forked from freudenreichan/info2Praktikum-NeuronalesNetz
Compare commits
No commits in common. "2a1ff310dbc3408dc1a6613c39cae38ed1f4f258" and "0f0f2f19c3bc297ddad9cb7375a03525f4be5645" have entirely different histories.
2a1ff310db
...
0f0f2f19c3
6
.gitignore
vendored
6
.gitignore
vendored
@ -2,9 +2,3 @@ mnist
|
||||
runTests
|
||||
*.o
|
||||
*.exe
|
||||
.vscode/settings.json
|
||||
.vscode/launch.json
|
||||
.vscode/settings.json
|
||||
.vscode/settings.json
|
||||
runImageInputTests
|
||||
testFile.info2
|
||||
@ -4,8 +4,6 @@
|
||||
#include <string.h>
|
||||
|
||||
#define FILE_HEADER_STRING "__info2_image_file_format__"
|
||||
// define BUFFER 100
|
||||
// 10x10 pixel
|
||||
|
||||
/* ----------------------------------------------------------
|
||||
1. Header prüfen
|
||||
@ -30,7 +28,6 @@ static int readMeta(FILE *file, unsigned short *count, unsigned short *width,
|
||||
return 0;
|
||||
if (fread(height, sizeof(unsigned short), 1, file) != 1)
|
||||
return 0;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -42,14 +39,14 @@ static int readSingleImage(FILE *file, GrayScaleImage *img,
|
||||
img->width = width;
|
||||
img->height = height;
|
||||
|
||||
size_t numPixels = (size_t)width * (size_t)height; // anzahl an pixeln
|
||||
size_t numPixels = (size_t)width * (size_t)height;
|
||||
img->buffer = malloc(numPixels);
|
||||
if (!img->buffer)
|
||||
return 0;
|
||||
|
||||
if (fread(img->buffer, 1, numPixels, file) != numPixels) {
|
||||
free(img->buffer);
|
||||
img->buffer = NULL; // fehler bei ungültiger eingabe
|
||||
img->buffer = NULL;
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
@ -77,11 +74,9 @@ GrayScaleImageSeries *readImages(const char *path) {
|
||||
|
||||
unsigned short count, width, height;
|
||||
if (!readMeta(file, &count, &width, &height)) {
|
||||
|
||||
fclose(file);
|
||||
return NULL;
|
||||
}
|
||||
// printf("%d, %d, %d", count, width, height);
|
||||
|
||||
GrayScaleImageSeries *series = malloc(sizeof(GrayScaleImageSeries));
|
||||
if (!series) {
|
||||
|
||||
@ -126,25 +126,19 @@ void test_readImagesFailsOnWrongFileTag(void) {
|
||||
remove(path);
|
||||
}
|
||||
|
||||
// Test
|
||||
|
||||
void test_read_GrayScale_Pixel(
|
||||
void) { // testet das einlesen eines graustufenbildes von readImages()
|
||||
GrayScaleImageSeries *series = NULL; // enthält später das Bild
|
||||
void test_read_GrayScale_Pixel(void) {
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
const char *path = "testFile.info2";
|
||||
|
||||
prepareImageFile(path, 8, 8, 1,
|
||||
1); // Höhe x Breite in Pixel, Anzahl Bilder und Kategorie
|
||||
prepareImageFile(path, 8, 8, 1, 1);
|
||||
series = readImages(path);
|
||||
|
||||
TEST_ASSERT_NOT_NULL(series); // Speicher reservieren
|
||||
TEST_ASSERT_NOT_NULL(series->images); // Inhalt ist da
|
||||
TEST_ASSERT_EQUAL_UINT(1, series->count); // Anzahl der Bilder stimmt
|
||||
TEST_ASSERT_NOT_NULL(series);
|
||||
TEST_ASSERT_NOT_NULL(series->images);
|
