Merge remote-tracking branch 'origin/Krisp' into tobi_experimental

This commit is contained in:
Tobias Kachel 2025-12-12 09:58:27 +01:00
commit 6aa59ce710
9 changed files with 357 additions and 313 deletions

View File

@ -13,42 +13,50 @@
// ordering. Accepts duplicates if isDuplicate is NULL, otherwise ignores // ordering. Accepts duplicates if isDuplicate is NULL, otherwise ignores
// duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added). // duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
void copyData(void *dest, const void *src, size_t size) { TreeNode *createTreeNode(const void *data, size_t dataSize) {
unsigned char *d = dest; TreeNode *node =
const unsigned char *s = src; malloc(sizeof(TreeNode)); // Speicher für neuen Knoten reservieren
for (size_t i = 0; i < size; i++) { if (node == NULL)
d[i] = s[i]; return NULL; // Abbrechen bei Fehler
node->data = malloc(dataSize); // Speicher für Daten reservieren
if (node->data == NULL) {
free(node);
return NULL;
} }
memcpy(node->data, data, dataSize); // Standardfunktion string.h, kopiert
// size bytes von data nach node->data,
// daten dürfen sich nicht überschneiden
// speichern der Daten in node->data
node->left = NULL; // Kinder sind NULL
node->right = NULL;
return node;
} }
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize,
CompareFctType compareFct, int *isDuplicate) { CompareFctType compareFct, int *isDuplicate) {
// isDuplicate initialisieren (auf 0 setzen) // isDuplicate initialisieren (auf 0 setzen), verhindert Änderung am Baum
if (isDuplicate) { if (isDuplicate) {
*isDuplicate = 0; *isDuplicate = 0;
} } // bei 0: neuer Wert wurde eingefügt, bei 1: Wert war bereits im Baum
// leerer Baum // leerer Baum
if (root == NULL) { if (root == NULL) {
TreeNode *node = malloc(sizeof(TreeNode)); return createTreeNode(data, dataSize);
node->data = malloc(dataSize);
copyData(node->data, data, dataSize);
node->left = NULL;
node->right = NULL;
return node;
} }
// mit compareFct <0 links >0 rechts =0 Duplikat // mit compareFct <0 links >0 rechts =0 Duplikat
int cmp = compareFct(data, root->data); int compare = compareFct(data, root->data);
if (cmp < 0) { if (compare < 0) { // Eintrag links
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate); root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
} else if (cmp > 0) { } else if (compare > 0) { // Eintrag rechts
root->right = root->right =
addToTree(root->right, data, dataSize, compareFct, isDuplicate); addToTree(root->right, data, dataSize, compareFct, isDuplicate);
} else { } else { // Duplikat
// isDuplicate auf 1 setzen // isDuplicate auf 1 setzen, keine Änderung am Baum
if (isDuplicate) { if (isDuplicate) {
*isDuplicate = 1; *isDuplicate = 1;
} }
@ -62,52 +70,57 @@ TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize,
// the root node and all left nodes first. On returning the next element, push // the root node and all left nodes first. On returning the next element, push
// the top node and push all its left nodes. // the top node and push all its left nodes.
void *nextTreeData(TreeNode *root) { void *nextTreeData(TreeNode *root) {
static StackNode *stack = NULL; static StackNode *stack = NULL; // static -> behält Wert bei mehreren Aufrufen
// Neue Iteration starten // Neue Iteration starten
if (root != NULL) { if (root != NULL) {
clearStack(&stack); clearStack(&stack); // alte Stack-Inhalte werden gelöscht
TreeNode *curr = root; TreeNode *currentNode = root;
while (curr != NULL) { while (currentNode !=
NULL) { // alle linken Knoten werden vom root an auf den Stack gelegt
StackNode *oldStack = stack; StackNode *oldStack = stack;
StackNode *newStack = push(stack, curr); StackNode *newStack = push(stack, currentNode);
if (newStack == oldStack) if (newStack == oldStack)
return NULL; // push fehlgeschlagen return NULL; // push fehlgeschlagen
stack = newStack; stack = newStack;
curr = curr->left; currentNode = currentNode->left;
} }
} }
if (stack == NULL) if (stack == NULL)
return NULL; // alles durchlaufen return NULL; // wenn Stack leer ist sind keine Elemente mehr vorhanden,
// Iteration beendet
// Oberstes Element abrufen // oberster Knoten vom Stack
TreeNode *node = (TreeNode *)top(stack); TreeNode *node = top(stack);
stack = pop(stack); stack = pop(stack);
// Rechten Teilbaum pushen // Rechten Teilbaum pushen
TreeNode *curr = node->right; TreeNode *currentNode = node->right;
while (curr != NULL) { while (currentNode != NULL) {
StackNode *oldStack = stack; StackNode *oldStack = stack;
StackNode *newStack = push(stack, curr); StackNode *newStack = push(stack, currentNode);
if (newStack == oldStack) if (newStack == oldStack)
return NULL; // push fehlgeschlagen return NULL; // push fehlgeschlagen
stack = newStack; stack = newStack;
curr = curr->left; currentNode = currentNode->left;
} }
return node->data; return node->data; // Pointer auf Daten
} }
// Releases all memory resources (including data copies). // Releases all memory resources (including data copies).
void clearTree(TreeNode *root) { void clearTree(TreeNode **root) { // rekursive Funktion zum freigeben des
if (root == NULL) // Speichers und Nullsetzen der Pointer
if (root == NULL || *root == NULL)
return; return;
clearTree(root->left); clearTree(&(*root)->left); // linken Teilbaum löschen
clearTree(root->right); clearTree(&(*root)->right); // rechten Teilbaum löschen
free(root->data); free((*root)->data); // Daten freigeben
free(root); (*root)->data = NULL;
free(*root); // Knoten freigeben
*root = NULL; // Zeiger auf NULL setzen
} }
// Returns the number of entries in the tree given by root. // Returns the number of entries in the tree given by root.

