, self.size, probingMethod)
|
||||
|
||||
def insert(self, value):
|
||||
if not isinstance(value, MemoryCell):
|
||||
value = MemoryCell(value)
|
||||
|
||||
# Check if table is full (considering deleted entries asd well as normal count)
|
||||
if (MemoryCell(self.count) + self.deletedCount) == self.size:
|
||||
logger.info(f"Failed to insert {value} - table is full")
|
||||
return False
|
||||
|
||||
i = Literal(0)
|
||||
while i < self.size:
|
||||
# Get our Index via the ProbingFkt
|
||||
index = self.probe(value, i)
|
||||
|
||||
# Empty slot or deleted marker found
|
||||
# Need the get here as we want to compare the value (none) to None.
|
||||
# For the rest normal should be fine
|
||||
if self.table[index].get() is None or self.table[index] == self.DELETED:
|
||||
if self.table[index] == self.DELETED:
|
||||
# Were on a cell that was deleted. Now we write in it, but decrease delCount
|
||||
self.deletedCount = self.deletedCount.pred()
|
||||
|
||||
self.table[index] = value
|
||||
self.count = self.count.succ() # Inc fillcounter
|
||||
logger.debug(f"value {value} was inserted successfully at {index}, count is now at \
|
||||
{self.count}|{self.deletedCount}");
|
||||
return True
|
||||
|
||||
# Value already exists
|
||||
# TODO DISCUSSION Wouldnt it defcato be a successfull insert if we are already in our hashmap? Maybe then return true here?
|
||||
if self.table[index] == value:
|
||||
logger.info(f"value {value} already exits in the table");
|
||||
return False
|
||||
|
||||
i = i.succ()
|
||||
|
||||
# Couldn't find a slot even though count < size
|
||||
logger.info(f"Failed to insert {value} - table is full")
|
||||
return False
|
||||
|
||||
def search(self, value):
|
||||
if not isinstance(value, MemoryCell):
|
||||
value = MemoryCell(value)
|
||||
|
||||
i = Literal(0)
|
||||
while i < self.size:
|
||||
index = self.probe(value, i)
|
||||
|
||||
# Empty slot found - value doesn't exist
|
||||
if self.table[index].get() is None:
|
||||
return False
|
||||
|
||||
# Value found
|
||||
if self.table[index] == value:
|
||||
return True
|
||||
|
||||
# If deleted marker or different value, continue
|
||||
i = i.succ()
|
||||
|
||||
return False
|
||||
|
||||
def delete(self, value):
|
||||
if not isinstance(value, MemoryCell):
|
||||
value = MemoryCell(value)
|
||||
|
||||
i = Literal(0)
|
||||
while i < self.size:
|
||||
index = self.probe(value, i)
|
||||
|
||||
# Empty slot found - value doesn't exist
|
||||
if self.table[index].get() is None:
|
||||
return False
|
||||
|
||||
# Value found - mark as deleted
|
||||
if self.table[index] == value:
|
||||
# TODO Check wheter it is .set() or = here
|
||||
self.table[index].set(self.DELETED)
|
||||
self.count = self.count.pred()
|
||||
self.deletedCount = self.deletedCount.succ()
|
||||
return True
|
||||
|
||||
i = i.succ()
|
||||
|
||||
return False
|
||||
|
||||
def __str__(self):
|
||||
result = "["
|
||||
for i in mrange(self.size):
|
||||
if self.table[i].get() is None:
|
||||
result += "None"
|
||||
else:
|
||||
result += str(self.table[i])
|
||||
|
||||
if i < self.size.pred():
|
||||
result += ", "
|
||||
|
||||
result += "]"
|
||||
return result
|
||||
|
||||
def alpha(self):
|
||||
# load factor (count / size)
|
||||
return Literal(self.count.value / self.size.value)
|
||||
|
||||
if __name__ == "__main__":
|
||||
table = HashTable(20)
|
||||
seq0Data = MemoryArray.create_array_from_file("data/seq0.txt")
|
||||
|
||||
print(f"Hash table before inserting seq0.txt: {table}")
|
||||
|
||||
print("Inserting values from seq0.txt...")
