Merge remote-tracking branch 'origin/Krisp' into RMax

This commit is contained in:
Max-R 2025-12-12 10:07:09 +01:00
commit c13d39f60c
9 changed files with 349 additions and 302 deletions

3
.gitignore vendored
View File

@ -1,3 +1,4 @@
doble_initial.exe
*.o
*.exe
*.exe
highscore.txt

View File

@ -13,42 +13,50 @@
// ordering. Accepts duplicates if isDuplicate is NULL, otherwise ignores
// duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
void copyData(void *dest, const void *src, size_t size) {
unsigned char *d = dest;
const unsigned char *s = src;
for (size_t i = 0; i < size; i++) {
d[i] = s[i];
TreeNode *createTreeNode(const void *data, size_t dataSize) {
TreeNode *node =
malloc(sizeof(TreeNode)); // Speicher für neuen Knoten reservieren
if (node == NULL)
return NULL; // Abbrechen bei Fehler
node->data = malloc(dataSize); // Speicher für Daten reservieren
if (node->data == NULL) {
free(node);
return NULL;
}
memcpy(node->data, data, dataSize); // Standardfunktion string.h, kopiert
// size bytes von data nach node->data,
// daten dürfen sich nicht überschneiden
// speichern der Daten in node->data
node->left = NULL; // Kinder sind NULL
node->right = NULL;
return node;
}
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize,
CompareFctType compareFct, int *isDuplicate) {
// isDuplicate initialisieren (auf 0 setzen)
// isDuplicate initialisieren (auf 0 setzen), verhindert Änderung am Baum
if (isDuplicate) {
*isDuplicate = 0;
}
} // bei 0: neuer Wert wurde eingefügt, bei 1: Wert war bereits im Baum
// leerer Baum
if (root == NULL) {
TreeNode *node = malloc(sizeof(TreeNode));
node->data = malloc(dataSize);
copyData(node->data, data, dataSize);
node->left = NULL;
node->right = NULL;
return node;
return createTreeNode(data, dataSize);
}
// mit compareFct <0 links >0 rechts =0 Duplikat
int cmp = compareFct(data, root->data);
int compare = compareFct(data, root->data);
if (cmp < 0) {
if (compare < 0) { // Eintrag links
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
} else if (cmp > 0) {
} else if (compare > 0) { // Eintrag rechts
root->right =
addToTree(root->right, data, dataSize, compareFct, isDuplicate);
} else {
// isDuplicate auf 1 setzen
} else { // Duplikat
// isDuplicate auf 1 setzen, keine Änderung am Baum
if (isDuplicate) {
*isDuplicate = 1;
}
@ -62,52 +70,57 @@ TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize,
// the root node and all left nodes first. On returning the next element, push
// the top node and push all its left nodes.
void *nextTreeData(TreeNode *root) {
static StackNode *stack = NULL;
static StackNode *stack = NULL; // static -> behält Wert bei mehreren Aufrufen
// Neue Iteration starten
if (root != NULL) {
clearStack(&stack);
clearStack(&stack); // alte Stack-Inhalte werden gelöscht
TreeNode *curr = root;
while (curr != NULL) {
TreeNode *currentNode = root;
while (currentNode !=
NULL) { // alle linken Knoten werden vom root an auf den Stack gelegt
StackNode *oldStack = stack;
StackNode *newStack = push(stack, curr);
StackNode *newStack = push(stack, currentNode);
if (newStack == oldStack)
return NULL; // push fehlgeschlagen
stack = newStack;
curr = curr->left;
currentNode = currentNode->left;
}
}
if (stack == NULL)
return NULL; // alles durchlaufen
return NULL; // wenn Stack leer ist sind keine Elemente mehr vorhanden,
// Iteration beendet
// Oberstes Element abrufen
TreeNode *node = (TreeNode *)top(stack);
// oberster Knoten vom Stack
TreeNode *node = top(stack);
stack = pop(stack);
// Rechten Teilbaum pushen
TreeNode *curr = node->right;
while (curr != NULL) {
TreeNode *currentNode = node->right;
while (currentNode != NULL) {
StackNode *oldStack = stack;
StackNode *newStack = push(stack, curr);
StackNode *newStack = push(stack, currentNode);
if (newStack == oldStack)
return NULL; // push fehlgeschlagen
stack = newStack;
curr = curr->left;
currentNode = currentNode->left;
}
return node->data;
return node->data; // Pointer auf Daten
}
// Releases all memory resources (including data copies).
void clearTree(TreeNode *root) {
if (root == NULL)
void clearTree(TreeNode **root) { // rekursive Funktion zum freigeben des
// Speichers und Nullsetzen der Pointer
if (root == NULL || *root == NULL)
return;
clearTree(root->left);
clearTree(root->right);
clearTree(&(*root)->left); // linken Teilbaum löschen
clearTree(&(*root)->right); // rechten Teilbaum löschen
free(root->data);
free(root);
free((*root)->data); // Daten freigeben
(*root)->data = NULL;
free(*root); // Knoten freigeben
*root = NULL; // Zeiger auf NULL setzen
}
// Returns the number of entries in the tree given by root.

