Merge remote-tracking branch 'origin/Krisp' into RMax

This commit is contained in:
Max-R 2025-12-09 10:19:21 +01:00
commit 8f2dfb507c
10 changed files with 566 additions and 129 deletions

121
bintree.c
View File

@ -1,36 +1,119 @@
#include <string.h>
#include "stack.h"
#include "bintree.h"
#include "stack.h"
#include <string.h>
//TODO: binären Suchbaum implementieren
// TODO: binären Suchbaum implementieren
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
* `treeSize`: zählt die Knoten im Baum (rekursiv),
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
* `treeSize`: zählt die Knoten im Baum (rekursiv),
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
{
// typedef int (*CompareFctType)(const void *arg1, const void *arg2);
// Adds a copy of data's pointer destination to the tree using compareFct for
// ordering. Accepts duplicates if isDuplicate is NULL, otherwise ignores
// duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
void copyData(void *dest, const void *src, size_t size) {
unsigned char *d = dest;
const unsigned char *s = src;
for (size_t i = 0; i < size; i++) {
d[i] = s[i];
}
}
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
// Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element,
// push the top node and push all its left nodes.
void *nextTreeData(TreeNode *root)
{
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize,
CompareFctType compareFct, int *isDuplicate) {
// isDuplicate initialisieren (auf 0 setzen)
if (isDuplicate) {
*isDuplicate = 0;
}
// leerer Baum
if (root == NULL) {
TreeNode *node = malloc(sizeof(TreeNode));
node->data = malloc(dataSize);
copyData(node->data, data, dataSize);
node->left = NULL;
node->right = NULL;
return node;
}
// mit compareFct <0 links >0 rechts =0 Duplikat
int cmp = compareFct(data, root->data);
if (cmp < 0) {
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
} else if (cmp > 0) {
root->right =
addToTree(root->right, data, dataSize, compareFct, isDuplicate);
} else {
// isDuplicate auf 1 setzen
if (isDuplicate) {
*isDuplicate = 1;
}
}
return root;
}
// Iterates over the tree given by root. Follows the usage of strtok. If tree is
// NULL, the next entry of the last tree given is returned in ordering
// direction. Use your implementation of a stack to organize the iterator. Push
// the root node and all left nodes first. On returning the next element, push
// the top node and push all its left nodes.
void *nextTreeData(TreeNode *root) {
static StackNode *stack = NULL;
// Neue Iteration starten
if (root != NULL) {
clearStack(&stack);
TreeNode *curr = root;
while (curr != NULL) {
StackNode *oldStack = stack;
StackNode *newStack = push(stack, curr);
if (newStack == oldStack)
return NULL; // push fehlgeschlagen
stack = newStack;
curr = curr->left;
}
}
if (stack == NULL)
return NULL; // alles durchlaufen
// Oberstes Element abrufen
TreeNode *node = (TreeNode *)top(stack);
stack = pop(stack);
// Rechten Teilbaum pushen
TreeNode *curr = node->right;
while (curr != NULL) {
StackNode *oldStack = stack;
StackNode *newStack = push(stack, curr);
if (newStack == oldStack)
return NULL; // push fehlgeschlagen
stack = newStack;
curr = curr->left;
}
return node->data;
}
// Releases all memory resources (including data copies).
void clearTree(TreeNode *root)
{
void clearTree(TreeNode *root) {
if (root == NULL)
return;
clearTree(root->left);
clearTree(root->right);
free(root->data);
free(root);
}
// Returns the number of entries in the tree given by root.
unsigned int treeSize(const TreeNode *root)
{
unsigned int treeSize(const TreeNode *root) {
if (root == NULL)
return 0;
return 1 + treeSize(root->left) + treeSize(root->right);
}

View File

@ -5,19 +5,24 @@
typedef int (*CompareFctType)(const void *arg1, const void *arg2);
typedef struct node
{
void *data;
struct node *left;
struct node *right;
typedef struct node {
void *data;
struct node *left;
struct node *right;
} TreeNode;
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate);
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
// Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element,
// push the top node and push all its left nodes.
void copyData(void *dest, const void *src, size_t size);
// Adds a copy of data's pointer destination to the tree using compareFct for
// ordering. Accepts duplicates if isDuplicate is NULL, otherwise ignores
// duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize,
CompareFctType compareFct, int *isDuplicate);
// Iterates over the tree given by root. Follows the usage of strtok. If tree is
// NULL, the next entry of the last tree given is returned in ordering
// direction. Use your implementation of a stack to organize the iterator. Push
// the root node and all left nodes first. On returning the next element, push
// the top node and push all its left nodes.
void *nextTreeData(TreeNode *root);
// Releases all memory resources (including data copies).
void clearTree(TreeNode *root);