|
||||
for value in seq0Data:
|
||||
table.insert(value)
|
||||
|
||||
strFirst = str(table.table[Literal(0)])
|
||||
|
||||
# delete first 5 entries and then try to reinsert them
|
||||
for i in mrange(5):
|
||||
table.delete(seq0Data[i])
|
||||
|
||||
assert(table.deletedCount == Literal(5)), "Deleted count should be 5"
|
||||
for i in mrange(5):
|
||||
table.insert(seq0Data[i])
|
||||
|
||||
assert(table.deletedCount == Literal(0)), "Deleted count should be 0 after reinserting"
|
||||
assert(strFirst == str(table.table[Literal(0)])), "First entry should be the same as before"
|
||||
print(f"Hashtable after inserting seq0.txt: {table}")
|
||||
print(f"Load factor after inserting: {table.alpha()}")
|
||||
|
||||
print("Deleting 52...")
|
||||
table.delete(Literal(52))
|
||||
print(f"Hash table after deletion: {table}")
|
||||
print(f"New load factr: {table.alpha()}")
|
||||
|
||||
print("\nInserting value 24...")
|
||||
table.insert(Literal(24))
|
||||
print(f"Hash table after inserting 24: {table}")
|
||||
|
||||
table90 = HashTable(90)
|
||||
seq1Data = MemoryArray.create_array_from_file("data/seq1.txt")
|
||||
|
||||
print(f"Inserting values from seq1.txt into table with size 90...")
|
||||
insertedCount = Literal(0)
|
||||
for value in seq1Data:
|
||||
if table90.insert(value):
|
||||
insertedCount = insertedCount.succ()
|
||||
|
||||
print(f"Successfully inserted {insertedCount} out of {Literal(len(seq1Data))} values")
|
||||
print(f"Load factor: {table90.alpha()}")
|
||||
|
||||
table89 = HashTable(89)
|
||||
|
||||
print(f"Inserting values from seq1.txt into table with 89...")
|
||||
insertedCount = Literal(0)
|
||||
for value in seq1Data:
|
||||
if table89.insert(value):
|
||||
insertedCount = insertedCount.succ()
|
||||
|
||||
print(f"Successfully inserted {insertedCount} out of {Literal(len(seq1Data))} values")
|
||||
print(f"Load factor: {table89.alpha()}")
|
||||
|
||||
tableSymmetric = HashTable(90, probingMethod="symmetric")
|
||||
print(f"Inserting values from seq1.txt into table with size 90 and symmetric probing...")
|
||||
insertedCount = Literal(0)
|
||||
for value in seq1Data:
|
||||
if tableSymmetric.insert(value):
|
||||
insertedCount = insertedCount.succ()
|
||||
|
||||
print(f"Successfully inserted {insertedCount} out of {Literal(len(seq1Data))} values")
|
||||
print(f"Load factor: {tableSymmetric.alpha()}")
|
||||
|
193
schoeffelbe/priorityQueue.py
Normal file
193
schoeffelbe/priorityQueue.py
Normal file
@ -0,0 +1,193 @@
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.memory_cell import MemoryCell
|
||||
from utils.literal import Literal
|
||||
from utils.constants import MIN_VALUE
|
||||
from utils.memory_range import mrange
|
||||
|
||||
# Impl of MemoryArray says we cant add our own Datatypes beside Literal and List
|
||||
# BUUUUT we can just wrap our Datatype in a List :-)
|
||||
# We store them in a MemoryArray internaly tho anyhow so we increment our Counters for the RAM
|
||||
class HeapEntry:
|
||||
def __init__(self, item, priority=1):
|
||||
self.data = MemoryArray(Literal(2))
|
||||
# 0: Content, 1: Prio
|
||||
self.data[Literal(0)] = Literal(item)
|
||||
self.data[Literal(1)] = Literal(priority)
|
||||
|
||||
def getItem(self):
|
||||
return self.data[Literal(0)]
|
||||
|
||||
def getPriority(self):
|
||||
return self.data[Literal(1)]
|
||||
|
||||
def setPriority(self, priority):
|
||||
self.data[Literal(1)] = Literal(priority)
|
||||
|
||||
def __lt__(self, other):
|
||||
if other is None:
|
||||
return True
|
||||
if isinstance(other, (int, float)):
|
||||
return self.getPriority().value > other
|
||||
return self.getPriority() < other.getPriority()
|
||||
|
||||
def __gt__(self, other):
|
||||
if other is None:
|
||||
return False
|
||||
if isinstance(other, (int, float)):
|
||||
return self.getPriority().value < other
|
||||
return self.getPriority() > other.getPriority()
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.getPriority() == other.getPriority()
|
||||
|
||||
def __str__(self):
|
||||
return f"({self.getItem()}, prio={self.getPriority()})"
|
||||
|
||||
class PriorityQueue:
|
||||
def __init__(self, max_size : Literal = Literal(100)):
|
||||
self.heap = MemoryArray(max_size)