||||
TEST_ASSERT_EQUAL_UINT(1, series->count);
|
||||
|
||||
for (int i = 0; i < (8 * 8); i++) {
|
||||
TEST_ASSERT_EQUAL_UINT8(
|
||||
(GrayScalePixelType)i,
|
||||
series->images[0].buffer[i]); // alle Pixelwerte prüfen
|
||||
TEST_ASSERT_EQUAL_UINT8((GrayScalePixelType)i, series->images[0].buffer[i]);
|
||||
}
|
||||
|
||||
clearSeries(series);
|
||||
|
||||
5
makefile
5
makefile
@ -59,8 +59,7 @@ imageInputTests: imageInput.o imageInputTests.c $(unityfolder)/unity.c
|
||||
# --------------------------
|
||||
clean:
|
||||
ifeq ($(OS),Windows_NT)
|
||||
rm -f *.o mnist runMatrixTests runNeuralNetworkTests runImageInputTests
|
||||
else
|
||||
del /f *.o *.exe
|
||||
else
|
||||
rm -f *.o mnist runMatrixTests runNeuralNetworkTests runImageInputTests
|
||||
endif
|
||||
|
||||
290
matrix.c
290
matrix.c
@ -3,22 +3,35 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
// TODO Matrix-Funktionen implementieren
|
||||
/*typedef struct {
|
||||
unsigned int rows; //Zeilen
|
||||
unsigned int cols; //Spalten
|
||||
MatrixType *buffer; //Zeiger auf Speicherbereich Reihen*Spalten
|
||||
} Matrix;*/
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols) {
|
||||
Matrix matrix;
|
||||
Matrix errorMatrix = {0, 0, NULL};
|
||||
if (rows == 0 || cols == 0) {
|
||||
|
||||
Matrix createMatrix(const unsigned int rows, const unsigned int cols) {
|
||||
if (cols == 0 || rows == 0) {
|
||||
Matrix errorMatrix = {0, 0, NULL};
|
||||
return errorMatrix;
|
||||
}
|
||||
MatrixType *buffer =
|
||||
malloc(rows * cols * sizeof(MatrixType)); // Speicher reservieren, malloc
|
||||
// liefert Zeiger auf Speicher
|
||||
Matrix newMatrix = {rows, cols, buffer}; // neue Matrix nach struct
|
||||
return newMatrix;
|
||||
matrix.rows = rows;
|
||||
matrix.cols = cols;
|
||||
|
||||
matrix.buffer = malloc(rows * cols * sizeof(MatrixType));
|
||||
if (matrix.buffer == NULL) {
|
||||
matrix.rows = 0;
|
||||
matrix.cols = 0;
|
||||
return matrix;
|
||||
}
|
||||
|
||||
for (int i = 0; i < rows; i++) {
|
||||
for (int j = 0; j < cols; j++) {
|
||||
matrix.buffer[i * matrix.cols + j] = UNDEFINED_MATRIX_VALUE;
|
||||
}
|
||||
}
|
||||
return matrix;
|
||||
}
|
||||
void clearMatrix(Matrix *matrix) {
|
||||
|
||||
@ -34,18 +47,18 @@ void setMatrixAt(const MatrixType value, Matrix matrix,
|
||||
const unsigned int rowIdx, // Kopie der Matrix wird übergeben
|
||||
const unsigned int colIdx) {
|
||||
|
||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols) {
|
||||
// Speichergröße nicht überschreiten
|
||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols ||
|
||||
matrix.buffer == NULL) { // Speichergröße nicht überschreiten
|
||||
return;
|
||||
}
|
||||
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
|
||||
// rowIdx * matrix.cols -> Beginn der Zeile colIdx ->Spalte
|
||||
// innerhalb der Zeile
|
||||
|
||||
matrix.buffer[rowIdx * matrix.cols + colIdx] =
|
||||
value; // rowIdx * matrix.cols -> Beginn der Zeile colIdx ->Spalte
|
||||