View File

@ -11,7 +11,7 @@ typedef struct node {
struct node *right; struct node *right;
} TreeNode; } TreeNode;
void copyData(void *dest, const void *src, size_t size); TreeNode *createTreeNode(const void *data, size_t dataSize);
// Adds a copy of data's pointer destination to the tree using compareFct for // Adds a copy of data's pointer destination to the tree using compareFct for
// ordering. Accepts duplicates if isDuplicate is NULL, otherwise ignores // ordering. Accepts duplicates if isDuplicate is NULL, otherwise ignores
@ -25,7 +25,7 @@ TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize,
// the top node and push all its left nodes. // the top node and push all its left nodes.
void *nextTreeData(TreeNode *root); void *nextTreeData(TreeNode *root);
// Releases all memory resources (including data copies). // Releases all memory resources (including data copies).
void clearTree(TreeNode *root); void clearTree(TreeNode **root);
// Returns the number of entries in the tree given by root. // Returns the number of entries in the tree given by root.
unsigned int treeSize(const TreeNode *root); unsigned int treeSize(const TreeNode *root);

View File

@ -1,134 +1,129 @@
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "highscore.h" #include "highscore.h"
#include "bintree.h" #include "bintree.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_LINE_LEN 100 #define MAX_LINE_LEN 100
#define MAX_PLAYER_NAME_LEN 20 #define MAX_PLAYER_NAME_LEN 20
typedef struct typedef struct {
{ char name[MAX_PLAYER_NAME_LEN];
char name[MAX_PLAYER_NAME_LEN]; int score;
int score;
} HighscoreEntry; } HighscoreEntry;
static TreeNode *highscoreTree = NULL; static TreeNode *highscoreTree = NULL;
// Compare two highscore entries by score (descending), then by name (ascending). // Compare two highscore entries by score (descending), then by name
static int compareHighscoreEntries(const void *arg1, const void *arg2) // (ascending).
{ static int compareHighscoreEntries(const void *arg1, const void *arg2) {
const HighscoreEntry *entry1 = (const HighscoreEntry *)arg1; const HighscoreEntry *entry1 = (const HighscoreEntry *)arg1;
const HighscoreEntry *entry2 = (const HighscoreEntry *)arg2; const HighscoreEntry *entry2 = (const HighscoreEntry *)arg2;
int result = entry2->score - entry1->score; int result = entry2->score - entry1->score;
if(result == 0) if (result == 0)
result = strcmp(entry1->name, entry2->name); result = strcmp(entry1->name, entry2->name);
return result; return result;
} }
// Create a new highscore entry from name and score. // Create a new highscore entry from name and score.
static HighscoreEntry createHighscoreEntry(const char *name, int score) static HighscoreEntry createHighscoreEntry(const char *name, int score) {
{ HighscoreEntry entry = {"", score};
HighscoreEntry entry = {"", score};
if(name != NULL) if (name != NULL) {
{ strncpy(entry.name, name, MAX_PLAYER_NAME_LEN);
strncpy(entry.name, name, MAX_PLAYER_NAME_LEN); entry.name[MAX_PLAYER_NAME_LEN - 1] = '\0';
entry.name[MAX_PLAYER_NAME_LEN-1] = '\0'; }
}
return entry; return entry;
} }
// Calculate score based on time used and number of shown numbers. // Calculate score based on time used and number of shown numbers.
static int calculateScore(double timeInSeconds, unsigned int len) static int calculateScore(double timeInSeconds, unsigned int len) {
{ return (1000.0 - timeInSeconds) * len;
return (1000.0 - timeInSeconds) * len;
} }
// Load highscores from file into memory. // Load highscores from file into memory.
void loadHighscores(const char *path) void loadHighscores(const char *path) {
{ FILE *file = fopen(path, "r");
FILE *file = fopen(path, "r");
if(file != NULL) if (file != NULL) {
{ char buffer[MAX_LINE_LEN + 1];
char buffer[MAX_LINE_LEN+1];
while(fgets(buffer, MAX_LINE_LEN+1, file) != NULL) while (fgets(buffer, MAX_LINE_LEN + 1, file) != NULL) {
{ char *name = strtok(buffer, ";\n");
char *name = strtok(buffer, ";\n"); char *scoreStr = strtok(NULL, ";\n");
char *scoreStr = strtok(NULL, ";\n");