View File

@ -1,2 +1,10 @@
Kristin;9944
Kristin;7947
Kristin;6962
Kristin;5987
Kristin;5975
krisp;4986
krisp;4985
Kristin;4972
player1;3999
Kristin;3992

View File

@ -25,28 +25,49 @@ doble_initial:
# --------------------------
# Selbst implementiertes Programm bauen
# --------------------------
# alle Objektdateien
program_obj_files = stack.o bintree.o numbers.o timer.o highscore.o
# alle ausführbaren Dateien zu ausführbarem Programm linken
doble : main.o $(program_obj_files)
$(CC) $(FLAGS) $^ -o doble
# Regel Kompilieren allgemein
$(program_obj_files): %.o: %.c
$(CC) -c $(FLAGS) $^ -o $@
# --------------------------
# Unit Tests
# --------------------------
unitTests:
TEST_BIN = runTests
unitTests: stack.o test_stack.o
$(CC) $(FLAGS) $(ASAN_FLAGS) -I$(unityfolder) -o $(TEST_BIN) stack.o test_stack.o $(unityfolder)/unity.c
STACK_TEST_BIN = runStackTests
NUMBERS_TEST_BIN = runNumbersTests
BINARY_TEST_BIN = runBinaryTests
# --- Stack Tests ---
stackTests: stack.o test_stack.o
$(CC) $(FLAGS) -I$(unityfolder) -o $(STACK_TEST_BIN) stack.o test_stack.o $(unityfolder)/unity.c
test_stack.o: test_stack.c
$(CC) $(FLAGS) -I$(unityfolder) -c test_stack.c -o test_stack.o
# --- Numbers Tests ---
numbersTests: numbers.o bintree.o stack.o test_numbers.o
$(CC) $(FLAGS) -I$(unityfolder) -o $(NUMBERS_TEST_BIN) numbers.o bintree.o stack.o test_numbers.o $(unityfolder)/unity.c
test_numbers.o: test_numbers.c
$(CC) $(FLAGS) -I$(unityfolder) -c test_numbers.c -o test_numbers.o
# --- Binary Tree Tests ---
binaryTests: bintree.o stack.o test_binary.o
$(CC) $(FLAGS) -I$(unityfolder) -o $(BINARY_TEST_BIN) bintree.o stack.o test_binary.o $(unityfolder)/unity.c
test_binary.o: test_binary.c
$(CC) $(FLAGS) -I$(unityfolder) -c test_binary.c -o test_binary.o
# --------------------------
# Clean
# --------------------------
clean:
rm -f *.o doble
rm -f *.o doble $(STACK_TEST_BIN) $(NUMBERS_TEST_BIN) $(BINARY_TEST_BIN)