// innerhalb der Zeile
|
||||
}
|
||||
MatrixType
|
||||
getMatrixAt(const Matrix matrix,
|
||||
const unsigned int rowIdx, // Kopie der Matrix wird übergeben
|
||||
const unsigned int colIdx) {
|
||||
MatrixType getMatrixAt(const Matrix matrix,
|
||||
unsigned int rowIdx, // Kopie der Matrix wird übergeben
|
||||
unsigned int colIdx) {
|
||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols ||
|
||||
matrix.buffer == NULL) { // Speichergröße nicht überschreiten
|
||||
return UNDEFINED_MATRIX_VALUE;
|
||||
@ -55,134 +68,187 @@ getMatrixAt(const Matrix matrix,
|
||||
|
||||
return value;
|
||||
}
|
||||
Matrix broadCastCols(const Matrix matrix, const unsigned int cols) {
|
||||
Matrix copy1 = createMatrix(matrix.rows, cols);
|
||||
for (int r = 0; r < matrix.rows; r++) {
|
||||
MatrixType valueMatrix1 = getMatrixAt(matrix, r, 0);
|
||||
|
||||
Matrix broadCastCols(const Matrix matrix, const unsigned int rows,
|
||||
const unsigned int cols) {
|
||||
|
||||
Matrix copy = createMatrix(
|
||||
rows, cols); // Matrix 1 Kopie erstellen mit Dimensionen von Matrix2
|
||||
for (int r = 0; r < rows; r++) {
|
||||
|
||||
MatrixType value = getMatrixAt(matrix, r, 0);
|
||||
for (int c = 0; c < cols; c++) {
|
||||
setMatrixAt(valueMatrix1, copy1, r, c);
|
||||
|
||||
setMatrixAt(value, copy, r, c);
|
||||
}
|
||||
}
|
||||
return copy1;
|
||||
|
||||
return copy;
|
||||
}
|
||||
Matrix broadCastRows(const Matrix matrix, const unsigned int rows) {
|
||||
Matrix copy1 = createMatrix(rows, matrix.cols);
|
||||
for (int c = 0; c < matrix.cols; c++) {
|
||||
MatrixType valueMatrix1 = getMatrixAt(matrix, 0, c);
|
||||
Matrix broadCastRows(const Matrix matrix, const unsigned int rows,
|
||||
const unsigned int cols) {
|
||||
|
||||
Matrix copy = createMatrix(rows, cols);
|
||||
|
||||
for (int c = 0; c < cols; c++) {
|
||||
MatrixType value = getMatrixAt(matrix, 0, c);
|
||||
|
||||
for (int r = 0; r < rows; r++) {
|
||||
setMatrixAt(valueMatrix1, copy1, r, c);
|
||||
|
||||
setMatrixAt(value, copy, r, c);
|
||||
}
|
||||
}
|
||||
return copy1;
|
||||
|
||||
return copy;
|
||||
}
|
||||
|
||||
Matrix add(const Matrix matrix1, const Matrix matrix2) {
|
||||
|
||||
// Ergebnismatrix
|
||||
Matrix result;
|
||||
const int cols1 = matrix1.cols;
|
||||
const int rows1 = matrix1.rows;
|
||||
const int cols2 = matrix2.cols;
|
||||
const int rows2 = matrix2.rows;
|
||||
const unsigned int rows1 = matrix1.rows;
|
||||
const unsigned int rows2 = matrix2.rows;
|
||||
const unsigned int cols1 = matrix1.cols;
|
||||
const unsigned int cols2 = matrix2.cols;
|
||||
|
||||
const int rowsEqual = (matrix1.rows == matrix2.rows) ? 1 : 0;
|
||||
const int colsEqual = (matrix1.cols == matrix2.cols) ? 1 : 0;
|
||||
const int rowsEqual = ((rows1 == rows2) ? 1 : 0);
|
||||
|
||||
// Broadcasting nur bei Vektor und Matrix, Fehlermeldung bei zwei unpassender
|
||||
// Matrix
|
||||
if (rowsEqual == 1 && colsEqual == 1) {
|
||||
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