|
||||
# Add uninitialized HeapEntry Values so the Adds/Compares do not fail on emtpy stack.
|
||||
# Would have to switch to MIN_VALUE if we switch what is a "Higher" Prio
|
||||
for i in mrange(max_size.value):
|
||||
self.heap[i].set([HeapEntry(MIN_VALUE, MIN_VALUE)])
|
||||
self.size = MemoryCell(0)
|
||||
|
||||
def parent(self, i: Literal) -> Literal:
|
||||
return MemoryCell(i.pred()) // Literal(2)
|
||||
|
||||
def leftChild(self, i: Literal) -> Literal:
|
||||
return MemoryCell(MemoryCell(2) * i) + Literal(1)
|
||||
|
||||
def rightChild(self, i: Literal) -> Literal:
|
||||
return MemoryCell(MemoryCell(2) * i) + Literal(2)
|
||||
|
||||
# Swap the Lists -> Therefore get the value which is the List and then Set it again
|
||||
def swap(self, i: Literal, j: Literal):
|
||||
tmp_i = self.heap[i].value
|
||||
tmp_j = self.heap[j].value
|
||||
self.heap[i].set(tmp_j)
|
||||
self.heap[j].set(tmp_i)
|
||||
|
||||
def maxHeapify(self, i: Literal):
|
||||
left = self.leftChild(i)
|
||||
right = self.rightChild(i)
|
||||
largest = i
|
||||
|
||||
if left < Literal(self.size.value) and self.heap[left].value[0] > self.heap[largest].value[0]:
|
||||
largest = left
|
||||
|
||||
if right < Literal(self.size.value) and self.heap[right].value[0] > self.heap[largest].value[0]:
|
||||
largest = right
|
||||
|
||||
if largest != i:
|
||||
self.swap(i, largest)
|
||||
self.maxHeapify(largest)
|
||||
|
||||
def insert(self, entry : HeapEntry):
|
||||
if self.size >= self.heap.length():
|
||||
raise IndexError("Heap full")
|
||||
|
||||
i = self.size
|
||||
self.heap[i].set([entry])
|
||||
|
||||
while i > Literal(0) and self.heap[self.parent(i)].value[0] < self.heap[i].value[0]:
|
||||
self.swap(i, self.parent(i))
|
||||
i = self.parent(i)
|
||||
|
||||
self.size += Literal(1)
|
||||
|
||||
def pop(self):
|
||||
if self.isEmpty():
|
||||
raise IndexError("Queue is empty!")
|
||||
|
||||
max_item = self.heap[Literal(0)].value[0]
|
||||
|
||||
self.heap[Literal(0)] = self.heap[self.size - Literal(1)]
|
||||
self.size -= Literal(1)
|
||||
|
||||
self.maxHeapify(Literal(0))
|
||||
|
||||
return max_item
|
||||
|
||||
def peek(self):
|
||||
if self.isEmpty():
|
||||
raise IndexError("Queue is empty")
|
||||
return self.heap[Literal(0)].value[0]
|
||||
|
||||
def isEmpty(self):
|
||||
return self.size == Literal(0)
|
||||
|
||||
def __len__(self):
|
||||
return self.size
|
||||
|
||||
def __str__(self):
|
||||
entries = []
|
||||
for i in mrange(self.size.value):
|
||||
entry = self.heap[i].value[0]
|
||||
if entry.getItem() != MIN_VALUE:
|
||||
entries.append(str(entry))
|
||||
return "[" + ", ".join(entries) + "]"
|
||||
|
||||
def testQueueRandom(number: int):
|
||||
import random
|
||||
import string
|
||||
|
||||
pq = PriorityQueue(Literal(number))
|
||||
|
||||
entries = []
|
||||
for _ in range(number):
|
||||
value = ''.join(random.choices(string.ascii_uppercase + string.digits, k=3))
|
||||
priority = random.randint(1, 100)
|
||||
entry = HeapEntry(value, priority)
|
||||
entries.append(entry)
|
||||
pq.insert(entry)
|
||||
|
||||
print(pq)
|
||||
for entry in entries:
|
||||
print(f"Unprioritized: {entry}")
|
||||
|
||||
while not pq.isEmpty():
|
||||
print(pq.pop())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Proof of Concept
|
||||
