Compare commits
19 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d9222b83b4 | ||
|
|
9bf5e6a541 | ||
|
|
57f9914e2b | ||
|
|
09d7f457dd | ||
|
|
13cb5d8c86 | ||
|
|
6528686fb0 | ||
|
|
a3d0585ac1 | ||
|
|
68563ec297 | ||
|
|
55532cbb42 | ||
|
|
d3904ac6e4 | ||
|
|
5e96ec050c | ||
|
|
f42a997683 | ||
|
|
8b44089f23 | ||
|
|
654fb615a2 | ||
|
|
422ac38d54 | ||
|
|
90612e4d04 | ||
|
|
17f4155891 | ||
|
|
a002901e2f | ||
|
|
55b25a227b |
5
.gitignore
vendored
5
.gitignore
vendored
@ -1 +1,4 @@
|
|||||||
highscores.txt
|
doble_initial.exe
|
||||||
|
*.o
|
||||||
|
*.exe
|
||||||
|
highscore.txt
|
||||||
113
bintree.c
113
bintree.c
@ -1,36 +1,111 @@
|
|||||||
#include <string.h>
|
|
||||||
#include "stack.h"
|
|
||||||
#include "bintree.h"
|
#include "bintree.h"
|
||||||
|
#include "stack.h"
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
//TODO: binären Suchbaum implementieren
|
// TODO: binären Suchbaum implementieren
|
||||||
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
|
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
|
||||||
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
|
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
|
||||||
* `treeSize`: zählt die Knoten im Baum (rekursiv),
|
* `treeSize`: zählt die Knoten im Baum (rekursiv),
|
||||||
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
|
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
|
||||||
|
|
||||||
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
|
// typedef int (*CompareFctType)(const void *arg1, const void *arg2);
|
||||||
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
|
// Adds a copy of data's pointer destination to the tree using compareFct for
|
||||||
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
|
// ordering. Accepts duplicates if isDuplicate is NULL, otherwise ignores
|
||||||
{
|
// duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
|
||||||
|
|
||||||
|
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize,
|
||||||
|
CompareFctType compareFct, int *isDuplicate) {
|
||||||
|
|
||||||
|
// isDuplicate initialisieren (auf 0 setzen)
|
||||||
|
if (isDuplicate) {
|
||||||
|
*isDuplicate = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// leerer Baum
|
||||||
|
if (root == NULL) {
|
||||||
|
TreeNode *node = malloc(sizeof(TreeNode));
|
||||||
|
node->data = malloc(dataSize);
|
||||||
|
memcpy(node->data, data, dataSize);
|
||||||
|
node->left = NULL;
|
||||||
|
node->right = NULL;
|
||||||
|
return node;
|
||||||
|
}
|
||||||
|
|
||||||
|
// mit compareFct <0 links >0 rechts =0 Duplikat
|
||||||
|
int cmp = compareFct(data, root->data);
|
||||||
|
|
||||||
|
if (cmp < 0) {
|
||||||
|
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
|
||||||
|
} else if (cmp > 0) {
|
||||||
|
root->right =
|
||||||
|
addToTree(root->right, data, dataSize, compareFct, isDuplicate);
|
||||||
|
} else {
|
||||||
|
// isDuplicate auf 1 setzen
|
||||||
|
if (isDuplicate) {
|
||||||
|
*isDuplicate = 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return root;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
|
// Iterates over the tree given by root. Follows the usage of strtok. If tree is
|
||||||
// Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element,
|
// NULL, the next entry of the last tree given is returned in ordering
|
||||||
// push the top node and push all its left nodes.
|
// direction. Use your implementation of a stack to organize the iterator. Push
|
||||||
void *nextTreeData(TreeNode *root)
|
// the root node and all left nodes first. On returning the next element, push
|
||||||
{
|
// the top node and push all its left nodes.
|
||||||
|
void *nextTreeData(TreeNode *root) {
|
||||||
|
static StackNode *stack = NULL;
|
||||||
|
|
||||||
|
// Neue Iteration starten
|
||||||
|
if (root != NULL) {
|
||||||
|
clearStack(&stack);
|
||||||
|
|
||||||
|
TreeNode *curr = root;
|
||||||
|
while (curr != NULL) {
|
||||||
|
StackNode *oldStack = stack;
|
||||||
|
StackNode *newStack = push(stack, curr);
|
||||||
|
if (newStack == oldStack)
|
||||||
|
return NULL; // push fehlgeschlagen
|
||||||
|
stack = newStack;
|
||||||
|
curr = curr->left;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (stack == NULL)
|
||||||
|
return NULL; // alles durchlaufen
|
||||||
|
|
||||||
|
// Oberstes Element abrufen
|
||||||
|
TreeNode *node = (TreeNode *)top(stack);
|
||||||
|
stack = pop(stack);
|
||||||
|
|
||||||
|
// Rechten Teilbaum pushen
|
||||||
|
TreeNode *curr = node->right;
|
||||||
|
while (curr != NULL) {
|
||||||
|
StackNode *oldStack = stack;
|
||||||
|
StackNode *newStack = push(stack, curr);
|
||||||
|
if (newStack == oldStack)
|
||||||
|
return NULL; // push fehlgeschlagen
|
||||||
|
stack = newStack;
|
||||||
|
curr = curr->left;
|
||||||
|
}
|
||||||
|
return node->data;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Releases all memory resources (including data copies).