|
||||
const int colsEqual = ((cols1 == cols2) ? 1 : 0);
|
||||
|
||||
if (rowsEqual && colsEqual) // addieren
|
||||
|
||||
{
|
||||
Matrix result = createMatrix(rows1, cols1); // Speicher reservieren
|
||||
if (result.buffer == NULL) {
|
||||
return (Matrix){0, 0, NULL};
|
||||
}
|
||||
for (int i = 0; i < rows1; i++) {
|
||||
for (int j = 0; j < cols1; j++) {
|
||||
int valueM1 = getMatrixAt(matrix1, i, j);
|
||||
int valueM2 = getMatrixAt(matrix2, i, j);
|
||||
int sum = valueM1 + valueM2;
|
||||
setMatrixAt(sum, result, i, j);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
} else if (rowsEqual == 1 && (cols1 == 1 || cols2 == 1)) {
|
||||
if (cols1 == 1) { // broadcasting von vektor 1 zu matrix 1, add
|
||||
Matrix newMatrix = broadCastCols(matrix1, cols2);
|
||||
// add
|
||||
Matrix result = createMatrix(newMatrix.rows, newMatrix.cols);
|
||||
if (result.buffer == NULL) {
|
||||
return (Matrix){0, 0, NULL};
|
||||
}
|
||||
for (int i = 0; i < rows1; i++) {
|
||||
for (int j = 0; j < cols2; j++) {
|
||||
int valueM1 = getMatrixAt(newMatrix, i, j);
|
||||
int valueM2 = getMatrixAt(matrix2, i, j);
|
||||
int sum = valueM1 + valueM2;
|
||||
setMatrixAt(sum, result, i, j);
|
||||
}
|
||||
}
|
||||
clearMatrix(&newMatrix);
|
||||
return result;
|
||||
} else {
|
||||
Matrix newMatrix2 = broadCastCols(matrix2, cols1);
|
||||
// add
|
||||
Matrix result = createMatrix(newMatrix2.rows, newMatrix2.cols);
|
||||
if (result.buffer == NULL) {
|
||||
return (Matrix){0, 0, NULL};
|
||||
}
|
||||
for (int i = 0; i < rows1; i++) {
|
||||
for (int j = 0; j < cols1; j++) {
|
||||
int valueM1 = getMatrixAt(matrix1, i, j);
|
||||
int valueM2 = getMatrixAt(newMatrix2, i, j);
|
||||
int sum = valueM1 + valueM2;
|
||||
setMatrixAt(sum, result, i, j);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
for (int i = 0; i < (rows1 * cols1); i++) { // addieren
|
||||
|
||||
result.buffer[i] =
|
||||
(matrix1.buffer[i] +
|
||||
matrix2.buffer[i]); // buffer[i] ⇔ *(buffer + i) Adresse =
|
||||
// Startadresse + (i * sizeof(MatrixType))
|
||||
}
|
||||
|
||||
return result; // zurückgeben
|
||||
}
|
||||
|
||||
else if ((rows1 == 1 || rows2 == 1) && colsEqual == 1) {
|
||||
else if (rowsEqual && !colsEqual) {
|
||||
|
||||
if (cols1 == 1) {
|
||||
|
||||
Matrix result = createMatrix(rows2, cols2);
|
||||
if (result.buffer == NULL) {
|
||||
return (Matrix){0, 0, NULL};
|
||||
}
|
||||
|
||||
Matrix copy1 = broadCastCols(matrix1, rows2, cols2);
|
||||
if (!copy1.buffer) {
|
||||
clearMatrix(&result);
|
||||
return (Matrix){0, 0, NULL};
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; i < rows2 * cols2; i++) {
|
||||
result.buffer[i] = copy1.buffer[i] + matrix2.buffer[i];
|
||||
}
|
||||
|
||||
/* freigeben, weil nicht mehr benötigt */
|
||||
clearMatrix(©1);
|
||||
return result;
|
||||
|
||||
// add und return
|
||||
|
||||
} else if (cols2 == 1) {
|
||||
|
||||
Matrix result = createMatrix(rows1, cols1);
|
||||