testEntry = HeapEntry("A", 2)
|
||||
print(testEntry)
|
||||
testArray = MemoryArray([testEntry])
|
||||
print(testArray)
|
||||
print(testArray[Literal(0)])
|
||||
|
||||
# Queue Testing
|
||||
pq = PriorityQueue()
|
||||
try:
|
||||
pq.pop()
|
||||
assert False, "Queue should be empty"
|
||||
except IndexError:
|
||||
pass
|
||||
assert(pq.isEmpty() and pq.size == Literal(0))
|
||||
entry = HeapEntry("A", 1)
|
||||
pq.insert(entry)
|
||||
assert(not pq.isEmpty() and pq.size == Literal(1))
|
||||
pq.peek()
|
||||
assert(not pq.isEmpty())
|
||||
assert(pq.pop() == HeapEntry("A", 1))
|
||||
assert(pq.isEmpty())
|
||||
pq.insert(HeapEntry("C", 3))
|
||||
pq.insert(HeapEntry("B", 2))
|
||||
pq.insert(HeapEntry("A", 1))
|
||||
assert(pq.size == Literal(3))
|
||||
assert(pq.pop() == HeapEntry("C", 3))
|
||||
assert(pq.pop() == HeapEntry("B", 2))
|
||||
assert(pq.pop() == HeapEntry("A", 1))
|
||||
pq.insert(HeapEntry("A", 1))
|
||||
pq.insert(HeapEntry("C", 3))
|
||||
pq.insert(HeapEntry("B", 2))
|
||||
pq.insert(HeapEntry(42, 4))
|
||||
pq.insert(HeapEntry(42, 1))
|
||||
pq.insert(HeapEntry("C", 2))
|
||||
print(pq)
|
||||
while not pq.isEmpty():
|
||||
print(pq.pop())
|
||||
|
||||
testQueueRandom(100)
|
@ -1,40 +0,0 @@
|
||||
import heapq
|
||||
|
||||
class PriorityQueue:
|
||||
def __init__(self):
|
||||
self.heap = []
|
||||
self.entry_finder = {} # map: item -> [priority, item]
|
||||
self.REMOVED = '<removed>'
|
||||
self.counter = 0 # unique sequence count to break ties
|
||||
|
||||
def add_or_update(self, item, priority):
|
||||
if item in self.entry_finder:
|
||||
self.remove(item)
|
||||
count = self.counter
|
||||
entry = [priority, count, item]
|
||||
self.entry_finder[item] = entry
|
||||
heapq.heappush(self.heap, entry)
|
||||
self.counter += 1
|
||||
|
||||
def remove(self, item):
|
||||
entry = self.entry_finder.pop(item)
|
||||
entry[-1] = self.REMOVED # mark as removed
|
||||
|
||||
def pop(self):
|
||||
while self.heap:
|
||||
priority, count, item = heapq.heappop(self.heap)
|
||||
if item != self.REMOVED:
|
||||
del self.entry_finder[item]
|
||||
return item, priority
|
||||
return None
|
||||
|
||||
if __name__ == "__main__":
|
||||
pq = PriorityQueue()
|
||||
pq.add_or_update('task1', 1)
|
||||
pq.add_or_update('task2', float('inf'))
|
||||
pq.add_or_update('task3', float('inf'))
|
||||
|
||||
print(pq.pop()) # Should print ('task1', 1)
|
||||
pq.add_or_update('task2', 0) # Update priority of 'task1'
|
||||
print(pq.pop()) # Should print ('task2', 0)
|
||||
print(pq.pop()) # Should print ('task3', 3)
|
@ -1,4 +1,6 @@
|
||||
from vorlesung.L05_binaere_baeume.bin_tree_node import BinaryTreeNode
|
||||
from utils.memory_manager import MemoryManager
|
||||
from utils.memory_array import MemoryArray
|
||||
from utils.project_dir import get_path
|
||||
from datetime import datetime
|
||||
import graphviz
|
||||
|
@ -1,45 +0,0 @@
|
||||
from vorlesung.L08_graphen.graph import Graph, AdjacencyMatrixGraph
|
||||
from utils.project_dir import get_path
|
||||
|
||||
graph = AdjacencyMatrixGraph()
|
||||
start = ""
|
||||
end = ""
|
||||
|
||||
def read_file(filename: str = "data/aoc2212.txt"):
|
||||
"""Read a file and return the content as a string."""
|
||||
|
||||
def adjust_char(char):
|
||||
"""Adjust character for comparison."""