|
// Releases all memory resources (including data copies).
|
||||||
void clearTree(TreeNode *root)
|
void clearTree(TreeNode *root) {
|
||||||
{
|
if (root == NULL)
|
||||||
|
return;
|
||||||
|
|
||||||
|
clearTree(root->left);
|
||||||
|
clearTree(root->right);
|
||||||
|
|
||||||
|
free(root->data);
|
||||||
|
free(root);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the number of entries in the tree given by root.
|
// Returns the number of entries in the tree given by root.
|
||||||
unsigned int treeSize(const TreeNode *root)
|
unsigned int treeSize(const TreeNode *root) {
|
||||||
{
|
|
||||||
|
|
||||||
|
if (root == NULL)
|
||||||
|
return 0;
|
||||||
|
return 1 + treeSize(root->left) + treeSize(root->right);
|
||||||
}
|
}
|
||||||
25
bintree.h
25
bintree.h
@ -5,19 +5,22 @@
|
|||||||
|
|
||||||
typedef int (*CompareFctType)(const void *arg1, const void *arg2);
|
typedef int (*CompareFctType)(const void *arg1, const void *arg2);
|
||||||
|
|
||||||
typedef struct node
|
typedef struct node {
|
||||||
{
|
void *data;
|
||||||
void *data;
|
struct node *left;
|
||||||
struct node *left;
|
struct node *right;
|
||||||
struct node *right;
|
|
||||||
} TreeNode;
|
} TreeNode;
|
||||||
|
|
||||||
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
|
// Adds a copy of data's pointer destination to the tree using compareFct for
|
||||||
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
|
// ordering. Accepts duplicates if isDuplicate is NULL, otherwise ignores
|
||||||
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate);
|
// duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
|
||||||
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
|
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize,
|
||||||
// Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element,
|
CompareFctType compareFct, int *isDuplicate);
|
||||||
// push the top node and push all its left nodes.
|
// Iterates over the tree given by root. Follows the usage of strtok. If tree is
|
||||||
|
// NULL, the next entry of the last tree given is returned in ordering
|
||||||
|
// direction. Use your implementation of a stack to organize the iterator. Push
|
||||||
|
// the root node and all left nodes first. On returning the next element, push
|
||||||
|
// the top node and push all its left nodes.
|
||||||
void *nextTreeData(TreeNode *root);
|
void *nextTreeData(TreeNode *root);
|
||||||
// Releases all memory resources (including data copies).
|
// Releases all memory resources (including data copies).
|
||||||
void clearTree(TreeNode *root);
|
void clearTree(TreeNode *root);
|
||||||
|
|||||||
@ -1 +1,10 @@
|
|||||||
player1;3999
|
Kristin;49209
|
||||||
|
Kristin;9959
|
||||||
|
Kristin;9944
|
||||||
|
Kristin;7947
|
||||||
|
Kristin;6962
|
||||||
|
Kristin;5987
|
||||||
|
Kristin;5975
|
||||||
|
krisp;4986
|
||||||
|
krisp;4985
|
||||||
|
Kristin;4972
|
||||||
|
|||||||
43
makefile
43
makefile
@ -24,26 +24,49 @@ doble_initial:
|
|||||||
# --------------------------
|
# --------------------------
|
||||||
# Selbst implementiertes Programm bauen
|
# Selbst implementiertes Programm bauen
|
||||||
# --------------------------
|
# --------------------------
|
||||||
|
# alle Objektdateien
|
||||||
program_obj_files = stack.o bintree.o numbers.o timer.o highscore.o
|
program_obj_files = stack.o bintree.o numbers.o timer.o highscore.o
|
||||||
|
# alle ausführbaren Dateien zu ausführbarem Programm linken
|
||||||
doble : main.o $(program_obj_files)
|
doble : main.o $(program_obj_files)
|
||||||
$(CC) $(FLAGS) $^ -o doble
|
$(CC) $(FLAGS) $^ -o doble
|
||||||
|
# Regel Kompilieren allgemein
|
||||||
$(program_obj_filesobj_files): %.o: %.c
|
$(program_obj_files): %.o: %.c
|
||||||
$(CC) -c $(FLAGS) $^ -o $@
|
$(CC) -c $(FLAGS) $^ -o $@
|
||||||
|
|
||||||
# --------------------------
|
# --------------------------
|
||||||
# Unit Tests
|
# Unit Tests
|
||||||
# --------------------------
|
# --------------------------
|
||||||
unitTests:
|
|
||||||