if(name != NULL && scoreStr != NULL) if (name != NULL && scoreStr != NULL) {
{ HighscoreEntry entry =
HighscoreEntry entry = createHighscoreEntry(name, strtol(scoreStr, NULL, 10)); createHighscoreEntry(name, strtol(scoreStr, NULL, 10));
highscoreTree = addToTree(highscoreTree, &entry, sizeof(entry), compareHighscoreEntries, NULL); highscoreTree = addToTree(highscoreTree, &entry, sizeof(entry),
} compareHighscoreEntries, NULL);
} }
fclose(file);
} }
fclose(file);
}
} }
// Add a new highscore entry and return the calculated score. // Add a new highscore entry and return the calculated score.
int addHighscore(const char *name, double timeInSeconds, unsigned int len) int addHighscore(const char *name, double timeInSeconds, unsigned int len) {
{ HighscoreEntry entry =
HighscoreEntry entry = createHighscoreEntry(name, calculateScore(timeInSeconds, len)); createHighscoreEntry(name, calculateScore(timeInSeconds, len));
highscoreTree = addToTree(highscoreTree, &entry, sizeof(entry), compareHighscoreEntries, NULL); highscoreTree = addToTree(highscoreTree, &entry, sizeof(entry),
compareHighscoreEntries, NULL);
return entry.score; return entry.score;
} }
// Print highscores (up to NUMBER_OF_SHOWN_HIGHSCORES) in a formatted table. // Print highscores (up to NUMBER_OF_SHOWN_HIGHSCORES) in a formatted table.
void showHighscores() void showHighscores() {
{ const char *blanks =
const char *blanks = " "; " "
const char *stripes = "------------------------------------------------------------------------------------------------------------------------"; " ";
const char *header = "H I G H S C O R E S"; const char *stripes =
const int lineWidth = MAX_PLAYER_NAME_LEN + MAX_PLAYER_NAME_LEN + 5; "------------------------------------------------------------------------"
"------------------------------------------------";
const char *header = "H I G H S C O R E S";
const int lineWidth = MAX_PLAYER_NAME_LEN + MAX_PLAYER_NAME_LEN + 5;
int blankSpace = (int)(lineWidth - strlen(header)) / 2; int blankSpace = (int)(lineWidth - strlen(header)) / 2;
HighscoreEntry *entry = nextTreeData(highscoreTree); HighscoreEntry *entry = nextTreeData(highscoreTree);
printf("+%*.*s+\n", lineWidth, lineWidth, stripes);
printf("|%*.*s%s%*.*s|\n", blankSpace, blankSpace, blanks, header, blankSpace,
blankSpace, blanks);
printf("+%*.*s+\n", lineWidth, lineWidth, stripes);
for (int i = 0; i < NUMBER_OF_SHOWN_HIGHSCORES && entry != NULL; i++) {
printf("| %-*s | %*d |\n", MAX_PLAYER_NAME_LEN, entry->name,
MAX_PLAYER_NAME_LEN, entry->score);
printf("+%*.*s+\n", lineWidth, lineWidth, stripes); printf("+%*.*s+\n", lineWidth, lineWidth, stripes);
printf("|%*.*s%s%*.*s|\n", blankSpace, blankSpace, blanks, header, blankSpace, blankSpace, blanks); entry = nextTreeData(NULL);
printf("+%*.*s+\n", lineWidth, lineWidth, stripes); }
for(int i = 0; i < NUMBER_OF_SHOWN_HIGHSCORES && entry != NULL; i++)
{
printf("| %-*s | %*d |\n", MAX_PLAYER_NAME_LEN, entry->name, MAX_PLAYER_NAME_LEN, entry->score);
printf("+%*.*s+\n", lineWidth, lineWidth, stripes);
entry = nextTreeData(NULL);
}
} }
// Save highscores to file (up to NUMBER_OF_SHOWN_HIGHSCORES). // Save highscores to file (up to NUMBER_OF_SHOWN_HIGHSCORES).
void saveHighscores(const char *path) void saveHighscores(const char *path) {
{ FILE *file = fopen(path, "w");
FILE *file = fopen(path, "w");
if(file != NULL) if (file != NULL) {
{ HighscoreEntry *entry = nextTreeData(highscoreTree);
HighscoreEntry *entry = nextTreeData(highscoreTree);
for(int i = 0; i < NUMBER_OF_SHOWN_HIGHSCORES && entry != NULL; i++) for (int i = 0; i < NUMBER_OF_SHOWN_HIGHSCORES && entry != NULL; i++) {
{ fprintf(file, "%s;%d\n", entry->name, entry->score);
fprintf(file, "%s;%d\n", entry->name, entry->score); entry = nextTreeData(NULL);
entry = nextTreeData(NULL);
}
fclose(file);
} }
fclose(file);
}
} }
// Free all memory used for highscores. // Free all memory used for highscores.
void clearHighscores() void clearHighscores() {
{ clearTree(&highscoreTree);
clearTree(highscoreTree); highscoreTree = NULL;
highscoreTree = NULL;
} }