103
numbers.c
View File

@ -1,26 +1,91 @@
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <string.h>
#include "numbers.h"
#include "bintree.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
//TODO: getDuplicate und createNumbers implementieren
/* * * Erzeugen eines Arrays mit der vom Nutzer eingegebenen Anzahl an Zufallszahlen.
* Sicherstellen, dass beim Befüllen keine Duplikate entstehen.
* Duplizieren eines zufälligen Eintrags im Array.
* in `getDuplicate()`: Sortieren des Arrays und Erkennen der doppelten Zahl durch Vergleich benachbarter Elemente. */
// Returns len random numbers between 1 and 2x len in random order which are all different, except for two entries.
// Returns NULL on errors. Use your implementation of the binary search tree to check for possible duplicates while
// creating random numbers.
unsigned int *createNumbers(unsigned int len)
{
int compareUnsignedInt(const void *a, const void *b) {
unsigned int x = *(unsigned int *)a;
unsigned int y = *(unsigned int *)b;
if (x < y)
return -1;
if (x > y)
return 1;
return 0;
}
// Returns only the only number in numbers which is present twice. Returns zero on errors.
unsigned int getDuplicate(const unsigned int numbers[], unsigned int len)
{
// TODO: getDuplicate und createNumbers implementieren
/**Erzeugen eines Arrays mit der vom Nutzer eingegebenen Anzahl an
* Zufallszahlen. Sicherstellen, dass beim Befüllen keine Duplikate entstehen.
* Duplizieren eines zufälligen Eintrags im Array.
* in `getDuplicate()`: Sortieren des Arrays und Erkennen der doppelten Zahl
* durch Vergleich benachbarter Elemente. */
}
// Returns len random numbers between 1 and 2x len in random order which are all
// different, except for two entries. Returns NULL on errors. Use your
// implementation of the binary search tree to check for possible duplicates
// while creating random numbers.
unsigned int *createNumbers(unsigned int len) {
if (len < 2)
return NULL;
unsigned int *arr = malloc(sizeof(unsigned int) * len);
if (!arr)
return NULL;
TreeNode *root = NULL;
srand((unsigned int)time(NULL));
for (unsigned int i = 0; i < len - 1; i++) {
unsigned int num;
int isDuplicate;
do {
num = (rand() % (2 * len)) + 1;
isDuplicate = 0;
root = addToTree(root, &num, sizeof(unsigned int), compareUnsignedInt,
&isDuplicate);
} while (isDuplicate); // nur akzeptieren, wenn eindeutig
arr[i] = num;
}
// Jetzt gezielt EIN Duplikat erzeugen
unsigned int duplicateIndex = rand() % (len - 1);
arr[len - 1] = arr[duplicateIndex];
clearTree(root);
return arr;
}
// Returns only the only number in numbers which is present twice. Returns zero
// on errors.
unsigned int getDuplicate(const unsigned int numbers[], unsigned int len) {
if (!numbers || len < 2)
return 0;
unsigned int *copy = malloc(sizeof(unsigned int) * len);
if (!copy)
return 0;
memcpy(copy, numbers, sizeof(unsigned int) * len);
// Sortierung
qsort(copy, len, sizeof(unsigned int), compareUnsignedInt);
// Duplikat finden: zwei gleiche nebeneinander
unsigned int duplicate = 0;
for (unsigned int i = 0; i < len - 1; i++) {
if (copy[i] == copy[i + 1]) {
duplicate = copy[i];
break;
}
}
free(copy);
return duplicate;
}

103
stack.c
View File

@ -6,6 +6,7 @@
void *data;
struct StackNode *next;
struct StackNode *prev;
} StackNode;*/
@ -15,71 +16,85 @@
* `top`: liefert das oberste Element zurück,
* `clearStack`: gibt den gesamten Speicher frei. */
StackNode *createNode(void *data)
{
// [A] -> [B] -> [C] -> NULL
// stack -> stack.next
StackNode *node =
malloc(sizeof(StackNode)); // Speicher reservieren, Speicherplatz für das
// struct StackNode
// Funktion zum erstellen neuer nodes
StackNode *createNode(void *data) {
// Speicher reservieren
StackNode *node = malloc(sizeof(StackNode));
// Speicher konnte nicht reserviert werden
if (node == NULL)
return NULL;
if (node == NULL)
return NULL; // Speicher konnte nicht reserviert werden
node->data = data;
node->next = NULL;
node->prev = NULL;
node->data = data; // Zeiger auf data neuer node
node->next = NULL; // nächster Zeiger ist NULL, Ende der Liste
return node; // pointer auf den neuen Knoten zurückgeben
return node;
}
// Pushes data as pointer onto the stack.
StackNode *push(StackNode *stack, void *data)
{
StackNode *newNode = createNode(data); // Speicher für neuen Knoten
// reservieren
StackNode *push(StackNode *stack, void *data) {
if (newNode == NULL)
{ // wenn Speicher nicht reserviert werden konnte, wird
// stack unverändert zurückgegeben
return stack;
}
StackNode *newNode = createNode(data);
newNode->next = stack; // pointer verschieben
// Fehler beim Reservieren des Speichers, stack wird unverändert zurückgegeben
if (newNode == NULL) {
return stack;
}
return newNode; // Zeiger auf neuen Speicherbereich zurückgeben
// der aktuelle Kopf wird der nächste Node
newNode->next = stack;
// bisheriger Kopf bekommt Pointer auf oberstes Element
if (stack != NULL) {
stack->prev = newNode;
}
return newNode; // neuer Kopf wird zurückgegeben
}
// Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be
// freed by caller.)
StackNode *pop(StackNode *stack)
{
if (stack == NULL)
return NULL;
// Deletes the top element of the stack (latest added element) and releases its
// memory. (Pointer to data has to be freed by caller.)
StackNode *pop(StackNode *stack) {
StackNode *nextNode = stack->next;
// Stack ohne Elemente
if (stack == NULL)
return NULL;
// Element unter Kopf wird als nextNode gespeichert
StackNode *nextNode = stack->next;
if (nextNode != NULL) {
nextNode->prev = NULL; // der Zeiger zum Kopf wird auf NULL gesetzt
}
free(stack);
stack = NULL;
stack = NULL; // Speicher des Kopfes freigeben
return nextNode;
return nextNode; // neuen Kopf zurückgeben
}
// Returns the data of the top element.
void *top(StackNode *stack) { return stack != NULL ? stack->data : NULL; }
void *top(StackNode *stack) {
// wenn stack leer ist, wird NULL zurückgegeben
// Zeiger auf Daten des obersten Elements
return stack ? stack->data : NULL;
}
// Clears stack and releases all memory.
void clearStack(StackNode **stack)
{
while (*stack != NULL)
{
void clearStack(StackNode **stack) { // Zeiger auf den Zeiger auf den Stackkopf
// verändert den Zeiger selbst, mit *stack lokale Kopie
// im Aufruf &stack verwenden
while (*stack != NULL) {
StackNode *next = (*stack)->next;
free(*stack);
(*stack)->data = NULL;
(*stack)->next = NULL;
(*stack)->prev = NULL;
(*stack) = next;
(*stack)->prev = NULL; // späteren Pointerzugriff verhindern
StackNode *next = (*stack)->next; // nächstes Element speichern
}
(*stack)->next = NULL; // späteren Pointerzugriff verhindern
free(*stack); // aktuelles Element freigeben
*stack = next; // Zeiger auf nächsten Knoten setzen
}
}