echo "needs to be implemented"
|
STACK_TEST_BIN = runStackTests
|
||||||
|
NUMBERS_TEST_BIN = runNumbersTests
|
||||||
|
BINARY_TEST_BIN = runBinaryTests
|
||||||
|
|
||||||
|
# --- Stack Tests ---
|
||||||
|
stackTests: stack.o test_stack.o
|
||||||
|
$(CC) $(FLAGS) -I$(unityfolder) -o $(STACK_TEST_BIN) stack.o test_stack.o $(unityfolder)/unity.c
|
||||||
|
|
||||||
|
test_stack.o: test_stack.c
|
||||||
|
$(CC) $(FLAGS) -I$(unityfolder) -c test_stack.c -o test_stack.o
|
||||||
|
|
||||||
|
|
||||||
|
# --- Numbers Tests ---
|
||||||
|
numbersTests: numbers.o bintree.o stack.o test_numbers.o
|
||||||
|
$(CC) $(FLAGS) -I$(unityfolder) -o $(NUMBERS_TEST_BIN) numbers.o bintree.o stack.o test_numbers.o $(unityfolder)/unity.c
|
||||||
|
|
||||||
|
test_numbers.o: test_numbers.c
|
||||||
|
$(CC) $(FLAGS) -I$(unityfolder) -c test_numbers.c -o test_numbers.o
|
||||||
|
|
||||||
|
|
||||||
|
# --- Binary Tree Tests ---
|
||||||
|
binaryTests: bintree.o stack.o test_binary.o
|
||||||
|
$(CC) $(FLAGS) -I$(unityfolder) -o $(BINARY_TEST_BIN) bintree.o stack.o test_binary.o $(unityfolder)/unity.c
|
||||||
|
|
||||||
|
test_binary.o: test_binary.c
|
||||||
|
$(CC) $(FLAGS) -I$(unityfolder) -c test_binary.c -o test_binary.o
|
||||||
|
|
||||||
|
|
||||||
# --------------------------
|
# --------------------------
|
||||||
# Clean
|
# Clean
|
||||||
# --------------------------
|
# --------------------------
|
||||||
clean:
|
clean:
|
||||||
ifeq ($(OS),Windows_NT)
|
rm -f *.o doble $(STACK_TEST_BIN) $(NUMBERS_TEST_BIN) $(BINARY_TEST_BIN)
|
||||||
del /f *.o doble
|
|
||||||
else
|
|
||||||
rm -f *.o doble
|
|
||||||
endif
|
|
||||||
101
numbers.c
101
numbers.c
@ -1,26 +1,91 @@
|
|||||||
#include <stdlib.h>
|
|
||||||
#include <stdio.h>
|
|
||||||
#include <time.h>
|
|
||||||
#include <string.h>
|
|
||||||
#include "numbers.h"
|
#include "numbers.h"
|
||||||
#include "bintree.h"
|
#include "bintree.h"
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <string.h>
|
||||||
|
#include <time.h>
|
||||||
|
|
||||||
//TODO: getDuplicate und createNumbers implementieren
|
int compareUnsignedInt(const void *a, const void *b) {
|
||||||
/* * * Erzeugen eines Arrays mit der vom Nutzer eingegebenen Anzahl an Zufallszahlen.
|
unsigned int x = *(unsigned int *)a;
|
||||||
* Sicherstellen, dass beim Befüllen keine Duplikate entstehen.
|
unsigned int y = *(unsigned int *)b;
|
||||||
* Duplizieren eines zufälligen Eintrags im Array.
|
|
||||||
* in `getDuplicate()`: Sortieren des Arrays und Erkennen der doppelten Zahl durch Vergleich benachbarter Elemente. */
|
|
||||||
|
|
||||||
// Returns len random numbers between 1 and 2x len in random order which are all different, except for two entries.
|
|
||||||
// Returns NULL on errors. Use your implementation of the binary search tree to check for possible duplicates while
|
|
||||||
// creating random numbers.
|
|
||||||
unsigned int *createNumbers(unsigned int len)
|
|
||||||
{
|
|
||||||
|
|
||||||
|
if (x < y)
|
||||||
|
return -1;
|
||||||
|
if (x > y)
|
||||||
|
return 1;
|
||||||
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns only the only number in numbers which is present twice. Returns zero on errors.
|
// TODO: getDuplicate und createNumbers implementieren
|
||||||
unsigned int getDuplicate(const unsigned int numbers[], unsigned int len)
|
/**Erzeugen eines Arrays mit der vom Nutzer eingegebenen Anzahl an
|
||||||
{
|
* Zufallszahlen. Sicherstellen, dass beim Befüllen keine Duplikate entstehen.
|
||||||
|
* Duplizieren eines zufälligen Eintrags im Array.
|
||||||
|
* in `getDuplicate()`: Sortieren des Arrays und Erkennen der doppelten Zahl
|
||||||
|
* durch Vergleich benachbarter Elemente. */
|
||||||
|
|
||||||
|
// Returns len random numbers between 1 and 2x len in random order which are all
|
||||||
|
// different, except for two entries. Returns NULL on errors. Use your
|
||||||
|
// implementation of the binary search tree to check for possible duplicates
|
||||||
|
// while creating random numbers.