if (result.buffer == NULL) {
|
||||
Matrix error = {0, 0, NULL};
|
||||
return error;
|
||||
}
|
||||
|
||||
// Matrix2 hat nur eine Spalte -> horizontal broadcasten
|
||||
Matrix copy2 = broadCastCols(matrix2, rows1, cols1);
|
||||
|
||||
for (unsigned int i = 0; i < rows1 * cols1; i++) {
|
||||
result.buffer[i] = matrix1.buffer[i] + copy2.buffer[i];
|
||||
}
|
||||
|
||||
// Optional: Speicher von copy2 freigeben
|
||||
clearMatrix(©2);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
else {
|
||||
|
||||
printf("Fehlermeldung"); // vielleicht Fehlermeldung ändern zu
|
||||
// Programmabbruch
|
||||
Matrix error = {0, 0, NULL};
|
||||
return error;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
else if (!rowsEqual && colsEqual) {
|
||||
|
||||
if (rows1 == 1) {
|
||||
Matrix newMatrix = broadCastRows(matrix1, rows2);
|
||||
// add
|
||||
Matrix result = createMatrix(newMatrix.rows, newMatrix.cols);
|
||||
|
||||
Matrix result = createMatrix(rows2, cols2);
|
||||
if (result.buffer == NULL) {
|
||||
return (Matrix){0, 0, NULL};
|
||||
}
|
||||
for (int i = 0; i < rows2; i++) {
|
||||
for (int j = 0; j < cols1; j++) {
|
||||
int valueM1 = getMatrixAt(newMatrix, i, j);
|
||||
int valueM2 = getMatrixAt(matrix2, i, j);
|
||||
int sum = valueM1 + valueM2;
|
||||
setMatrixAt(sum, result, i, j);
|
||||
}
|
||||
|
||||
Matrix copy1 = broadCastRows(matrix1, rows2, cols2);
|
||||
|
||||
for (int i = 0; i < (rows2 * cols2); i++) { // addieren
|
||||
|
||||
result.buffer[i] =
|
||||
(copy1.buffer[i] +
|
||||
matrix2.buffer[i]); // buffer[i] ⇔ *(buffer + i) Adresse =
|
||||
// Startadresse + (i * sizeof(MatrixType))
|
||||
}
|
||||
return result;
|
||||
} else {
|
||||
Matrix newMatrix2 = broadCastRows(matrix2, rows1);
|
||||
// add
|
||||
Matrix result = createMatrix(newMatrix2.rows, newMatrix2.cols);
|
||||
|
||||
// add und return
|
||||
|
||||
} else if (rows2 == 1) {
|
||||
|
||||
Matrix result = createMatrix(rows1, cols1);
|
||||
if (result.buffer == NULL) {
|
||||
return (Matrix){0, 0, NULL};
|
||||
}
|
||||
for (int i = 0; i < rows1; i++) {
|
||||
for (int j = 0; j < cols1; j++) {
|
||||
int valueM1 = getMatrixAt(matrix1, i, j);
|
||||
int valueM2 = getMatrixAt(newMatrix2, i, j);
|
||||
int sum = valueM1 + valueM2;
|
||||
setMatrixAt(sum, result, i, j);
|
||||
}
|
||||
|
||||
Matrix copy2 = broadCastRows(matrix2, rows1, cols1);
|
||||
|
||||
// add und return
|
||||
|
||||
for (int i = 0; i < (rows1 * cols1); i++) { // addieren
|
||||
|
||||
result.buffer[i] =
|
||||
(matrix1.buffer[i] +
|
||||
copy2.buffer[i]); // buffer[i] ⇔ *(buffer + i) Adresse =
|
||||
// Startadresse + (i * sizeof(MatrixType))
|
||||
}
|
||||
clearMatrix(&newMatrix2);
|
||||
return result;
|
||||
|
||||
}
|
||||
|
||||
else {
|
||||
|
||||
printf("Fehlermeldung"); // vielleicht Fehlermeldung ändern zu
|
||||
// Programmabbruch
|
||||
Matrix error = {0, 0, NULL};
|
||||
return error;
|
||||
}
|
||||
} else {
|
||||
// kein add möglich
|
||||