10
stack.h
View File

@ -19,16 +19,6 @@ typedef struct StackNode {
StackNode *createNode(void *data);
typedef struct StackNode {
void *data;
struct StackNode *next;
struct StackNode *prev;
} StackNode;
StackNode *createNode(void *data);
// Pushes data as pointer onto the stack.
StackNode *push(StackNode *stack, void *data);

105
test_binary.c Normal file
View File

@ -0,0 +1,105 @@
#include "unity.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "bintree.h"
int compareUnsignedInt(const void *a, const void *b) {
unsigned int x = *(unsigned int *)a;
unsigned int y = *(unsigned int *)b;
if (x < y)
return -1;
if (x > y)
return 1;
return 0;
}
TreeNode *root = NULL;
void setUp(void) {
root = NULL; // vor jedem Test leeren
}
void tearDown(void) { clearTree(root); }
// Test, ob addToTree Knoten korrekt hinzufügt
void test_addToTree_basic(void) {
int isDup;
unsigned int val = 10;
root = addToTree(root, &val, sizeof(val), compareUnsignedInt, &isDup);
TEST_ASSERT_NOT_NULL(root);
TEST_ASSERT_EQUAL_UINT(10, *(unsigned int *)root->data);
TEST_ASSERT_EQUAL_INT(0, isDup);
TEST_ASSERT_EQUAL_UINT(1, treeSize(root));
}
// Test, dass Duplikate erkannt werden
void test_addToTree_duplicate(void) {
int isDup;
unsigned int val1 = 10, val2 = 10;
root = addToTree(root, &val1, sizeof(val1), compareUnsignedInt, &isDup);
TEST_ASSERT_EQUAL_INT(0, isDup);
root = addToTree(root, &val2, sizeof(val2), compareUnsignedInt, &isDup);
TEST_ASSERT_EQUAL_INT(1, isDup);
TEST_ASSERT_EQUAL_UINT(1, treeSize(root)); // Duplikate nicht hinzufügen
}
// Test nextTreeData Traversierung
void test_nextTreeData_in_order(void) {
unsigned int values[] = {20, 10, 30};
int isDup;
for (int i = 0; i < 3; i++) {
root = addToTree(root, &values[i], sizeof(values[i]), compareUnsignedInt,
&isDup);
}
unsigned int expected[] = {10, 20, 30};
int idx = 0;
void *data;
// **Neue Iteration starten**
data = nextTreeData(root);
while (data != NULL) {
TEST_ASSERT_EQUAL_UINT(expected[idx], *(unsigned int *)data);
idx++;
data = nextTreeData(NULL); // weitere Elemente abrufen
}
TEST_ASSERT_EQUAL_INT(3, idx); // alle 3 Knoten besucht
}
// Test clearTree gibt Speicher frei
void test_clearTree(void) {
unsigned int val = 42;
int isDup;
root = addToTree(root, &val, sizeof(val), compareUnsignedInt, &isDup);
clearTree(root);
root = NULL; // clearTree löscht nicht die root-Variable selbst
TEST_ASSERT_NULL(root);
}
// Test treeSize zählt korrekt
void test_treeSize(void) {
unsigned int vals[] = {10, 20, 5};
int isDup;
for (int i = 0; i < 3; i++) {
root =
addToTree(root, &vals[i], sizeof(vals[i]), compareUnsignedInt, &isDup);
}
TEST_ASSERT_EQUAL_UINT(3, treeSize(root));
}
int main(void) {
UNITY_BEGIN();
printf(
"\n------------------------binarytree test------------------------\n\n");
RUN_TEST(test_addToTree_basic);
RUN_TEST(test_addToTree_duplicate);
RUN_TEST(test_nextTreeData_in_order);
RUN_TEST(test_clearTree);
RUN_TEST(test_treeSize);
return UNITY_END();
}