|
||||||
|
unsigned int *createNumbers(unsigned int len) {
|
||||||
|
if (len < 2)
|
||||||
|
return NULL;
|
||||||
|
|
||||||
|
unsigned int *arr = malloc(sizeof(unsigned int) * len);
|
||||||
|
if (!arr)
|
||||||
|
return NULL;
|
||||||
|
|
||||||
|
TreeNode *root = NULL;
|
||||||
|
srand((unsigned int)time(NULL));
|
||||||
|
|
||||||
|
for (unsigned int i = 0; i < len - 1; i++) {
|
||||||
|
unsigned int num;
|
||||||
|
int isDuplicate;
|
||||||
|
|
||||||
|
do {
|
||||||
|
num = (rand() % (2 * len)) + 1;
|
||||||
|
isDuplicate = 0;
|
||||||
|
|
||||||
|
root = addToTree(root, &num, sizeof(unsigned int), compareUnsignedInt,
|
||||||
|
&isDuplicate);
|
||||||
|
|
||||||
|
} while (isDuplicate); // nur akzeptieren, wenn eindeutig
|
||||||
|
|
||||||
|
arr[i] = num;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Jetzt gezielt EIN Duplikat erzeugen
|
||||||
|
unsigned int duplicateIndex = rand() % (len - 1);
|
||||||
|
arr[len - 1] = arr[duplicateIndex];
|
||||||
|
|
||||||
|
clearTree(root);
|
||||||
|
return arr;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Returns only the only number in numbers which is present twice. Returns zero
|
||||||
|
// on errors.
|
||||||
|
unsigned int getDuplicate(const unsigned int numbers[], unsigned int len) {
|
||||||
|
if (!numbers || len < 2)
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
unsigned int *copy = malloc(sizeof(unsigned int) * len);
|
||||||
|
if (!copy)
|
||||||
|
return 0;
|
||||||
|
|
||||||
|
memcpy(copy, numbers, sizeof(unsigned int) * len);
|
||||||
|
|
||||||
|
// Sortierung
|
||||||
|
qsort(copy, len, sizeof(unsigned int), compareUnsignedInt);
|
||||||
|
|
||||||
|
// Duplikat finden: zwei gleiche nebeneinander
|
||||||
|
unsigned int duplicate = 0;
|
||||||
|
for (unsigned int i = 0; i < len - 1; i++) {
|
||||||
|
if (copy[i] == copy[i + 1]) {
|
||||||
|
duplicate = copy[i];
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
free(copy);
|
||||||
|
return duplicate;
|
||||||
}
|
}
|
||||||
103
stack.c
103
stack.c
@ -1,33 +1,100 @@
|
|||||||
#include <stdlib.h>
|
|
||||||
#include "stack.h"
|
#include "stack.h"
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
|
||||||
//TODO: grundlegende Stackfunktionen implementieren:
|
/*typedef struct {
|
||||||
/* * `push`: legt ein Element oben auf den Stack,
|
|
||||||
* `pop`: entfernt das oberste Element,
|
|
||||||
* `top`: liefert das oberste Element zurück,
|
|
||||||
* `clearStack`: gibt den gesamten Speicher frei. */
|
|
||||||
|
|
||||||
// Pushes data as pointer onto the stack.
|
void *data;
|
||||||
StackNode *push(StackNode *stack, void *data)
|
struct StackNode *next;
|
||||||
{
|
struct StackNode *prev;
|
||||||
|
|
||||||
|
} StackNode;*/
|
||||||
|
|
||||||
|
// TODO: grundlegende Stackfunktionen implementieren:
|
||||||
|
/* `push`: legt ein Element oben auf den Stack,
|
||||||
|
* `pop`: entfernt das oberste Element,
|
||||||
|
* `top`: liefert das oberste Element zurück,
|
||||||
|
* `clearStack`: gibt den gesamten Speicher frei. */
|
||||||
|
|
||||||
|
// [A] -> [B] -> [C] -> NULL
|
||||||
|
// stack -> stack.next
|
||||||
|
|
||||||
|
// Funktion zum erstellen neuer nodes
|
||||||
|
StackNode *createNode(void *data) {
|
||||||
|
// Speicher reservieren
|
||||||
|
StackNode *node = malloc(sizeof(StackNode));
|
||||||
|
// Speicher konnte nicht reserviert werden
|
||||||
|
if (node == NULL)
|
||||||
|
return NULL;
|
||||||
|
|
||||||
|
node->data = data;
|
||||||
|
node->next = NULL;
|
||||||
|
node->prev = NULL;
|
||||||
|
|
||||||
|
return node;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be
|
// Pushes data as pointer onto the stack.
|
||||||
// freed by caller.)