|
||||
if char == 'S':
|
||||
return 'a'
|
||||
elif char == 'E':
|
||||
return 'z'
|
||||
return char
|
||||
|
||||
global start, end
|
||||
with open(get_path(filename), "r") as file:
|
||||
quest = file.read().strip().splitlines()
|
||||
for row, line in enumerate(quest):
|
||||
for col, char in enumerate(line):
|
||||
label = f"{row},{col}"
|
||||
graph.insert_vertex(label)
|
||||
if char == "S":
|
||||
start = label
|
||||
if char == "E":
|
||||
end = label
|
||||
for row, line in enumerate(quest):
|
||||
for col, char in enumerate(line):
|
||||
for neighbor in [(row - 1, col), (row, col - 1), (row + 1, col), (row, col + 1)]:
|
||||
if 0 <= neighbor[0] < len(quest) and 0 <= neighbor[1] < len(line):
|
||||
if ord(adjust_char(quest[neighbor[0]][neighbor[1]])) <= ord(adjust_char(char)) + 1:
|
||||
label1 = f"{row},{col}"
|
||||
label2 = f"{neighbor[0]},{neighbor[1]}"
|
||||
graph.connect(label1, label2)
|
||||
|
||||
|
||||
# Lösung des Adventskalenders 2022, Tag 12
|
||||
read_file("data/aoc2212test.txt")
|
||||
graph.graph()
|
||||
distance_map, predecessor_map = graph.bfs(start)
|
||||
print(distance_map[graph.get_vertex(end)])
|
||||
print(graph.path(end, predecessor_map))
|
@ -1,366 +0,0 @@
|
||||
from collections import deque
|
||||
from typing import List
|
||||
from enum import Enum
|
||||
import graphviz
|
||||
import math
|
||||
import heapq
|
||||
from datetime import datetime
|
||||
from utils.project_dir import get_path
|
||||
from utils.priority_queue import PriorityQueue
|
||||
from vorlesung.L09_mst.disjoint import DisjointValue
|
||||
|
||||
|
||||
class NodeColor(Enum):
|
||||
"""Enumeration for node colors in a graph traversal."""
|
||||
WHITE = 1 # WHITE: not visited
|
||||
GRAY = 2 # GRAY: visited but not all neighbors visited
|
||||
BLACK = 3 # BLACK: visited and all neighbors visited
|
||||
|
||||
|
||||
class Vertex:
|
||||
"""A vertex in a graph."""
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
|
||||
def __str__(self):
|
||||
return str(self.value)
|
||||
|
||||
def __repr__(self):
|
||||
return f"Vertex({self.value})"
|
||||
|
||||
|
||||
|
||||
class Graph:
|
||||
"""A graph."""
|
||||
def insert_vertex(self, name: str):
|
||||
raise NotImplementedError("Please implement this method in subclass")
|
||||
|
||||
def connect(self, name1: str, name2: str, weight: float = 1):
|
||||
raise NotImplementedError("Please implement this method in subclass")
|
||||
|
||||
def all_vertices(self) -> List[Vertex]:
|
||||
raise NotImplementedError("Please implement this method in subclass")
|
||||
|
||||
def get_vertex(self, name: str) -> Vertex:
|
||||
raise NotImplementedError("Please implement this method in subclass")
|
||||
|
||||
def get_adjacent_vertices(self, name: str) -> List[Vertex]:
|
||||
raise NotImplementedError("Please implement this method in subclass")
|
||||
|
||||
def get_adjacent_vertices_with_weight(self, name: str) -> List[tuple[Vertex, float]]:
|
||||
raise NotImplementedError("Please implement this method in subclass")
|
||||
|
||||
def all_edges(self) -> List[tuple[str, str, float]]:
|
||||
raise NotImplementedError("Please implement this method in subclass")
|
||||
|
||||
def bfs(self, start_name: str):
|
||||
"""
|
||||
Perform a breadth-first search starting at the given vertex.
|
||||
:param start_name: the name of the vertex to start at
|
||||
:return: a tuple of two dictionaries, the first mapping vertices to distances from the start vertex,
|
||||
the second mapping vertices to their predecessors in the traversal tree
|
||||
"""
|
||||
|
||||
color_map = {} # maps vertices to their color
|
||||
distance_map = {} # maps vertices to their distance from the start vertex
|
||||
predecessor_map = {} # maps vertices to their predecessor in the traversal tree
|
||||
|
||||
# Initialize the maps
|
||||
for vertex in self.all_vertices():
|
||||
color_map[vertex] = NodeColor.WHITE
|
||||
distance_map[vertex] = None
|
||||
predecessor_map[vertex] = None
|
||||
|
||||
# Start at the given vertex
|
||||
start_node = self.get_vertex(start_name)
|
||||
color_map[start_node] = NodeColor.GRAY
|
||||
distance_map[start_node] = 0
|
||||
|
||||
# Initialize the queue with the start vertex
|
||||
queue = deque()
|
||||
queue.append(start_node)
|
||||
|
||||
# Process the queue
|
||||
while len(queue) > 0:
|
||||
vertex = queue.popleft()
|
||||
for dest in self.get_adjacent_vertices(vertex.value):
|
||||
if color_map[dest] == NodeColor.WHITE:
|
||||
color_map[dest] = NodeColor.GRAY
|
||||
distance_map[dest] = distance_map[vertex] + 1
|
||||
predecessor_map[dest] = vertex
|
||||
queue.append(dest)
|
||||
color_map[vertex] = NodeColor.BLACK
|
||||
|
||||
# Return the distance and predecessor maps
|
||||
return distance_map, predecessor_map
|
||||
|
||||
def dfs(self):
|
||||
"""
|
||||
Perform a depth-first search starting at the first vertex.