View File

@ -11,7 +11,7 @@ typedef struct node {
struct node *right;
} TreeNode;
void copyData(void *dest, const void *src, size_t size);
TreeNode *createTreeNode(const void *data, size_t dataSize);
// Adds a copy of data's pointer destination to the tree using compareFct for
// ordering. Accepts duplicates if isDuplicate is NULL, otherwise ignores
@ -25,7 +25,7 @@ TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize,
// the top node and push all its left nodes.
void *nextTreeData(TreeNode *root);
// Releases all memory resources (including data copies).
void clearTree(TreeNode *root);
void clearTree(TreeNode **root);
// Returns the number of entries in the tree given by root.
unsigned int treeSize(const TreeNode *root);

View File

@ -1,134 +1,129 @@
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "highscore.h"
#include "bintree.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_LINE_LEN 100
#define MAX_PLAYER_NAME_LEN 20
typedef struct
{
char name[MAX_PLAYER_NAME_LEN];
int score;
typedef struct {
char name[MAX_PLAYER_NAME_LEN];
int score;
} HighscoreEntry;
static TreeNode *highscoreTree = NULL;
// Compare two highscore entries by score (descending), then by name (ascending).
static int compareHighscoreEntries(const void *arg1, const void *arg2)
{
const HighscoreEntry *entry1 = (const HighscoreEntry *)arg1;
const HighscoreEntry *entry2 = (const HighscoreEntry *)arg2;
// Compare two highscore entries by score (descending), then by name
// (ascending).
static int compareHighscoreEntries(const void *arg1, const void *arg2) {
const HighscoreEntry *entry1 = (const HighscoreEntry *)arg1;
const HighscoreEntry *entry2 = (const HighscoreEntry *)arg2;
int result = entry2->score - entry1->score;
int result = entry2->score - entry1->score;
if(result == 0)
result = strcmp(entry1->name, entry2->name);
if (result == 0)
result = strcmp(entry1->name, entry2->name);
return result;
return result;
}
// Create a new highscore entry from name and score.
static HighscoreEntry createHighscoreEntry(const char *name, int score)
{
HighscoreEntry entry = {"", score};
static HighscoreEntry createHighscoreEntry(const char *name, int score) {
HighscoreEntry entry = {"", score};
if(name != NULL)
{
strncpy(entry.name, name, MAX_PLAYER_NAME_LEN);
entry.name[MAX_PLAYER_NAME_LEN-1] = '\0';
}
if (name != NULL) {
strncpy(entry.name, name, MAX_PLAYER_NAME_LEN);
entry.name[MAX_PLAYER_NAME_LEN - 1] = '\0';
}
return entry;
return entry;
}
// Calculate score based on time used and number of shown numbers.
static int calculateScore(double timeInSeconds, unsigned int len)
{
return (1000.0 - timeInSeconds) * len;
static int calculateScore(double timeInSeconds, unsigned int len) {
return (1000.0 - timeInSeconds) * len;
}
// Load highscores from file into memory.
void loadHighscores(const char *path)
{
FILE *file = fopen(path, "r");
void loadHighscores(const char *path) {
FILE *file = fopen(path, "r");
if(file != NULL)
{
char buffer[MAX_LINE_LEN+1];
if (file != NULL) {
char buffer[MAX_LINE_LEN + 1];
while(fgets(buffer, MAX_LINE_LEN+1, file) != NULL)
{
char *name = strtok(buffer, ";\n");
char *scoreStr = strtok(NULL, ";\n");
while (fgets(buffer, MAX_LINE_LEN + 1, file) != NULL) {
char *name = strtok(buffer, ";\n");
char *scoreStr = strtok(NULL, ";\n");
if(name != NULL && scoreStr != NULL)
{
HighscoreEntry entry = createHighscoreEntry(name, strtol(scoreStr, NULL, 10));
highscoreTree = addToTree(highscoreTree, &entry, sizeof(entry), compareHighscoreEntries, NULL);
}
}
fclose(file);