61
test_numbers.c Normal file
View File

@ -0,0 +1,61 @@
#include "unity.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "numbers.h"
#define TEST_ARRAY_LEN 100
void test_createNumbers_length(void) {
unsigned int *arr = createNumbers(TEST_ARRAY_LEN);
TEST_ASSERT_NOT_NULL(arr);
free(arr);
}
void test_createNumbers_single_duplicate(void) {
unsigned int *arr = createNumbers(TEST_ARRAY_LEN);
TEST_ASSERT_NOT_NULL(arr);
unsigned int duplicate = getDuplicate(arr, TEST_ARRAY_LEN);
TEST_ASSERT_TRUE(duplicate > 0);
unsigned int count = 0;
for (unsigned int i = 0; i < TEST_ARRAY_LEN; i++) {
if (arr[i] == duplicate) {
count++;
}
}
TEST_ASSERT_EQUAL_UINT(2, count);
free(arr);
}
void test_getDuplicate_manual_array(void) {
unsigned int numbers[5] = {10, 20, 30, 40, 20};
unsigned int dup = getDuplicate(numbers, 5);
TEST_ASSERT_EQUAL_UINT(20, dup);
}
void test_getDuplicate_invalid_input(void) {
TEST_ASSERT_EQUAL_UINT(0, getDuplicate(NULL, 5));
unsigned int arr[1] = {42};
TEST_ASSERT_EQUAL_UINT(0, getDuplicate(arr, 1));
}
void setUp(void) {}
void tearDown(void) {}
int main(void) {
UNITY_BEGIN();
printf("\n------------------------numbers test------------------------\n\n");
RUN_TEST(test_createNumbers_length);
RUN_TEST(test_createNumbers_single_duplicate);
RUN_TEST(test_getDuplicate_manual_array);
RUN_TEST(test_getDuplicate_invalid_input);
return UNITY_END();
}