|
||||
:return: a tuple of two dictionaries, the first mapping vertices to distances from the start vertex,
|
||||
the second mapping vertices to their predecessors in the traversal tree
|
||||
"""
|
||||
color_map : dict[Vertex, NodeColor]= {}
|
||||
enter_map : dict[Vertex, int] = {}
|
||||
leave_map : dict[Vertex, int] = {}
|
||||
predecessor_map : dict[Vertex, Vertex | None] = {}
|
||||
white_vertices = set(self.all_vertices())
|
||||
time_counter = 0
|
||||
|
||||
def dfs_visit(vertex):
|
||||
nonlocal time_counter
|
||||
color_map[vertex] = NodeColor.GRAY
|
||||
white_vertices.remove(vertex)
|
||||
time_counter += 1
|
||||
enter_map[vertex] = time_counter
|
||||
for dest in self.get_adjacent_vertices(vertex.value):
|
||||
if color_map[dest] == NodeColor.WHITE:
|
||||
predecessor_map[dest] = vertex
|
||||
dfs_visit(dest)
|
||||
color_map[vertex] = NodeColor.BLACK
|
||||
time_counter += 1
|
||||
leave_map[vertex] = time_counter
|
||||
|
||||
# Initialize the maps
|
||||
for vertex in self.all_vertices():
|
||||
color_map[vertex] = NodeColor.WHITE
|
||||
predecessor_map[vertex] = None
|
||||
|
||||
while white_vertices:
|
||||
v = white_vertices.pop()
|
||||
dfs_visit(v)
|
||||
|
||||
return enter_map, leave_map, predecessor_map
|
||||
|
||||
|
||||
def path(self, destination, map):
|
||||
"""
|
||||
Compute the path from the start vertex to the given destination vertex.
|
||||
The map parameter is the predecessor map
|
||||
"""
|
||||
path = []
|
||||
destination_node = self.get_vertex(destination)
|
||||
while destination_node is not None:
|
||||
path.insert(0, destination_node.value)
|
||||
destination_node = map[destination_node]
|
||||
return path
|
||||
|
||||
def graph(self, filename: str = "Graph"):
|
||||
dot = graphviz.Digraph( name=filename,
|
||||
node_attr={"fontname": "Arial"},
|
||||
format="pdf" )
|
||||
for vertex in self.all_vertices():
|
||||
dot.node(str(id(vertex)), label=str(vertex.value))
|
||||
for edge in self.all_edges():
|
||||
dot.edge(str(id(self.get_vertex(edge[0]))), str(id(self.get_vertex(edge[1]))), label=str(edge[2]))
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
filename = f"{filename}_{timestamp}.gv"
|
||||
filename = get_path(filename)
|
||||
dot.render(filename)
|
||||
|
||||
def dijkstra(self, start_name: str) -> tuple[dict[Vertex, float], dict[Vertex, Vertex | None]]:
|
||||
"""
|
||||
Führt den Dijkstra-Algorithmus für kürzeste Pfade durch, implementiert mit Knotenfarben.
|
||||
|
||||
Args:
|
||||
start_name: Name des Startknotens
|
||||
|
||||
Returns:
|
||||
Ein Tupel aus zwei Dictionaries:
|
||||
- distance_map: Abbildung von Knoten auf ihre kürzeste Distanz vom Startknoten
|
||||
- predecessor_map: Abbildung von Knoten auf ihre Vorgänger im kürzesten Pfad
|
||||
"""
|
||||
|
||||
def relax(vertex, dest, weight):
|
||||
"""
|
||||
Entspannt die Kante zwischen vertex und dest.
|
||||
Aktualisiert die Distanz und den Vorgänger, wenn ein kürzerer Pfad gefunden wird.