if (name != NULL && scoreStr != NULL) {
HighscoreEntry entry =
createHighscoreEntry(name, strtol(scoreStr, NULL, 10));
highscoreTree = addToTree(highscoreTree, &entry, sizeof(entry),
compareHighscoreEntries, NULL);
}
}
fclose(file);
}
}
// Add a new highscore entry and return the calculated score.
int addHighscore(const char *name, double timeInSeconds, unsigned int len)
{
HighscoreEntry entry = createHighscoreEntry(name, calculateScore(timeInSeconds, len));
highscoreTree = addToTree(highscoreTree, &entry, sizeof(entry), compareHighscoreEntries, NULL);
int addHighscore(const char *name, double timeInSeconds, unsigned int len) {
HighscoreEntry entry =
createHighscoreEntry(name, calculateScore(timeInSeconds, len));
highscoreTree = addToTree(highscoreTree, &entry, sizeof(entry),
compareHighscoreEntries, NULL);
return entry.score;
return entry.score;
}
// Print highscores (up to NUMBER_OF_SHOWN_HIGHSCORES) in a formatted table.
void showHighscores()
{
const char *blanks = " ";
const char *stripes = "------------------------------------------------------------------------------------------------------------------------";
const char *header = "H I G H S C O R E S";
const int lineWidth = MAX_PLAYER_NAME_LEN + MAX_PLAYER_NAME_LEN + 5;
void showHighscores() {
const char *blanks =
" "
" ";
const char *stripes =
"------------------------------------------------------------------------"
"------------------------------------------------";
const char *header = "H I G H S C O R E S";
const int lineWidth = MAX_PLAYER_NAME_LEN + MAX_PLAYER_NAME_LEN + 5;
int blankSpace = (int)(lineWidth - strlen(header)) / 2;
int blankSpace = (int)(lineWidth - strlen(header)) / 2;
HighscoreEntry *entry = nextTreeData(highscoreTree);
HighscoreEntry *entry = nextTreeData(highscoreTree);
printf("+%*.*s+\n", lineWidth, lineWidth, stripes);
printf("|%*.*s%s%*.*s|\n", blankSpace, blankSpace, blanks, header, blankSpace,
blankSpace, blanks);
printf("+%*.*s+\n", lineWidth, lineWidth, stripes);
for (int i = 0; i < NUMBER_OF_SHOWN_HIGHSCORES && entry != NULL; i++) {
printf("| %-*s | %*d |\n", MAX_PLAYER_NAME_LEN, entry->name,
MAX_PLAYER_NAME_LEN, entry->score);
printf("+%*.*s+\n", lineWidth, lineWidth, stripes);
printf("|%*.*s%s%*.*s|\n", blankSpace, blankSpace, blanks, header, blankSpace, blankSpace, blanks);
printf("+%*.*s+\n", lineWidth, lineWidth, stripes);
for(int i = 0; i < NUMBER_OF_SHOWN_HIGHSCORES && entry != NULL; i++)
{
printf("| %-*s | %*d |\n", MAX_PLAYER_NAME_LEN, entry->name, MAX_PLAYER_NAME_LEN, entry->score);
printf("+%*.*s+\n", lineWidth, lineWidth, stripes);
entry = nextTreeData(NULL);
}
entry = nextTreeData(NULL);
}
}
// Save highscores to file (up to NUMBER_OF_SHOWN_HIGHSCORES).
void saveHighscores(const char *path)
{
FILE *file = fopen(path, "w");
void saveHighscores(const char *path) {
FILE *file = fopen(path, "w");
if(file != NULL)
{
HighscoreEntry *entry = nextTreeData(highscoreTree);
if (file != NULL) {
HighscoreEntry *entry = nextTreeData(highscoreTree);
for(int i = 0; i < NUMBER_OF_SHOWN_HIGHSCORES && entry != NULL; i++)
{
fprintf(file, "%s;%d\n", entry->name, entry->score);
entry = nextTreeData(NULL);
}
fclose(file);
for (int i = 0; i < NUMBER_OF_SHOWN_HIGHSCORES && entry != NULL; i++) {
fprintf(file, "%s;%d\n", entry->name, entry->score);
entry = nextTreeData(NULL);
}
fclose(file);
}
}
// Free all memory used for highscores.
void clearHighscores()
{
clearTree(highscoreTree);
highscoreTree = NULL;
void clearHighscores() {
clearTree(&highscoreTree);
highscoreTree = NULL;
}