Matrix errorMatrix = {0, 0, NULL};
|
||||
return errorMatrix;
|
||||
}
|
||||
return result;
|
||||
|
||||
else {
|
||||
printf("Fehlermeldung"); // vielleicht Fehlermeldung ändern zu
|
||||
// Programmabbruch
|
||||
Matrix error = {0, 0, NULL};
|
||||
return error;
|
||||
}
|
||||
}
|
||||
|
||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2) {
|
||||
// Spalten1 müssen gleich zeilen2 sein! dann multiplizieren
|
||||
if (matrix1.cols == matrix2.rows) {
|
||||
|
||||
16
matrix.h
16
matrix.h
@ -13,15 +13,17 @@ typedef struct {
|
||||
|
||||
} Matrix;
|
||||
|
||||
Matrix createMatrix(const unsigned int rows, const unsigned int cols);
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols);
|
||||
void clearMatrix(Matrix *matrix);
|
||||
void setMatrixAt(const MatrixType value, Matrix matrix,
|
||||
const unsigned int rowIdx, const unsigned int colIdx);
|
||||
MatrixType getMatrixAt(const Matrix matrix, const unsigned int rowIdx,
|
||||
const unsigned int colIdx);
|
||||
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx,
|
||||
unsigned int colIdx);
|
||||
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx,
|
||||
unsigned int colIdx);
|
||||
|
||||
Matrix broadCastCols(const Matrix matrix, const unsigned int cols);
|
||||
Matrix broadCastRows(const Matrix matrix, const unsigned int rows);
|
||||
Matrix broadCastCols(const Matrix matrix, const unsigned int rows,
|
||||
const unsigned int cols);
|
||||
Matrix broadCastRows(const Matrix matrix, const unsigned int rows,
|
||||
const unsigned int cols);
|
||||
Matrix add(const Matrix matrix1, const Matrix matrix2);
|
||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2);
|
||||
|
||||
|
||||
@ -28,72 +28,68 @@ Gewichte: bestimmen, wie stark ein Eingangssignal auf ein Neuron wirkt
|
||||
|
||||
Dimension: Form der Matrizen für einen Layer*/
|
||||
|
||||
/* Gewichtsmatrix der Layer:
|
||||
*/
|
||||
|
||||
// speichert NeuralNetwork nn in binäre Datei->später kann es wieder geöffnet
|
||||
// werden
|
||||
// speichert NeuralNetwork nn in binäre Datei->erzeugt Dateiformat
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) {
|
||||
FILE *fptr = fopen(path, "wb"); // Binärdatei zum Schreiben öffnen
|
||||
if (fptr == NULL)
|
||||
return; // file konnte nicht geöffnet werden
|
||||
FILE *f = fopen(path, "wb"); // Binärdatei zum Schreiben öffnen
|
||||
if (f == NULL)
|
||||
return;
|
||||
|
||||
// Header ist Erkennungsstring am Anfang der Datei, loadmodel erkennt
|
||||
// Dateiformat
|
||||
const char header[] = "__info2_neural_network_file_format__"; // header string
|
||||
fwrite(header, sizeof(char), strlen(header),
|
||||
fptr); // der header wird am Anfang der Datei platziert
|
||||
const char header[] = "__info2_neural_network_file_format__";
|
||||
fwrite(header, sizeof(char), strlen(header), f);
|
||||
|
||||
// Wenn es keine Layer gibt, 0 eintragen, LoadModel erkennt, dass Datei leer
|
||||
// ist
|
||||
// Wenn es keine Layer gibt, 0 eintragen, LoadModel gibt 0 zurück