|
StackNode *push(StackNode *stack, void *data) {
|
||||||
StackNode *pop(StackNode *stack)
|
|
||||||
{
|
|
||||||
|
|
||||||
|
StackNode *newNode = createNode(data);
|
||||||
|
|
||||||
|
// Fehler beim Reservieren des Speichers, stack wird unverändert zurückgegeben
|
||||||
|
if (newNode == NULL) {
|
||||||
|
return stack;
|
||||||
|
}
|
||||||
|
|
||||||
|
// der aktuelle Kopf wird der nächste Node
|
||||||
|
newNode->next = stack;
|
||||||
|
|
||||||
|
// bisheriger Kopf bekommt Pointer auf oberstes Element
|
||||||
|
if (stack != NULL) {
|
||||||
|
stack->prev = newNode;
|
||||||
|
}
|
||||||
|
|
||||||
|
return newNode; // neuer Kopf wird zurückgegeben
|
||||||
|
}
|
||||||
|
|
||||||
|
// Deletes the top element of the stack (latest added element) and releases its
|
||||||
|
// memory. (Pointer to data has to be freed by caller.)
|
||||||
|
StackNode *pop(StackNode *stack) {
|
||||||
|
|
||||||
|
// Stack ohne Elemente
|
||||||
|
if (stack == NULL)
|
||||||
|
return NULL;
|
||||||
|
|
||||||
|
// Element unter Kopf wird als nextNode gespeichert
|
||||||
|
StackNode *nextNode = stack->next;
|
||||||
|
if (nextNode != NULL) {
|
||||||
|
nextNode->prev = NULL; // der Zeiger zum Kopf wird auf NULL gesetzt
|
||||||
|
}
|
||||||
|
|
||||||
|
free(stack);
|
||||||
|
|
||||||
|
stack = NULL; // Speicher des Kopfes freigeben
|
||||||
|
|
||||||
|
return nextNode; // neuen Kopf zurückgeben
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the data of the top element.
|
// Returns the data of the top element.
|
||||||
void *top(StackNode *stack)
|
void *top(StackNode *stack) {
|
||||||
{
|
// wenn stack leer ist, wird NULL zurückgegeben
|
||||||
|
// Zeiger auf Daten des obersten Elements
|
||||||
|
return stack ? stack->data : NULL;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Clears stack and releases all memory.
|
// Clears stack and releases all memory.
|
||||||
void clearStack(StackNode *stack)
|
void clearStack(StackNode **stack) { // Zeiger auf den Zeiger auf den Stackkopf
|
||||||
{
|
// verändert den Zeiger selbst, mit *stack lokale Kopie
|
||||||
|
// im Aufruf &stack verwenden
|
||||||
|
while (*stack != NULL) {
|
||||||
|
|
||||||
|
(*stack)->prev = NULL; // späteren Pointerzugriff verhindern
|
||||||
|
StackNode *next = (*stack)->next; // nächstes Element speichern
|
||||||
|
|
||||||
|
(*stack)->next = NULL; // späteren Pointerzugriff verhindern
|
||||||
|
|
||||||
|
free(*stack); // aktuelles Element freigeben
|
||||||
|
*stack = next; // Zeiger auf nächsten Knoten setzen
|
||||||
|
}
|
||||||
}
|
}
|
||||||
24
stack.h
24
stack.h
@ -1,25 +1,35 @@
|
|||||||
#ifndef STACK_H
|
#ifndef STACK_H
|
||||||
#define STACK_H
|
#define STACK_H
|
||||||
|
|
||||||
/* A stack is a special type of queue which uses the LIFO (last in, first out) principle.
|
/* A stack is a special type of queue which uses the LIFO (last in, first out)
|
||||||
This means that with each new element all other elements are pushed deeper into the stack.
|
principle. This means that with each new element all other elements are pushed
|
||||||
The latest element is taken from the stack. */
|
deeper into the stack. The latest element is taken from the stack. */
|
||||||
|
|
||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
|
|
||||||
//TODO: passenden Datentyp als struct anlegen
|
// TODO: passenden Datentyp als struct anlegen
|
||||||
|
|
||||||
|
typedef struct StackNode {
|
||||||
|
|
||||||
|
void *data;
|
||||||
|
struct StackNode *next;
|
||||||
|
struct StackNode *prev;
|
||||||
|
|
||||||
|
} StackNode;
|
||||||
|
|
||||||
|
StackNode *createNode(void *data);
|
||||||
|
|
||||||
// Pushes data as pointer onto the stack.
|
// Pushes data as pointer onto the stack.
|
||||||
StackNode *push(StackNode *stack, void *data);
|
StackNode *push(StackNode *stack, void *data);
|
||||||
|
|
||||||
// Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be
|
// Deletes the top element of the stack (latest added element) and releases its
|
||||||
// freed by caller.)
|
// memory. (Pointer to data has to be freed by caller.)
|
||||||
StackNode *pop(StackNode *stack);
|
StackNode *pop(StackNode *stack);
|
||||||
|
|
||||||
// Returns the data of the top element.
|
// Returns the data of the top element.
|
||||||
void *top(StackNode *stack);
|
void *top(StackNode *stack);
|
||||||
|
|
||||||
// Clears stack and releases all memory.
|
// Clears stack and releases all memory.