View File

@ -1,10 +1,10 @@
Kristin;9944 Kristin;49209
Kristin;7947 krisp;29797
Kristin;6962 krisp;29792
Kristin;5987 Kristin;29782
Kristin;5975 Kristin;19943
krisp;4986 krisp;19934
krisp;4985 krisp;19916
Kristin;4972 kristin;19861
player1;3999 Kristin;19858
Kristin;3992 p;19729

132
main.c
View File

@ -1,90 +1,88 @@
#include <stdlib.h> #include "highscore.h"
#include <stdio.h>
#include "numbers.h" #include "numbers.h"
#include "timer.h" #include "timer.h"
#include "highscore.h" #include <stdio.h>
#include <stdlib.h>
#include <time.h>
// Read an unsigned integer from stdin with prompt (retries until valid). // Read an unsigned integer from stdin with prompt (retries until valid).
int inputNumber(const char *promptText) int inputNumber(const char *promptText) {
{ unsigned int number;
unsigned int number; int numberOfInputs = 0;
int numberOfInputs = 0;
while(numberOfInputs != 1) while (numberOfInputs != 1) {
{ printf("%s", promptText);
printf("%s", promptText); numberOfInputs = scanf("%u", &number);
numberOfInputs = scanf("%u", &number); while (getchar() != '\n') {
while(getchar() != '\n') {} // clear input buffer } // clear input buffer
} }
return number; return number;
} }
// Print an array of numbers. // Print an array of numbers.
void showNumbers(const unsigned int *numbers, unsigned int len) void showNumbers(const unsigned int *numbers, unsigned int len) {
{ if (numbers != NULL) {
if(numbers != NULL) printf("Numbers:");
{
printf("Numbers:");
for(int i = 0; i < len; i++) for (int i = 0; i < len; i++)
printf(" %5d", numbers[i]); printf(" %5d", numbers[i]);
printf("\n"); printf("\n");
} }
} }
// Main game loop: generate numbers, ask user for duplicate, measure time, update highscores. // Main game loop: generate numbers, ask user for duplicate, measure time,
int main(int argc, char *argv[]) // update highscores.
{ int main(int argc, char *argv[]) {
int exitCode = EXIT_FAILURE; srand(time(NULL)); // seed für srand
int exitCode = EXIT_FAILURE;
if(argc != 2) if (argc != 2) {
{ fprintf(stderr, "Usage: %s <player name>\n", argv[0]);
fprintf(stderr, "Usage: %s <player name>\n", argv[0]); exitCode = EXIT_FAILURE;
exitCode = EXIT_FAILURE; } else {
} const char *highscorePath = "highscores.txt";
else const char *playerName = argv[1];
{ unsigned int *numbers = NULL;
const char *highscorePath = "highscores.txt"; unsigned int duplicate = 0;
const char *playerName = argv[1]; double measuredSeconds;
unsigned int *numbers = NULL; unsigned int userInput;
unsigned int duplicate = 0; unsigned int numberOfElements = 0;
double measuredSeconds;
unsigned int userInput;
unsigned int numberOfElements = 0;
// ask until valid number of elements (3..1000) // ask until valid number of elements (3..1000)
while(numberOfElements < 3 || numberOfElements > 1000) while (numberOfElements < 3 || numberOfElements > 1000)
numberOfElements = inputNumber("Wie viele Zahlen sollen gezeigt werden: "); numberOfElements =
inputNumber("Wie viele Zahlen sollen gezeigt werden: ");
// create numbers and show them // create numbers and show them
numbers = createNumbers(numberOfElements); numbers = createNumbers(numberOfElements);
showNumbers(numbers, numberOfElements); showNumbers(numbers, numberOfElements);
// measure time while user guesses the duplicate // measure time while user guesses the duplicate
startTimer(); startTimer();
userInput = inputNumber("Welche Zahl kommt doppelt vor: "); userInput = inputNumber("Welche Zahl kommt doppelt vor: ");
measuredSeconds = stopTimer(); measuredSeconds = stopTimer();
duplicate = getDuplicate(numbers, numberOfElements); duplicate = getDuplicate(numbers, numberOfElements);
// check result and update highscores // check result and update highscores
if(userInput == duplicate) if (userInput == duplicate) {
{ int score = addHighscore(playerName, measuredSeconds, numberOfElements);
int score = addHighscore(playerName, measuredSeconds, numberOfElements); printf("Sie haben die korrekte Zahl in %.6lf Sekunde(n) gefunden und %u "
printf("Sie haben die korrekte Zahl in %.6lf Sekunde(n) gefunden und %u Punkte erzielt.\n", measuredSeconds, score); "Punkte erzielt.\n",
} measuredSeconds, score);
else } else
printf("Leider ist %u nicht korrekt. Richtig waere %u gewesen.\n", userInput, duplicate); printf("Leider ist %u nicht korrekt. Richtig waere %u gewesen.\n",
userInput, duplicate);
loadHighscores(highscorePath); loadHighscores(highscorePath);
showHighscores(); showHighscores();
saveHighscores(highscorePath); saveHighscores(highscorePath);
clearHighscores(); clearHighscores();
exitCode = EXIT_SUCCESS; exitCode = EXIT_SUCCESS;
} }
return exitCode; return exitCode;
} }