132
main.c
View File

@ -1,90 +1,88 @@
#include <stdlib.h>
#include <stdio.h>
#include "highscore.h"
#include "numbers.h"
#include "timer.h"
#include "highscore.h"
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
// Read an unsigned integer from stdin with prompt (retries until valid).
int inputNumber(const char *promptText)
{
unsigned int number;
int numberOfInputs = 0;
int inputNumber(const char *promptText) {
unsigned int number;
int numberOfInputs = 0;
while(numberOfInputs != 1)
{
printf("%s", promptText);
numberOfInputs = scanf("%u", &number);
while(getchar() != '\n') {} // clear input buffer
}
while (numberOfInputs != 1) {
printf("%s", promptText);
numberOfInputs = scanf("%u", &number);
while (getchar() != '\n') {
} // clear input buffer
}
return number;
return number;
}
// Print an array of numbers.
void showNumbers(const unsigned int *numbers, unsigned int len)
{
if(numbers != NULL)
{
printf("Numbers:");
void showNumbers(const unsigned int *numbers, unsigned int len) {
if (numbers != NULL) {
printf("Numbers:");
for(int i = 0; i < len; i++)
printf(" %5d", numbers[i]);
for (int i = 0; i < len; i++)
printf(" %5d", numbers[i]);
printf("\n");
}
printf("\n");
}
}
// Main game loop: generate numbers, ask user for duplicate, measure time, update highscores.
int main(int argc, char *argv[])
{
int exitCode = EXIT_FAILURE;
// Main game loop: generate numbers, ask user for duplicate, measure time,
// update highscores.
int main(int argc, char *argv[]) {
srand(time(NULL)); // seed für srand
int exitCode = EXIT_FAILURE;
if(argc != 2)
{
fprintf(stderr, "Usage: %s <player name>\n", argv[0]);
exitCode = EXIT_FAILURE;
}
else
{
const char *highscorePath = "highscores.txt";
const char *playerName = argv[1];
unsigned int *numbers = NULL;
unsigned int duplicate = 0;
double measuredSeconds;
unsigned int userInput;
unsigned int numberOfElements = 0;
if (argc != 2) {
fprintf(stderr, "Usage: %s <player name>\n", argv[0]);
exitCode = EXIT_FAILURE;
} else {
const char *highscorePath = "highscores.txt";
const char *playerName = argv[1];
unsigned int *numbers = NULL;
unsigned int duplicate = 0;
double measuredSeconds;
unsigned int userInput;
unsigned int numberOfElements = 0;
// ask until valid number of elements (3..1000)
while(numberOfElements < 3 || numberOfElements > 1000)
numberOfElements = inputNumber("Wie viele Zahlen sollen gezeigt werden: ");
// ask until valid number of elements (3..1000)
while (numberOfElements < 3 || numberOfElements > 1000)
numberOfElements =
inputNumber("Wie viele Zahlen sollen gezeigt werden: ");
// create numbers and show them
numbers = createNumbers(numberOfElements);
showNumbers(numbers, numberOfElements);
// create numbers and show them
numbers = createNumbers(numberOfElements);
showNumbers(numbers, numberOfElements);
// measure time while user guesses the duplicate
startTimer();
userInput = inputNumber("Welche Zahl kommt doppelt vor: ");
measuredSeconds = stopTimer();
// measure time while user guesses the duplicate
startTimer();
userInput = inputNumber("Welche Zahl kommt doppelt vor: ");
measuredSeconds = stopTimer();
duplicate = getDuplicate(numbers, numberOfElements);
duplicate = getDuplicate(numbers, numberOfElements);
// check result and update highscores
if(userInput == duplicate)
{
int score = addHighscore(playerName, measuredSeconds, numberOfElements);
printf("Sie haben die korrekte Zahl in %.6lf Sekunde(n) gefunden und %u Punkte erzielt.\n", measuredSeconds, score);
}
else
printf("Leider ist %u nicht korrekt. Richtig waere %u gewesen.\n", userInput, duplicate);
// check result and update highscores
if (userInput == duplicate) {
int score = addHighscore(playerName, measuredSeconds, numberOfElements);
printf("Sie haben die korrekte Zahl in %.6lf Sekunde(n) gefunden und %u "
"Punkte erzielt.\n",
measuredSeconds, score);
} else
printf("Leider ist %u nicht korrekt. Richtig waere %u gewesen.\n",
userInput, duplicate);
loadHighscores(highscorePath);
showHighscores();
saveHighscores(highscorePath);
clearHighscores();
loadHighscores(highscorePath);
showHighscores();
saveHighscores(highscorePath);
clearHighscores();
exitCode = EXIT_SUCCESS;
}
exitCode = EXIT_SUCCESS;
}
return exitCode;
return exitCode;
}