|
||||||
void clearStack(StackNode *stack);
|
void clearStack(StackNode **stack);
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|||||||
105
test_binary.c
Normal file
105
test_binary.c
Normal file
@ -0,0 +1,105 @@
|
|||||||
|
#include "unity.h"
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
|
#include "bintree.h"
|
||||||
|
int compareUnsignedInt(const void *a, const void *b) {
|
||||||
|
unsigned int x = *(unsigned int *)a;
|
||||||
|
unsigned int y = *(unsigned int *)b;
|
||||||
|
|
||||||
|
if (x < y)
|
||||||
|
return -1;
|
||||||
|
if (x > y)
|
||||||
|
return 1;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
TreeNode *root = NULL;
|
||||||
|
|
||||||
|
void setUp(void) {
|
||||||
|
root = NULL; // vor jedem Test leeren
|
||||||
|
}
|
||||||
|
|
||||||
|
void tearDown(void) { clearTree(root); }
|
||||||
|
|
||||||
|
// Test, ob addToTree Knoten korrekt hinzufügt
|
||||||
|
void test_addToTree_basic(void) {
|
||||||
|
int isDup;
|
||||||
|
unsigned int val = 10;
|
||||||
|
root = addToTree(root, &val, sizeof(val), compareUnsignedInt, &isDup);
|
||||||
|
TEST_ASSERT_NOT_NULL(root);
|
||||||
|
TEST_ASSERT_EQUAL_UINT(10, *(unsigned int *)root->data);
|
||||||
|
TEST_ASSERT_EQUAL_INT(0, isDup);
|
||||||
|
TEST_ASSERT_EQUAL_UINT(1, treeSize(root));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Test, dass Duplikate erkannt werden
|
||||||
|
void test_addToTree_duplicate(void) {
|
||||||
|
int isDup;
|
||||||
|
unsigned int val1 = 10, val2 = 10;
|
||||||
|
root = addToTree(root, &val1, sizeof(val1), compareUnsignedInt, &isDup);
|
||||||
|
TEST_ASSERT_EQUAL_INT(0, isDup);
|
||||||
|
root = addToTree(root, &val2, sizeof(val2), compareUnsignedInt, &isDup);
|
||||||
|
TEST_ASSERT_EQUAL_INT(1, isDup);
|
||||||
|
TEST_ASSERT_EQUAL_UINT(1, treeSize(root)); // Duplikate nicht hinzufügen
|
||||||
|
}
|
||||||
|
|
||||||
|
// Test nextTreeData Traversierung
|
||||||
|
void test_nextTreeData_in_order(void) {
|
||||||
|
unsigned int values[] = {20, 10, 30};
|
||||||
|
int isDup;
|
||||||
|
for (int i = 0; i < 3; i++) {
|
||||||
|
root = addToTree(root, &values[i], sizeof(values[i]), compareUnsignedInt,
|
||||||
|
&isDup);
|
||||||
|
}
|
||||||
|
|
||||||
|
unsigned int expected[] = {10, 20, 30};
|
||||||
|
int idx = 0;
|
||||||
|
void *data;
|
||||||
|
|
||||||
|
// **Neue Iteration starten**
|
||||||
|
data = nextTreeData(root);
|
||||||
|
while (data != NULL) {
|
||||||
|
TEST_ASSERT_EQUAL_UINT(expected[idx], *(unsigned int *)data);
|
||||||
|
idx++;
|
||||||
|
data = nextTreeData(NULL); // weitere Elemente abrufen
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_ASSERT_EQUAL_INT(3, idx); // alle 3 Knoten besucht
|
||||||
|
}
|
||||||
|
|
||||||
|
// Test clearTree gibt Speicher frei
|
||||||
|
void test_clearTree(void) {
|
||||||
|
unsigned int val = 42;
|
||||||
|
int isDup;
|
||||||
|
root = addToTree(root, &val, sizeof(val), compareUnsignedInt, &isDup);
|
||||||
|
clearTree(root);
|
||||||
|
root = NULL; // clearTree löscht nicht die root-Variable selbst
|
||||||
|
TEST_ASSERT_NULL(root);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Test treeSize zählt korrekt
|
||||||
|
void test_treeSize(void) {
|
||||||
|
unsigned int vals[] = {10, 20, 5};
|
||||||
|
int isDup;
|
||||||
|
for (int i = 0; i < 3; i++) {
|
||||||
|
root =
|
||||||
|
addToTree(root, &vals[i], sizeof(vals[i]), compareUnsignedInt, &isDup);
|
||||||
|
}
|
||||||
|
TEST_ASSERT_EQUAL_UINT(3, treeSize(root));
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(void) {
|
||||||
|
UNITY_BEGIN();
|
||||||
|
|
||||||
|
printf(
|
||||||
|
"\n------------------------binarytree test------------------------\n\n");
|
||||||
|
|
||||||
|
RUN_TEST(test_addToTree_basic);
|
||||||
|
RUN_TEST(test_addToTree_duplicate);
|
||||||
|