106
numbers.c
View File

@ -3,19 +3,6 @@
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include <time.h>
//Vergleicht
int compareUnsignedInt(const void *a, const void *b) {
unsigned int x = *(unsigned int *)a;
unsigned int y = *(unsigned int *)b;
if (x < y)
return -1;
if (x > y)
return 1;
return 0;
}
// TODO: getDuplicate und createNumbers implementieren // TODO: getDuplicate und createNumbers implementieren
/**Erzeugen eines Arrays mit der vom Nutzer eingegebenen Anzahl an /**Erzeugen eines Arrays mit der vom Nutzer eingegebenen Anzahl an
@ -28,65 +15,82 @@ int compareUnsignedInt(const void *a, const void *b) {
// different, except for two entries. Returns NULL on errors. Use your // different, except for two entries. Returns NULL on errors. Use your
// implementation of the binary search tree to check for possible duplicates // implementation of the binary search tree to check for possible duplicates
// while creating random numbers. // while creating random numbers.
// vergleicht zwei Werte: a<b: -1 a>b: 1 a=b: 0
int compareUnsignedInt(const void *a, const void *b) {
unsigned int x = *(unsigned int *)a;
unsigned int y = *(unsigned int *)b;
return (x < y) ? -1 : (x > y);
}
unsigned int *createNumbers(unsigned int len) { unsigned int *createNumbers(unsigned int len) {
if (len < 2) if (len < 2) // Duplikat bei zwei Einträgen sinnlos
return NULL; return NULL;
unsigned int *arr = malloc(sizeof(unsigned int) * len); unsigned int *numbersArray = malloc(
if (!arr) sizeof(unsigned int) * len); // Speicher für das Ausgabearray reservieren:
// Größe eines Eintrags * Größe des Arrays
if (!numbersArray) // Speicher konnte nicht reserviert werden
return NULL; return NULL;
TreeNode *root = NULL; TreeNode *root =
srand((unsigned int)time(NULL)); NULL; // Binärbaum zum Generieren der Zufallszahlen ohne Duplikate
for (unsigned int i = 0; i < len - 1; i++) { for (unsigned int i = 0; i < len; i++) {
unsigned int num; unsigned int currentNumber;
int isDuplicate; int isDuplicate;
do { // mindestens eine Zufallszahl erzeugen
do { currentNumber = (rand() % (2 * len)) + 1; // Zahlenbereich 1 bis 2*len
num = (rand() % (2 * len)) + 1;
isDuplicate = 0; isDuplicate = 0;
root = addToTree(root, &currentNumber, sizeof(unsigned int),
root = addToTree(root, &num, sizeof(unsigned int), compareUnsignedInt, compareUnsignedInt,
&isDuplicate); &isDuplicate); // compareUnsignedInt wird zum Verwenden
// bei Vergleichen übergeben
} while (isDuplicate); // nur akzeptieren, wenn eindeutig } while (isDuplicate); // wenn isDuplicate gesetzt wird, muss eine neue Zahl
// erzeugt werden, die Schleife wird wiederholt
arr[i] = num; numbersArray[i] = currentNumber;
} }
// Jetzt gezielt EIN Duplikat erzeugen // Ein zufälliges Duplikat erzeugen
unsigned int duplicateIndex = rand() % (len - 1); unsigned int duplicateIndex =
arr[len - 1] = arr[duplicateIndex]; rand() % len; // Index des Duplikats per Zufall bestimmen
unsigned int newIndex;
do {
newIndex = rand() % len;
} while (newIndex == duplicateIndex); // zweiten Index bestimmen, der nicht
// mit dem ersten übereinstimmt
clearTree(root); numbersArray[newIndex] =
return arr; numbersArray[duplicateIndex]; // Wert vom ersten Index kopieren
clearTree(&root); // Speicher wieder freigeben, wird nicht mehr benötigt
return numbersArray;
} }
// Returns only the only number in numbers which is present twice. Returns zero // Returns only the only number in numbers which is present twice. Returns zero
// on errors. // on errors.
unsigned int getDuplicate(const unsigned int *numbers, unsigned int len) { unsigned int getDuplicate(
const unsigned int *numbers,
unsigned int len) { // array numbers, sowie die Länge wird übergeben
if (!numbers || len < 2) if (!numbers || len < 2)
return 0; return 0; // fehlerhaftes Array
unsigned int *copy = malloc(sizeof(unsigned int) * len); TreeNode *root = NULL; // leerer Baum
if (!copy) unsigned int duplicateValue = 0; // Wert des Duplikats
return 0;
memcpy(copy, numbers, sizeof(unsigned int) * len); for (unsigned int i = 0; i < len && duplicateValue == 0; i++) { // Schleife
int isDuplicate = 0;
// Sortierung // Zahl in den Baum einfügen
qsort(copy, len, sizeof(unsigned int), compareUnsignedInt); root = addToTree(root, &numbers[i], sizeof(unsigned int),
compareUnsignedInt, &isDuplicate);
// Duplikat finden: zwei gleiche nebeneinander // Duplikat erkannt
unsigned int duplicate = 0; if (isDuplicate && duplicateValue == 0) {
for (unsigned int i = 0; i < len - 1; i++) { duplicateValue = numbers[i]; // Duplikat merken, for-Schleife wird beendet
if (copy[i] == copy[i + 1]) {
duplicate = copy[i];
break;
} }
} }
free(copy); clearTree(&root); // Baum freigeben
return duplicate; return duplicateValue; // 0, falls kein Duplikat
} }