105
numbers.c
View File

@ -3,18 +3,6 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
int compareUnsignedInt(const void *a, const void *b) {
unsigned int x = *(unsigned int *)a;
unsigned int y = *(unsigned int *)b;
if (x < y)
return -1;
if (x > y)
return 1;
return 0;
}
// TODO: getDuplicate und createNumbers implementieren
/**Erzeugen eines Arrays mit der vom Nutzer eingegebenen Anzahl an
@ -27,65 +15,82 @@ int compareUnsignedInt(const void *a, const void *b) {
// different, except for two entries. Returns NULL on errors. Use your
// implementation of the binary search tree to check for possible duplicates
// while creating random numbers.
// vergleicht zwei Werte: a<b: -1 a>b: 1 a=b: 0
int compareUnsignedInt(const void *a, const void *b) {
unsigned int x = *(unsigned int *)a;
unsigned int y = *(unsigned int *)b;
return (x < y) ? -1 : (x > y);
}
unsigned int *createNumbers(unsigned int len) {
if (len < 2)
if (len < 2) // Duplikat bei zwei Einträgen sinnlos
return NULL;
unsigned int *arr = malloc(sizeof(unsigned int) * len);
if (!arr)
unsigned int *numbersArray = malloc(
sizeof(unsigned int) * len); // Speicher für das Ausgabearray reservieren:
// Größe eines Eintrags * Größe des Arrays
if (!numbersArray) // Speicher konnte nicht reserviert werden
return NULL;
TreeNode *root = NULL;
srand((unsigned int)time(NULL));
TreeNode *root =
NULL; // Binärbaum zum Generieren der Zufallszahlen ohne Duplikate
for (unsigned int i = 0; i < len - 1; i++) {
unsigned int num;
for (unsigned int i = 0; i < len; i++) {
unsigned int currentNumber;
int isDuplicate;
do {
num = (rand() % (2 * len)) + 1;
do { // mindestens eine Zufallszahl erzeugen
currentNumber = (rand() % (2 * len)) + 1; // Zahlenbereich 1 bis 2*len
isDuplicate = 0;
root = addToTree(root, &num, sizeof(unsigned int), compareUnsignedInt,
&isDuplicate);
} while (isDuplicate); // nur akzeptieren, wenn eindeutig
arr[i] = num;
root = addToTree(root, &currentNumber, sizeof(unsigned int),
compareUnsignedInt,
&isDuplicate); // compareUnsignedInt wird zum Verwenden
// bei Vergleichen übergeben
} while (isDuplicate); // wenn isDuplicate gesetzt wird, muss eine neue Zahl
// erzeugt werden, die Schleife wird wiederholt
numbersArray[i] = currentNumber;
}
// Jetzt gezielt EIN Duplikat erzeugen
unsigned int duplicateIndex = rand() % (len - 1);
arr[len - 1] = arr[duplicateIndex];
// Ein zufälliges Duplikat erzeugen
unsigned int duplicateIndex =
rand() % len; // Index des Duplikats per Zufall bestimmen
unsigned int newIndex;
do {
newIndex = rand() % len;
} while (newIndex == duplicateIndex); // zweiten Index bestimmen, der nicht
// mit dem ersten übereinstimmt
clearTree(root);
return arr;
numbersArray[newIndex] =
numbersArray[duplicateIndex]; // Wert vom ersten Index kopieren
clearTree(&root); // Speicher wieder freigeben, wird nicht mehr benötigt
return numbersArray;
}
// Returns only the only number in numbers which is present twice. Returns zero
// on errors.
unsigned int getDuplicate(const unsigned int *numbers, unsigned int len) {
unsigned int getDuplicate(
const unsigned int *numbers,
unsigned int len) { // array numbers, sowie die Länge wird übergeben
if (!numbers || len < 2)
return 0;
return 0; // fehlerhaftes Array
unsigned int *copy = malloc(sizeof(unsigned int) * len);
if (!copy)
return 0;
TreeNode *root = NULL; // leerer Baum
unsigned int duplicateValue = 0; // Wert des Duplikats
memcpy(copy, numbers, sizeof(unsigned int) * len);
for (unsigned int i = 0; i < len && duplicateValue == 0; i++) { // Schleife
int isDuplicate = 0;
// Sortierung
qsort(copy, len, sizeof(unsigned int), compareUnsignedInt);
// Zahl in den Baum einfügen
root = addToTree(root, &numbers[i], sizeof(unsigned int),
compareUnsignedInt, &isDuplicate);
// Duplikat finden: zwei gleiche nebeneinander
unsigned int duplicate = 0;
for (unsigned int i = 0; i < len - 1; i++) {
if (copy[i] == copy[i + 1]) {
duplicate = copy[i];
break;
// Duplikat erkannt
if (isDuplicate && duplicateValue == 0) {
duplicateValue = numbers[i]; // Duplikat merken, for-Schleife wird beendet
}
}
free(copy);
return duplicate;
clearTree(&root); // Baum freigeben
return duplicateValue; // 0, falls kein Duplikat
}