RUN_TEST(test_nextTreeData_in_order);
|
||||||
|
RUN_TEST(test_clearTree);
|
||||||
|
RUN_TEST(test_treeSize);
|
||||||
|
return UNITY_END();
|
||||||
|
}
|
||||||
61
test_numbers.c
Normal file
61
test_numbers.c
Normal file
@ -0,0 +1,61 @@
|
|||||||
|
#include "unity.h"
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
|
#include "numbers.h"
|
||||||
|
|
||||||
|
#define TEST_ARRAY_LEN 100
|
||||||
|
|
||||||
|
void test_createNumbers_length(void) {
|
||||||
|
unsigned int *arr = createNumbers(TEST_ARRAY_LEN);
|
||||||
|
TEST_ASSERT_NOT_NULL(arr);
|
||||||
|
free(arr);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_createNumbers_single_duplicate(void) {
|
||||||
|
unsigned int *arr = createNumbers(TEST_ARRAY_LEN);
|
||||||
|
TEST_ASSERT_NOT_NULL(arr);
|
||||||
|
|
||||||
|
unsigned int duplicate = getDuplicate(arr, TEST_ARRAY_LEN);
|
||||||
|
TEST_ASSERT_TRUE(duplicate > 0);
|
||||||
|
|
||||||
|
unsigned int count = 0;
|
||||||
|
for (unsigned int i = 0; i < TEST_ARRAY_LEN; i++) {
|
||||||
|
if (arr[i] == duplicate) {
|
||||||
|
count++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
TEST_ASSERT_EQUAL_UINT(2, count);
|
||||||
|
|
||||||
|
free(arr);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_getDuplicate_manual_array(void) {
|
||||||
|
unsigned int numbers[5] = {10, 20, 30, 40, 20};
|
||||||
|
unsigned int dup = getDuplicate(numbers, 5);
|
||||||
|
TEST_ASSERT_EQUAL_UINT(20, dup);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_getDuplicate_invalid_input(void) {
|
||||||
|
TEST_ASSERT_EQUAL_UINT(0, getDuplicate(NULL, 5));
|
||||||
|
unsigned int arr[1] = {42};
|
||||||
|
TEST_ASSERT_EQUAL_UINT(0, getDuplicate(arr, 1));
|
||||||
|
}
|
||||||
|
|
||||||
|
void setUp(void) {}
|
||||||
|
void tearDown(void) {}
|
||||||
|
|
||||||
|
int main(void) {
|
||||||
|
|
||||||
|
UNITY_BEGIN();
|
||||||
|
|
||||||
|
printf("\n------------------------numbers test------------------------\n\n");
|
||||||
|
|
||||||
|
RUN_TEST(test_createNumbers_length);
|
||||||
|
RUN_TEST(test_createNumbers_single_duplicate);
|
||||||
|
RUN_TEST(test_getDuplicate_manual_array);
|
||||||
|
RUN_TEST(test_getDuplicate_invalid_input);
|
||||||
|
|
||||||
|
return UNITY_END();
|
||||||
|
}
|
||||||
143
test_stack.c
Normal file
143
test_stack.c
Normal file
@ -0,0 +1,143 @@
|
|||||||
|
#include "unity.h"
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
|
#include "stack.h"
|
||||||
|
|
||||||
|
// StackNode *createNode(void *data) testen
|
||||||
|
void test_createNode(void) {
|
||||||
|
|
||||||
|
int testInt = 26;
|
||||||
|
StackNode *testNode = createNode(&testInt); // Adresse des testInts
|
||||||
|
|
||||||
|
TEST_ASSERT_NOT_NULL(
|
||||||
|
testNode); // Speicher konnte reserviert werden, malloc ist nicht NULL
|
||||||
|
TEST_ASSERT_EQUAL_PTR(&testInt, testNode->data); // data pointer gesetzt
|
||||||
|
TEST_ASSERT_NULL(testNode->next); // vorheriger und nächster Eintrag NULL
|
||||||
|
TEST_ASSERT_NULL(testNode->prev);
|
||||||
|
|
||||||
|
free(testNode); // Speicher freigeben
|
||||||
|
}
|
||||||
|
|
||||||
|
// StackNode *push(StackNode *stack, void *data) testen
|
||||||
|
void test_pushDataToStack(void) {
|
||||||
|
|
||||||
|
int testInts[] = {27, 28};
|
||||||
|
|
||||||
|
StackNode *testStack = NULL; // leeren testStack initialisieren
|
||||||
|
|
||||||
|
testStack =
|
||||||
|
push(testStack, &testInts[0]); // leerer Stack mit Adresse des testInts
|
||||||
|
|
||||||
|
TEST_ASSERT_NOT_NULL(testStack); // im Fehlerfall wird testStack unverändert
|
||||||
|
// zurückgegeben -> bei Fehler NULL
|
||||||
|
TEST_ASSERT_EQUAL_PTR(&testInts[0], testStack->data); // data pointer gesetzt
|
||||||
|
TEST_ASSERT_NULL(testStack->next); // vorheriger und nächster pointer auf NULL
|
||||||
|
// gesetzt, da es nur einen Knoten gibt