View File

@ -5,40 +5,124 @@
#include "stack.h"
// StackNode *createNode(void *data) testen
void test_createNode(void) {
int testInt = 26;
StackNode *testNode = createNode(&testInt); // Adresse des testInts
StackNode *testNode = createNode(&testInt);
TEST_ASSERT_NOT_NULL(
testNode); // Speicher konnte reserviert werden, malloc ist nicht NULL
TEST_ASSERT_EQUAL_PTR(&testInt, testNode->data); // data pointer gesetzt
TEST_ASSERT_NULL(testNode->next); // vorheriger und nächster Eintrag NULL
TEST_ASSERT_NULL(testNode->prev);
TEST_ASSERT_NOT_NULL(testNode);
TEST_ASSERT_EQUAL_PTR(&testInt, testNode->data);
TEST_ASSERT_NULL(testNode->next);
free(testNode);
free(testNode); // Speicher freigeben
}
void test_pushDataToStack(void) {}
// StackNode *push(StackNode *stack, void *data) testen
void test_pushDataToStack(void) {
void test_deleteTopElement(void) {}
int testInts[] = {27, 28};
void test_returnData(void) {}
StackNode *testStack = NULL; // leeren testStack initialisieren
testStack =
push(testStack, &testInts[0]); // leerer Stack mit Adresse des testInts
TEST_ASSERT_NOT_NULL(testStack); // im Fehlerfall wird testStack unverändert
// zurückgegeben -> bei Fehler NULL
TEST_ASSERT_EQUAL_PTR(&testInts[0], testStack->data); // data pointer gesetzt
TEST_ASSERT_NULL(testStack->next); // vorheriger und nächster pointer auf NULL
// gesetzt, da es nur einen Knoten gibt
TEST_ASSERT_NULL(testStack->prev);
// zweiter Push
StackNode *oldHead = testStack; // bisherigen head speichern
testStack = push(testStack, &testInts[1]);
TEST_ASSERT_NOT_NULL(testStack);
TEST_ASSERT_NOT_EQUAL(
oldHead,
testStack); // bei malloc Fehler wird der head unverändert zurückgegeben
TEST_ASSERT_EQUAL_PTR(&testInts[0],
oldHead->data); // data pointer wurden richtig gesetzt
TEST_ASSERT_EQUAL_PTR(&testInts[1], testStack->data);
// richtige Verkettung: NULL <- testStack -> testStack->next -> oldHead ->
// NULL
TEST_ASSERT_EQUAL_PTR(oldHead, testStack->next);
TEST_ASSERT_EQUAL_PTR(testStack, oldHead->prev);
TEST_ASSERT_NULL(testStack->prev);
// Speicherfreigabe
testStack->next = NULL; // pointer ungültig machen, damit nicht ausversehen
// später aufgerufen
oldHead->prev = NULL;
free(oldHead);
free(testStack);
}
void test_deleteTopElement(void) {
int testInts[] = {10, 20, 30};
StackNode *stack = NULL;
for (int i = 0; i < 3;
i++) { // Stack mit drei Elementen, oberestes Element mit data 30
stack = push(stack, &testInts[i]);
}
TEST_ASSERT_EQUAL_PTR(&testInts[2], stack->data); // oberstes Element ist 30
stack = pop(stack); // oberstes Element löschen
TEST_ASSERT_EQUAL_PTR(&testInts[1], stack->data);
TEST_ASSERT_NULL(
stack->prev); // pointer zum alten head wurde auf NULL gesetzt
stack = pop(stack);
TEST_ASSERT_EQUAL_PTR(&testInts[0], stack->data);
TEST_ASSERT_NULL(stack->prev);
stack = pop(stack); // bei leerem Stack wird NULL zurückgegeben
TEST_ASSERT_NULL(stack);
}
void test_returnData(void) {
int testInts[] = {10, 20, 30};
StackNode *stack = NULL;
for (int i = 0; i < 3; i++) {
stack = push(stack, &testInts[i]);
}
TEST_ASSERT_EQUAL_PTR(&testInts[2],
top(stack)); // top gibt richtige Adresse zurück
stack = pop(stack); // oberstes Element löschen
TEST_ASSERT_EQUAL_PTR(&testInts[1], top(stack));
stack = pop(stack);
TEST_ASSERT_EQUAL_PTR(&testInts[0], top(stack));
stack = pop(stack); // bei leerem Stack wird NULL zurückgegeben
TEST_ASSERT_NULL(stack);
}
void test_clearStack(void) {
int testInts[] = {1, 2, 3, 4, 5};
StackNode *testStack = NULL;
StackNode *stack = NULL;
for (int i = 0; i < 5; i++) {
testStack = push(testStack, &testInts[i]);
stack = push(stack, &testInts[i]);
}
//printf("testints: %d,%d,%d,%d,%d",testInts[0],testInts[1],testInts[2],testInts[3],testInts[4]);
clearStack(&testStack);
TEST_ASSERT_NULL(testStack);
clearStack(&stack);
TEST_ASSERT_NULL(stack);
}
void setUp(void) {}
@ -48,13 +132,13 @@ int main(void) {
UNITY_BEGIN();
printf("------------------------stack test------------------------\n");
printf("\n------------------------stack test------------------------\n\n");
RUN_TEST(test_createNode);
RUN_TEST(test_pushDataToStack);
RUN_TEST(test_deleteTopElement);
RUN_TEST(test_returnData);
RUN_TEST(test_clearStack);
RUN_TEST(test_clearStack);
return UNITY_END();
}