View File

@ -3,12 +3,14 @@
int compareUnsignedInt(const void *a, const void *b);
// Returns len random numbers between 1 and 2x len in random order which are all different, except for two entries.
// Returns NULL on errors. Use your implementation of the binary search tree to check for possible duplicates while
// creating random numbers.
// Returns len random numbers between 1 and 2x len in random order which are all
// different, except for two entries. Returns NULL on errors. Use your
// implementation of the binary search tree to check for possible duplicates
// while creating random numbers.
unsigned int *createNumbers(unsigned int len);
// Returns only the only number in numbers which is present twice. Returns zero on errors.
// Returns only the only number in numbers which is present twice. Returns zero
// on errors.
unsigned int getDuplicate(const unsigned int *numbers, unsigned int len);
#endif

View File

@ -4,6 +4,7 @@
#include <string.h>
#include "bintree.h"
int compareUnsignedInt(const void *a, const void *b) {
unsigned int x = *(unsigned int *)a;
unsigned int y = *(unsigned int *)b;
@ -21,71 +22,91 @@ void setUp(void) {
root = NULL; // vor jedem Test leeren
}
void tearDown(void) { clearTree(root); }
void tearDown(void) { clearTree(&root); }
// Test, ob addToTree Knoten korrekt hinzufügt
/*TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize,
CompareFctType compareFct, int *isDuplicate) */
void test_addToTree_basic(void) {
int isDup;
unsigned int val = 10;
root = addToTree(root, &val, sizeof(val), compareUnsignedInt, &isDup);
TEST_ASSERT_NOT_NULL(root);
TEST_ASSERT_EQUAL_UINT(10, *(unsigned int *)root->data);
TEST_ASSERT_EQUAL_INT(0, isDup);
TEST_ASSERT_EQUAL_UINT(1, treeSize(root));
int isDuplicate;
unsigned int testInt = 10;
root = addToTree(root, &testInt, sizeof(testInt), compareUnsignedInt,
&isDuplicate);
TEST_ASSERT_NOT_NULL(root); // Knoten wurde erfolgreich erzeugt
TEST_ASSERT_EQUAL_UINT(
10,
*(unsigned int *)root
->data); // Datenzeiger wurde richtig gesetzt, void pointer auf
// unsigned int pointer casten, mit *wird der Wert abgerufen
TEST_ASSERT_EQUAL_INT(0, isDuplicate); // kein Duplikat
TEST_ASSERT_EQUAL_UINT(1, treeSize(root)); // der tree hat einen Eintrag
}
// Test, dass Duplikate erkannt werden
void test_addToTree_duplicate(void) {
int isDup;
unsigned int val1 = 10, val2 = 10;
root = addToTree(root, &val1, sizeof(val1), compareUnsignedInt, &isDup);
TEST_ASSERT_EQUAL_INT(0, isDup);
root = addToTree(root, &val2, sizeof(val2), compareUnsignedInt, &isDup);
TEST_ASSERT_EQUAL_INT(1, isDup);
TEST_ASSERT_EQUAL_UINT(1, treeSize(root)); // Duplikate nicht hinzufügen
int isDuplicate;
unsigned int val1 = 10, val2 = 10; // Duplikate
root = addToTree(root, &val1, sizeof(val1), compareUnsignedInt,