|
||||||
|
TEST_ASSERT_NULL(testStack->prev);
|
||||||
|
|
||||||
|
// zweiter Push
|
||||||
|
StackNode *oldHead = testStack; // bisherigen head speichern
|
||||||
|
testStack = push(testStack, &testInts[1]);
|
||||||
|
|
||||||
|
TEST_ASSERT_NOT_NULL(testStack);
|
||||||
|
TEST_ASSERT_NOT_EQUAL(
|
||||||
|
oldHead,
|
||||||
|
testStack); // bei malloc Fehler wird der head unverändert zurückgegeben
|
||||||
|
|
||||||
|
TEST_ASSERT_EQUAL_PTR(&testInts[0],
|
||||||
|
oldHead->data); // data pointer wurden richtig gesetzt
|
||||||
|
TEST_ASSERT_EQUAL_PTR(&testInts[1], testStack->data);
|
||||||
|
|
||||||
|
// richtige Verkettung: NULL <- testStack -> testStack->next -> oldHead ->
|
||||||
|
// NULL
|
||||||
|
TEST_ASSERT_EQUAL_PTR(oldHead, testStack->next);
|
||||||
|
TEST_ASSERT_EQUAL_PTR(testStack, oldHead->prev);
|
||||||
|
TEST_ASSERT_NULL(testStack->prev);
|
||||||
|
|
||||||
|
// Speicherfreigabe
|
||||||
|
testStack->next = NULL; // pointer ungültig machen, damit nicht ausversehen
|
||||||
|
// später aufgerufen
|
||||||
|
oldHead->prev = NULL;
|
||||||
|
|
||||||
|
free(oldHead);
|
||||||
|
free(testStack);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_deleteTopElement(void) {
|
||||||
|
|
||||||
|
int testInts[] = {10, 20, 30};
|
||||||
|
StackNode *stack = NULL;
|
||||||
|
|
||||||
|
for (int i = 0; i < 3;
|
||||||
|
i++) { // Stack mit drei Elementen, oberestes Element mit data 30
|
||||||
|
stack = push(stack, &testInts[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_ASSERT_EQUAL_PTR(&testInts[2], stack->data); // oberstes Element ist 30
|
||||||
|
|
||||||
|
stack = pop(stack); // oberstes Element löschen
|
||||||
|
TEST_ASSERT_EQUAL_PTR(&testInts[1], stack->data);
|
||||||
|
TEST_ASSERT_NULL(
|
||||||
|
stack->prev); // pointer zum alten head wurde auf NULL gesetzt
|
||||||
|
|
||||||
|
stack = pop(stack);
|
||||||
|
TEST_ASSERT_EQUAL_PTR(&testInts[0], stack->data);
|
||||||
|
TEST_ASSERT_NULL(stack->prev);
|
||||||
|
|
||||||
|
stack = pop(stack); // bei leerem Stack wird NULL zurückgegeben
|
||||||
|
TEST_ASSERT_NULL(stack);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_returnData(void) {
|
||||||
|
|
||||||
|
int testInts[] = {10, 20, 30};
|
||||||
|
StackNode *stack = NULL;
|
||||||
|
|
||||||
|
for (int i = 0; i < 3; i++) {
|
||||||
|
stack = push(stack, &testInts[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_ASSERT_EQUAL_PTR(&testInts[2],
|
||||||
|
top(stack)); // top gibt richtige Adresse zurück
|
||||||
|
stack = pop(stack); // oberstes Element löschen
|
||||||
|
TEST_ASSERT_EQUAL_PTR(&testInts[1], top(stack));
|
||||||
|
|
||||||
|
stack = pop(stack);
|
||||||
|
TEST_ASSERT_EQUAL_PTR(&testInts[0], top(stack));
|
||||||
|
|
||||||
|
stack = pop(stack); // bei leerem Stack wird NULL zurückgegeben
|
||||||
|
TEST_ASSERT_NULL(stack);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_clearStack(void) {
|
||||||
|
int testInts[] = {1, 2, 3, 4, 5};
|
||||||
|
StackNode *stack = NULL;
|
||||||
|
|
||||||
|
for (int i = 0; i < 5; i++) {
|
||||||
|
stack = push(stack, &testInts[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
clearStack(&stack);
|
||||||
|
|
||||||
|
TEST_ASSERT_NULL(stack);
|
||||||
|
}
|
||||||
|
|
||||||
|
void setUp(void) {}
|
||||||
|
void tearDown(void) {}
|
||||||
|
|
||||||
|
int main(void) {
|
||||||
|
|
||||||
|
UNITY_BEGIN();
|
||||||
|
|
||||||
|
printf("\n------------------------stack test------------------------\n\n");
|
||||||
|
|
||||||
|
RUN_TEST(test_createNode);
|
||||||
|
RUN_TEST(test_pushDataToStack);
|
||||||
|
RUN_TEST(test_deleteTopElement);
|
||||||
|
RUN_TEST(test_returnData);
|
||||||
|
RUN_TEST(test_clearStack);
|
||||||
|
|
||||||
|
return UNITY_END();
|
||||||
|
}
|
||||||
Loading…
x
Reference in New Issue
Block a user