View File

@ -3,12 +3,14 @@
int compareUnsignedInt(const void *a, const void *b); int compareUnsignedInt(const void *a, const void *b);
// Returns len random numbers between 1 and 2x len in random order which are all different, except for two entries. // Returns len random numbers between 1 and 2x len in random order which are all
// Returns NULL on errors. Use your implementation of the binary search tree to check for possible duplicates while // different, except for two entries. Returns NULL on errors. Use your
// creating random numbers. // implementation of the binary search tree to check for possible duplicates
// while creating random numbers.
unsigned int *createNumbers(unsigned int len); unsigned int *createNumbers(unsigned int len);
// Returns only the only number in numbers which is present twice. Returns zero on errors. // Returns only the only number in numbers which is present twice. Returns zero
// on errors.
unsigned int getDuplicate(const unsigned int *numbers, unsigned int len); unsigned int getDuplicate(const unsigned int *numbers, unsigned int len);
#endif #endif

View File

@ -4,6 +4,7 @@
#include <string.h> #include <string.h>
#include "bintree.h" #include "bintree.h"
int compareUnsignedInt(const void *a, const void *b) { int compareUnsignedInt(const void *a, const void *b) {
unsigned int x = *(unsigned int *)a; unsigned int x = *(unsigned int *)a;
unsigned int y = *(unsigned int *)b; unsigned int y = *(unsigned int *)b;
@ -21,71 +22,91 @@ void setUp(void) {
root = NULL; // vor jedem Test leeren root = NULL; // vor jedem Test leeren
} }
void tearDown(void) { clearTree(root); } void tearDown(void) { clearTree(&root); }
// Test, ob addToTree Knoten korrekt hinzufügt // Test, ob addToTree Knoten korrekt hinzufügt
/*TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize,
CompareFctType compareFct, int *isDuplicate) */
void test_addToTree_basic(void) { void test_addToTree_basic(void) {
int isDup; int isDuplicate;
unsigned int val = 10; unsigned int testInt = 10;
root = addToTree(root, &val, sizeof(val), compareUnsignedInt, &isDup); root = addToTree(root, &testInt, sizeof(testInt), compareUnsignedInt,
TEST_ASSERT_NOT_NULL(root); &isDuplicate);
TEST_ASSERT_EQUAL_UINT(10, *(unsigned int *)root->data); TEST_ASSERT_NOT_NULL(root); // Knoten wurde erfolgreich erzeugt
TEST_ASSERT_EQUAL_INT(0, isDup); TEST_ASSERT_EQUAL_UINT(
TEST_ASSERT_EQUAL_UINT(1, treeSize(root)); 10,
*(unsigned int *)root
->data); // Datenzeiger wurde richtig gesetzt, void pointer auf
// unsigned int pointer casten, mit *wird der Wert abgerufen
TEST_ASSERT_EQUAL_INT(0, isDuplicate); // kein Duplikat
TEST_ASSERT_EQUAL_UINT(1, treeSize(root)); // der tree hat einen Eintrag
} }
// Test, dass Duplikate erkannt werden // Test, dass Duplikate erkannt werden
void test_addToTree_duplicate(void) { void test_addToTree_duplicate(void) {
int isDup; int isDuplicate;
unsigned int val1 = 10, val2 = 10; unsigned int val1 = 10, val2 = 10; // Duplikate
root = addToTree(root, &val1, sizeof(val1), compareUnsignedInt, &isDup); root = addToTree(root, &val1, sizeof(val1), compareUnsignedInt,
TEST_ASSERT_EQUAL_INT(0, isDup); &isDuplicate); // val 1 zum leeren Baum hinzufügen
root = addToTree(root, &val2, sizeof(val2), compareUnsignedInt, &isDup); TEST_ASSERT_EQUAL_INT(0, isDuplicate); // erster Knoten->kein Duplikat