&isDuplicate); // val 1 zum leeren Baum hinzufügen
TEST_ASSERT_EQUAL_INT(0, isDuplicate); // erster Knoten->kein Duplikat
root = addToTree(root, &val2, sizeof(val2), compareUnsignedInt,
&isDuplicate); // val 2 hinzufügen
TEST_ASSERT_EQUAL_INT(1, isDuplicate); // Duplikat erkannt
TEST_ASSERT_EQUAL_UINT(1,
treeSize(root)); // Duplikate wurde nicht hinzugefügt
}
// Test nextTreeData Traversierung
void test_nextTreeData_in_order(void) {
unsigned int values[] = {20, 10, 30};
int isDup;
unsigned int values[] = {20, 10, 30}; // erwartete Ausgabe: 10 -> 20 -> 30
int isDuplicate;
for (int i = 0; i < 3; i++) {
root = addToTree(root, &values[i], sizeof(values[i]), compareUnsignedInt,
&isDup);
&isDuplicate); // Baum füllen
}
unsigned int expected[] = {10, 20, 30};
int idx = 0;
unsigned int expected[] = {10, 20, 30}; // erwartet in Order Reihenfolge
int valueID = 0;
void *data;
// **Neue Iteration starten**
// Neue Iteration starten
data = nextTreeData(root);
while (data != NULL) {
TEST_ASSERT_EQUAL_UINT(expected[idx], *(unsigned int *)data);
idx++;
TEST_ASSERT_EQUAL_UINT(expected[valueID],
*(unsigned int *)data); // entspricht erwartetem Wert
valueID++;
data = nextTreeData(NULL); // weitere Elemente abrufen
}
TEST_ASSERT_EQUAL_INT(3, idx); // alle 3 Knoten besucht
TEST_ASSERT_EQUAL_INT(3, valueID); // alle 3 Knoten besucht
}
// Test clearTree gibt Speicher frei
void test_clearTree(void) {
unsigned int val = 42;
int isDup;
root = addToTree(root, &val, sizeof(val), compareUnsignedInt, &isDup);
clearTree(root);
root = NULL; // clearTree löscht nicht die root-Variable selbst
// Testet, dass clearTree Speicher freigibt und Root auf NULL setzt
void test_clearTree_sets_root_null(void) {
int isDuplicate;
unsigned int val1 = 10, val2 = 20;
root = addToTree(root, &val1, sizeof(val1), compareUnsignedInt, &isDuplicate);
root = addToTree(root, &val2, sizeof(val2), compareUnsignedInt, &isDuplicate);
// Vor dem Clear prüfen, dass Root nicht NULL ist
TEST_ASSERT_NOT_NULL(root);
clearTree(&root);
// Nach dem Clear muss Root auf NULL gesetzt sein
TEST_ASSERT_NULL(root);
}
// Test treeSize zählt korrekt
void test_treeSize(void) {
unsigned int vals[] = {10, 20, 5};
int isDup;
unsigned int testInts[] = {10, 20, 5};
int isDuplicate;
for (int i = 0; i < 3; i++) {
root =
addToTree(root, &vals[i], sizeof(vals[i]), compareUnsignedInt, &isDup);
root = addToTree(root, &testInts[i], sizeof(testInts[i]),
compareUnsignedInt, &isDuplicate);
}
TEST_ASSERT_EQUAL_UINT(3, treeSize(root));
}
@ -99,7 +120,7 @@ int main(void) {
RUN_TEST(test_addToTree_basic);
RUN_TEST(test_addToTree_duplicate);
RUN_TEST(test_nextTreeData_in_order);
RUN_TEST(test_clearTree);
RUN_TEST(test_clearTree_sets_root_null);
RUN_TEST(test_treeSize);
return UNITY_END();
}