|
||||
"""
|
||||
if distance_map[vertex] + weight < distance_map[dest]:
|
||||
distance_map[dest] = distance_map[vertex] + weight
|
||||
predecessor_map[dest] = vertex
|
||||
queue.add_or_update(dest, distance_map[dest])
|
||||
|
||||
# Initialisierung der Maps
|
||||
distance_map = {} # Speichert kürzeste Distanzen
|
||||
predecessor_map = {} # Speichert Vorgänger
|
||||
|
||||
# Initialisiere alle Knoten
|
||||
queue = PriorityQueue()
|
||||
for vertex in self.all_vertices():
|
||||
distance_map[vertex] = float('inf') # Initiale Distanz unendlich
|
||||
predecessor_map[vertex] = None # Initialer Vorgänger None
|
||||
queue.add_or_update(vertex, distance_map[vertex]) # Füge Knoten zur Prioritätswarteschlange hinzu
|
||||
|
||||
|
||||
|
||||
# Setze Startknoten
|
||||
start_node = self.get_vertex(start_name)
|
||||
distance_map[start_node] = 0
|
||||
queue.add_or_update(start_node, distance_map[start_node])
|
||||
|
||||
while True:
|
||||
entry = queue.pop()
|
||||
if entry is None:
|
||||
break
|
||||
vertex = entry[0]
|
||||
for dest, weight in self.get_adjacent_vertices_with_weight(vertex.value):
|
||||
relax(vertex, dest, weight)
|
||||
return distance_map, predecessor_map
|
||||
|
||||
def mst_prim(self, start_name: str = None):
|
||||
""" Compute the minimum spanning tree of the graph using Prim's algorithm. """
|
||||
|
||||
distance_map = {} # maps vertices to their current distance from the spanning tree
|
||||
parent_map = {} # maps vertices to their predecessor in the spanning tree
|
||||
|
||||
Vertex.__lt__ = lambda self, other: distance_map[self] < distance_map[other]
|
||||
|
||||
queue = []
|
||||
|
||||
if start_name is None:
|
||||
start_name = self.all_vertices()[0].value
|
||||
|
||||
# Initialize the maps
|
||||
for vertex in self.all_vertices():
|
||||
distance_map[vertex] = 0 if vertex.value == start_name else math.inf
|
||||
parent_map[vertex] = None
|
||||
queue.append(vertex)
|
||||
|
||||
heapq.heapify(queue) # Convert the list into a heap
|
||||
|
||||
# Process the queue
|
||||
cost = 0 # The cost of the minimum spanning tree
|
||||
while len(queue) > 0:
|
||||
vertex = heapq.heappop(queue)
|
||||
cost += distance_map[vertex] # Add the cost of the edge to the minimum spanning tree
|
||||
for (dest, w) in self.get_adjacent_vertices_with_weight(vertex.value):
|
||||
if dest in queue and distance_map[dest] > w:
|
||||
# Update the distance and parent maps
|
||||
queue.remove(dest)
|
||||
distance_map[dest] = w
|
||||
parent_map[dest] = vertex
|
||||
queue.append(dest) # Add the vertex back to the queue
|
||||
heapq.heapify(queue) # Re-heapify the queue
|
||||
|
||||
# Return the distance and predecessor maps
|
||||
return parent_map, cost
|
||||
|
||||
def mst_kruskal(self, start_name: str = None):
|
||||
""" Compute the minimum spanning tree of the graph using Kruskal's algorithm. """
|
||||
|
||||
cost = 0
|
||||
result = []
|
||||
edges = self.all_edges()
|
||||
|
||||
# Create a disjoint set for each vertex
|
||||
vertex_map = {v.value: DisjointValue(v) for v in self.all_vertices()}
|
||||
|
||||
# Sort the edges by weight
|
||||
edges.sort(key=lambda edge: edge[2])
|
||||
|
||||
# Process the edges
|
||||
for edge in edges:
|
||||
start_name, end_name, weight = edge
|
||||
# Check if the edge creates a cycle
|
||||
if not vertex_map[start_name].same_set(vertex_map[end_name]):
|
||||
result.append(edge)
|
||||
vertex_map[start_name].union(vertex_map[end_name])
|
||||
cost += weight
|
||||
|
||||
return result, cost
|
||||
|
||||
|
||||
class AdjacencyListGraph(Graph):
|
||||
"""A graph implemented as an adjacency list."""