TEST_ASSERT_EQUAL_INT(1, isDup); root = addToTree(root, &val2, sizeof(val2), compareUnsignedInt,
TEST_ASSERT_EQUAL_UINT(1, treeSize(root)); // Duplikate nicht hinzufügen &isDuplicate); // val 2 hinzufügen
TEST_ASSERT_EQUAL_INT(1, isDuplicate); // Duplikat erkannt
TEST_ASSERT_EQUAL_UINT(1,
treeSize(root)); // Duplikate wurde nicht hinzugefügt
} }
// Test nextTreeData Traversierung // Test nextTreeData Traversierung
void test_nextTreeData_in_order(void) { void test_nextTreeData_in_order(void) {
unsigned int values[] = {20, 10, 30}; unsigned int values[] = {20, 10, 30}; // erwartete Ausgabe: 10 -> 20 -> 30
int isDup; int isDuplicate;
for (int i = 0; i < 3; i++) { for (int i = 0; i < 3; i++) {
root = addToTree(root, &values[i], sizeof(values[i]), compareUnsignedInt, root = addToTree(root, &values[i], sizeof(values[i]), compareUnsignedInt,
&isDup); &isDuplicate); // Baum füllen
} }
unsigned int expected[] = {10, 20, 30}; unsigned int expected[] = {10, 20, 30}; // erwartet in Order Reihenfolge
int idx = 0; int valueID = 0;
void *data; void *data;
// **Neue Iteration starten** // Neue Iteration starten
data = nextTreeData(root); data = nextTreeData(root);
while (data != NULL) { while (data != NULL) {
TEST_ASSERT_EQUAL_UINT(expected[idx], *(unsigned int *)data); TEST_ASSERT_EQUAL_UINT(expected[valueID],
idx++; *(unsigned int *)data); // entspricht erwartetem Wert
valueID++;
data = nextTreeData(NULL); // weitere Elemente abrufen data = nextTreeData(NULL); // weitere Elemente abrufen
} }
TEST_ASSERT_EQUAL_INT(3, idx); // alle 3 Knoten besucht TEST_ASSERT_EQUAL_INT(3, valueID); // alle 3 Knoten besucht
} }
// Test clearTree gibt Speicher frei // Testet, dass clearTree Speicher freigibt und Root auf NULL setzt
void test_clearTree(void) { void test_clearTree_sets_root_null(void) {
unsigned int val = 42; int isDuplicate;
int isDup; unsigned int val1 = 10, val2 = 20;
root = addToTree(root, &val, sizeof(val), compareUnsignedInt, &isDup);
clearTree(root); root = addToTree(root, &val1, sizeof(val1), compareUnsignedInt, &isDuplicate);
root = NULL; // clearTree löscht nicht die root-Variable selbst root = addToTree(root, &val2, sizeof(val2), compareUnsignedInt, &isDuplicate);
// Vor dem Clear prüfen, dass Root nicht NULL ist
TEST_ASSERT_NOT_NULL(root);
clearTree(&root);
// Nach dem Clear muss Root auf NULL gesetzt sein
TEST_ASSERT_NULL(root); TEST_ASSERT_NULL(root);
} }
// Test treeSize zählt korrekt // Test treeSize zählt korrekt
void test_treeSize(void) { void test_treeSize(void) {
unsigned int vals[] = {10, 20, 5}; unsigned int testInts[] = {10, 20, 5};
int isDup; int isDuplicate;
for (int i = 0; i < 3; i++) { for (int i = 0; i < 3; i++) {
root = root = addToTree(root, &testInts[i], sizeof(testInts[i]),
addToTree(root, &vals[i], sizeof(vals[i]), compareUnsignedInt, &isDup); compareUnsignedInt, &isDuplicate);
} }
TEST_ASSERT_EQUAL_UINT(3, treeSize(root)); TEST_ASSERT_EQUAL_UINT(3, treeSize(root));
} }
@ -99,7 +120,7 @@ int main(void) {
RUN_TEST(test_addToTree_basic); RUN_TEST(test_addToTree_basic);
RUN_TEST(test_addToTree_duplicate); RUN_TEST(test_addToTree_duplicate);
RUN_TEST(test_nextTreeData_in_order); RUN_TEST(test_nextTreeData_in_order);
RUN_TEST(test_clearTree); RUN_TEST(test_clearTree_sets_root_null);
RUN_TEST(test_treeSize); RUN_TEST(test_treeSize);
return UNITY_END(); return UNITY_END();
} }