View File

@ -7,40 +7,52 @@
#define TEST_ARRAY_LEN 100
void test_createNumbers_length(void) {
unsigned int *arr = createNumbers(TEST_ARRAY_LEN);
TEST_ASSERT_NOT_NULL(arr);
free(arr);
// Speicher für ein Array wird reserviert
void test_createNumbers_length(void) { // erstellt ein Array der Länge hundert
unsigned int *testArray = createNumbers(TEST_ARRAY_LEN);
TEST_ASSERT_NOT_NULL(testArray);
free(testArray);
}
// Duplikat ist genau einmal vorhanden
void test_createNumbers_single_duplicate(void) {
unsigned int *arr = createNumbers(TEST_ARRAY_LEN);
TEST_ASSERT_NOT_NULL(arr);
unsigned int *testArray = createNumbers(TEST_ARRAY_LEN); // Array erstellen
TEST_ASSERT_NOT_NULL(testArray); // Speicher konnte reserviert werden
unsigned int duplicate = getDuplicate(arr, TEST_ARRAY_LEN);
TEST_ASSERT_TRUE(duplicate > 0);
unsigned int duplicate =
getDuplicate(testArray, TEST_ARRAY_LEN); // Duplikat holen
TEST_ASSERT_TRUE(duplicate > 0); // Duplikat ist größer als 0
TEST_ASSERT_TRUE(
duplicate <
(2 * TEST_ARRAY_LEN)); // Duplikat liegt im vorgegebenen Zahlenbereich
unsigned int count = 0;
for (unsigned int i = 0; i < TEST_ARRAY_LEN; i++) {
if (arr[i] == duplicate) {
unsigned int count = 0; // Anzahl der Duplikate
for (unsigned int i = 0; i < TEST_ARRAY_LEN;
i++) { // Einträge des testArrays auf Duplikate prüfen
if (testArray[i] == duplicate) {
count++;
}
}
TEST_ASSERT_EQUAL_UINT(2, count);
TEST_ASSERT_EQUAL_UINT(2, count); // Duplikat zwei mal vorhanden
free(arr);
free(testArray); // Speicher freigeben
}
void test_getDuplicate_manual_array(void) {
// getDuplicate testen
void test_getDuplicate_manual_array(
void) { // duplikat in fremden array wird gefunden
unsigned int numbers[5] = {10, 20, 30, 40, 20};
unsigned int dup = getDuplicate(numbers, 5);
TEST_ASSERT_EQUAL_UINT(20, dup);
unsigned int duplicate = getDuplicate(numbers, 5);
TEST_ASSERT_EQUAL_UINT(20, duplicate);
}
// getDuplicate erkennt fehlerhaftes Array
void test_getDuplicate_invalid_input(void) {
TEST_ASSERT_EQUAL_UINT(0, getDuplicate(NULL, 5));
unsigned int arr[1] = {42};
TEST_ASSERT_EQUAL_UINT(0, getDuplicate(arr, 1));
TEST_ASSERT_EQUAL_UINT(
0, getDuplicate(NULL, 5)); // unsigned int getDuplicate(const unsigned int
// *numbers, unsigned int len)
unsigned int testArray[1] = {2};
TEST_ASSERT_EQUAL_UINT(0, getDuplicate(testArray, 1));
}
void setUp(void) {}