|
||||
def __init__(self):
|
||||
self.adjacency_map = {} # maps vertex names to lists of adjacent vertices
|
||||
self.vertex_map = {} # maps vertex names to vertices
|
||||
|
||||
def insert_vertex(self, name: str):
|
||||
if name not in self.vertex_map:
|
||||
self.vertex_map[name] = Vertex(name)
|
||||
if name not in self.adjacency_map:
|
||||
self.adjacency_map[name] = []
|
||||
|
||||
def connect(self, name1: str, name2: str, weight: float = 1):
|
||||
adjacency_list = self.adjacency_map[name1]
|
||||
dest = self.vertex_map[name2]
|
||||
adjacency_list.append((dest, weight))
|
||||
|
||||
def all_vertices(self) -> List[Vertex]:
|
||||
return list(self.vertex_map.values())
|
||||
|
||||
def get_vertex(self, name: str) -> Vertex:
|
||||
return self.vertex_map[name]
|
||||
|
||||
def get_adjacent_vertices(self, name: str) -> List[Vertex]:
|
||||
return list(map(lambda x: x[0], self.adjacency_map[name]))
|
||||
|
||||
def get_adjacent_vertices_with_weight(self, name: str) -> List[tuple[Vertex, float]]:
|
||||
return self.adjacency_map[name]
|
||||
|
||||
def all_edges(self) -> List[tuple[str, str, float]]:
|
||||
result = []
|
||||
for name in self.adjacency_map:
|
||||
for (dest, weight) in self.adjacency_map[name]:
|
||||
result.append((name, dest.value, weight))
|
||||
return result
|
||||
|
||||
|
||||
class AdjacencyMatrixGraph(Graph):
|
||||
"""A graph implemented as an adjacency matrix."""
|
||||
def __init__(self):
|
||||
self.index_map = {} # maps vertex names to indices
|
||||
self.vertex_list = [] # list of vertices
|
||||
self.adjacency_matrix = [] # adjacency matrix
|
||||
|
||||
def insert_vertex(self, name: str):
|
||||
if name not in self.index_map:
|
||||
self.index_map[name] = len(self.vertex_list)
|
||||
self.vertex_list.append(Vertex(name))
|
||||
for row in self.adjacency_matrix: # add a new column to each row
|
||||
row.append(None)
|
||||
self.adjacency_matrix.append([None] * len(self.vertex_list)) # add a new row
|
||||
|
||||
def connect(self, name1: str, name2: str, weight: float = 1):
|
||||
index1 = self.index_map[name1]
|
||||
index2 = self.index_map[name2]
|
||||
self.adjacency_matrix[index1][index2] = weight
|
||||
|
||||
|
||||
def all_vertices(self) -> List[Vertex]:
|
||||
return self.vertex_list
|
||||
|
||||
def get_vertex(self, name: str) -> Vertex:
|
||||
index = self.index_map[name]
|
||||
return self.vertex_list[index]
|
||||
|
||||
def get_adjacent_vertices(self, name: str) -> List[Vertex]:
|
||||
index = self.index_map[name]
|
||||
result = []
|
||||
for i in range(len(self.vertex_list)):
|
||||
if self.adjacency_matrix[index][i] is not None:
|
||||
name = self.vertex_list[i].value
|
||||
result.append(self.get_vertex(name))
|
||||
return result
|
||||
|
||||
def get_adjacent_vertices_with_weight(self, name: str) -> List[tuple[Vertex, float]]:
|
||||
index = self.index_map[name]
|
||||
result = []
|
||||
for i in range(len(self.vertex_list)):
|
||||
if self.adjacency_matrix[index][i] is not None:
|
||||
name = self.vertex_list[i].value
|
||||
result.append((self.get_vertex(name), self.adjacency_matrix[index][i]))
|
||||
return result
|
||||
|
||||
def all_edges(self) -> List[tuple[str, str, float]]:
|
||||
result = []
|
||||
for i in range(len(self.vertex_list)):
|
||||
for j in range(len(self.vertex_list)):
|
||||
if self.adjacency_matrix[i][j] is not None:
|
||||
result.append((self.vertex_list[i].value, self.vertex_list[j].value, self.adjacency_matrix[i][j]))
|
||||
return result
|
||||
|
||||
|
||||
|
@ -1,18 +0,0 @@
|
||||
|
||||
|
||||
class DisjointValue():
|
||||
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
self.parent = None
|
||||
|
||||
def canonical(self):
|
||||
if self.parent:
|
||||
return self.parent.canonical()
|
||||
return self
|
||||
|
||||
def same_set(self, other):
|
||||
return self.canonical() == other.canonical()
|
||||
|
||||
def union(self, other):
|
||||
self.canonical().parent = other.canonical()
|
Loading…
x
Reference in New Issue
Block a user