View File

@ -7,41 +7,52 @@
#define TEST_ARRAY_LEN 100 #define TEST_ARRAY_LEN 100
void test_createNumbers_length(void) { // Speicher für ein Array wird reserviert
unsigned int *arr = createNumbers(TEST_ARRAY_LEN); void test_createNumbers_length(void) { // erstellt ein Array der Länge hundert
TEST_ASSERT_NOT_NULL(arr); unsigned int *testArray = createNumbers(TEST_ARRAY_LEN);
TEST_ASSERT_NOT_NULL(testArray);
free(arr); free(testArray);
} }
// Duplikat ist genau einmal vorhanden
void test_createNumbers_single_duplicate(void) { void test_createNumbers_single_duplicate(void) {
unsigned int *arr = createNumbers(TEST_ARRAY_LEN); unsigned int *testArray = createNumbers(TEST_ARRAY_LEN); // Array erstellen
TEST_ASSERT_NOT_NULL(arr); TEST_ASSERT_NOT_NULL(testArray); // Speicher konnte reserviert werden
unsigned int duplicate = getDuplicate(arr, TEST_ARRAY_LEN); unsigned int duplicate =
TEST_ASSERT_TRUE(duplicate > 0); getDuplicate(testArray, TEST_ARRAY_LEN); // Duplikat holen
TEST_ASSERT_TRUE(duplicate > 0); // Duplikat ist größer als 0
TEST_ASSERT_TRUE(
duplicate <
(2 * TEST_ARRAY_LEN)); // Duplikat liegt im vorgegebenen Zahlenbereich
unsigned int count = 0; unsigned int count = 0; // Anzahl der Duplikate
for (unsigned int i = 0; i < TEST_ARRAY_LEN; i++) { for (unsigned int i = 0; i < TEST_ARRAY_LEN;
if (arr[i] == duplicate) { i++) { // Einträge des testArrays auf Duplikate prüfen
if (testArray[i] == duplicate) {
count++; count++;
} }
} }
TEST_ASSERT_EQUAL_UINT(2, count); TEST_ASSERT_EQUAL_UINT(2, count); // Duplikat zwei mal vorhanden
free(arr); free(testArray); // Speicher freigeben
} }
void test_getDuplicate_manual_array(void) { // getDuplicate testen
void test_getDuplicate_manual_array(
void) { // duplikat in fremden array wird gefunden
unsigned int numbers[5] = {10, 20, 30, 40, 20}; unsigned int numbers[5] = {10, 20, 30, 40, 20};
unsigned int dup = getDuplicate(numbers, 5); unsigned int duplicate = getDuplicate(numbers, 5);
TEST_ASSERT_EQUAL_UINT(20, dup); TEST_ASSERT_EQUAL_UINT(20, duplicate);
} }
// getDuplicate erkennt fehlerhaftes Array
void test_getDuplicate_invalid_input(void) { void test_getDuplicate_invalid_input(void) {
TEST_ASSERT_EQUAL_UINT(0, getDuplicate(NULL, 5)); TEST_ASSERT_EQUAL_UINT(
unsigned int arr[1] = {42}; 0, getDuplicate(NULL, 5)); // unsigned int getDuplicate(const unsigned int
TEST_ASSERT_EQUAL_UINT(0, getDuplicate(arr, 1)); // *numbers, unsigned int len)
unsigned int testArray[1] = {2};
TEST_ASSERT_EQUAL_UINT(0, getDuplicate(testArray, 1));
} }
void setUp(void) {} void setUp(void) {}