|
||||
if (nn.numberOfLayers == 0) {
|
||||
int zero = 0;
|
||||
fwrite(&zero, sizeof(int), 1, fptr);
|
||||
fclose(fptr);
|
||||
fwrite(&zero, sizeof(int), 1, f);
|
||||
fclose(f);
|
||||
return;
|
||||
}
|
||||
|
||||
// Layer 0, inputDimension: Anzahl Input-Neuronen, outputDimension: Anzahl
|
||||
// Output-Neuronen wird in Datei eingefügt
|
||||
// Output-Neuronen
|
||||
int inputDim = (int)nn.layers[0].weights.cols;
|
||||
int outputDim = (int)nn.layers[0].weights.rows;
|
||||
fwrite(&inputDim, sizeof(int), 1, fptr);
|
||||
fwrite(&outputDim, sizeof(int), 1, fptr);
|
||||
fwrite(&inputDim, sizeof(int), 1, f);
|
||||
fwrite(&outputDim, sizeof(int), 1, f);
|
||||
|
||||
/* 3) Für jede Layer in Reihenfolge: Gewichte (output x input), Biases (output
|
||||
x 1). Zwischen Layern wird nur die nächste outputDimension (int)
|
||||
geschrieben. */
|
||||
for (int i = 0; i < nn.numberOfLayers; i++) {
|
||||
Layer layer = nn.layers[i]; // kürzer, durch alle layer iterieren
|
||||
Layer layer = nn.layers[i];
|
||||
|
||||
int wrows = (int)layer.weights.rows;
|
||||
int wcols = (int)layer.weights.cols;
|
||||
int wcount = wrows * wcols; // Anzahl Gewichtseinträge
|
||||
int wcount = wrows * wcols;
|
||||
int bcount =
|
||||
layer.biases.rows * layer.biases.cols; // Anzahl der Bias-Einträge
|
||||
layer.biases.rows * layer.biases.cols; /* normalerweise rows * 1 */
|
||||
|
||||
/* Gewichte */
|
||||
/* Gewichte (MatrixType binär) */
|
||||
if (wcount > 0 && layer.weights.buffer != NULL) {
|
||||
fwrite(layer.weights.buffer, sizeof(MatrixType), (size_t)wcount, fptr);
|
||||
} // Gewichte werden als Matrix gespeichert
|
||||
fwrite(layer.weights.buffer, sizeof(MatrixType), (size_t)wcount, f);
|
||||
}
|
||||
|
||||
/* Biases */
|
||||
/* Biases (MatrixType binär) */
|
||||
if (bcount > 0 && layer.biases.buffer != NULL) {
|
||||
fwrite(layer.biases.buffer, sizeof(MatrixType), (size_t)bcount, fptr);
|
||||
} // Biases werden als Vektor gespeichert
|
||||
fwrite(layer.biases.buffer, sizeof(MatrixType), (size_t)bcount, f);
|
||||
}
|
||||
|
||||
/* outputDimensionen der nächsten Layer */
|
||||
/* Für die nächste Layer: falls vorhanden, schreibe deren outputDimension */
|
||||
if (i + 1 < nn.numberOfLayers) {
|
||||
int nextOutput = (int)nn.layers[i + 1].weights.rows;
|
||||
fwrite(&nextOutput, sizeof(int), 1, fptr);
|
||||
fwrite(&nextOutput, sizeof(int), 1, f);
|
||||
} else {
|
||||
// loadModel erkennt 0 als Ende der Datei
|
||||
/* Letzte Layer: wir können das Ende signalisieren, indem wir ein 0
|
||||
schreiben. loadModel liest dann outputDimension = 0 und beendet die
|
||||
Schleife. */
|
||||
int zero = 0;
|
||||
fwrite(&zero, sizeof(int), 1, fptr);
|
||||
fwrite(&zero, sizeof(int), 1, f);
|
||||
}
|
||||
}
|
||||
|
||||
fclose(fptr); // Datei schließen
|
||||
fclose(f);
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectNumberOfLayers(void) {
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user