forked from freudenreichan/info2Praktikum-NeuronalesNetz
213 lines
6.7 KiB
C
213 lines
6.7 KiB
C
#include "matrix.h"
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/*typedef struct {
|
|
unsigned int rows; //Zeilen
|
|
unsigned int cols; //Spalten
|
|
MatrixType *buffer; //Zeiger auf Speicherbereich Reihen*Spalten
|
|
} Matrix;*/
|
|
|
|
Matrix createMatrix(const unsigned int rows, const unsigned int cols) {
|
|
if (cols == 0 || rows == 0) {
|
|
Matrix errorMatrix = {0, 0, NULL};
|
|
return errorMatrix;
|
|
}
|
|
MatrixType *buffer =
|
|
malloc(rows * cols * sizeof(MatrixType)); // Speicher reservieren, malloc
|
|
// liefert Zeiger auf Speicher
|
|
Matrix newMatrix = {rows, cols, buffer}; // neue Matrix nach struct
|
|
return newMatrix;
|
|
}
|
|
void clearMatrix(Matrix *matrix) {
|
|
|
|
if (matrix->buffer != NULL) {
|
|
free((*matrix).buffer);
|
|
matrix->buffer = NULL;
|
|
}
|
|
matrix->rows = 0;
|
|
matrix->cols = 0;
|
|
}
|
|
|
|
void setMatrixAt(const MatrixType value, Matrix matrix,
|
|
const unsigned int rowIdx, // Kopie der Matrix wird übergeben
|
|
const unsigned int colIdx) {
|
|
|
|
if (rowIdx >= matrix.rows || colIdx >= matrix.cols) {
|
|
// Speichergröße nicht überschreiten
|
|
return;
|
|
}
|
|
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
|
|
// rowIdx * matrix.cols -> Beginn der Zeile colIdx ->Spalte
|
|
// innerhalb der Zeile
|
|
}
|
|
MatrixType
|
|
getMatrixAt(const Matrix matrix,
|
|
const unsigned int rowIdx, // Kopie der Matrix wird übergeben
|
|
const unsigned int colIdx) {
|
|
if (rowIdx >= matrix.rows || colIdx >= matrix.cols ||
|
|
matrix.buffer == NULL) { // Speichergröße nicht überschreiten
|
|
return UNDEFINED_MATRIX_VALUE;
|
|
}
|
|
|
|
MatrixType value = matrix.buffer[rowIdx * matrix.cols + colIdx];
|
|
|
|
return value;
|
|
}
|
|
Matrix broadCastCols(const Matrix matrix, const unsigned int cols) {
|
|
Matrix copy1 = createMatrix(matrix.rows, cols);
|
|
for (int r = 0; r < matrix.rows; r++) {
|
|
MatrixType valueMatrix1 = getMatrixAt(matrix, r, 0);
|
|
for (int c = 0; c < cols; c++) {
|
|
setMatrixAt(valueMatrix1, copy1, r, c);
|
|
}
|
|
}
|
|
return copy1;
|
|
}
|
|
Matrix broadCastRows(const Matrix matrix, const unsigned int rows) {
|
|
Matrix copy1 = createMatrix(rows, matrix.cols);
|
|
for (int c = 0; c < matrix.cols; c++) {
|
|
MatrixType valueMatrix1 = getMatrixAt(matrix, 0, c);
|
|
for (int r = 0; r < rows; r++) {
|
|
setMatrixAt(valueMatrix1, copy1, r, c);
|
|
}
|
|
}
|
|
return copy1;
|
|
}
|
|
Matrix add(const Matrix matrix1, const Matrix matrix2) {
|
|
|
|
// Ergebnismatrix
|
|
Matrix result;
|
|
const int cols1 = matrix1.cols;
|
|
const int rows1 = matrix1.rows;
|
|
const int cols2 = matrix2.cols;
|
|
const int rows2 = matrix2.rows;
|
|
|
|
const int rowsEqual = (matrix1.rows == matrix2.rows) ? 1 : 0;
|
|
const int colsEqual = (matrix1.cols == matrix2.cols) ? 1 : 0;
|
|
|
|
// Broadcasting nur bei Vektor und Matrix, Fehlermeldung bei zwei unpassender
|
|
// Matrix
|
|
if (rowsEqual == 1 && colsEqual == 1) {
|
|
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
|
|
if (result.buffer == NULL) {
|
|
return (Matrix){0, 0, NULL};
|
|
}
|
|
for (int i = 0; i < rows1; i++) {
|
|
for (int j = 0; j < cols1; j++) {
|
|
int valueM1 = getMatrixAt(matrix1, i, j);
|
|
int valueM2 = getMatrixAt(matrix2, i, j);
|
|
int sum = valueM1 + valueM2;
|
|
setMatrixAt(sum, result, i, j);
|
|
}
|
|
}
|
|
return result;
|
|
} else if (rowsEqual == 1 && (cols1 == 1 || cols2 == 1)) {
|
|
if (cols1 == 1) { // broadcasting von vektor 1 zu matrix 1, add
|
|
Matrix newMatrix = broadCastCols(matrix1, cols2);
|
|
// add
|
|
Matrix result = createMatrix(newMatrix.rows, newMatrix.cols);
|
|
if (result.buffer == NULL) {
|
|
return (Matrix){0, 0, NULL};
|
|
}
|
|
for (int i = 0; i < rows1; i++) {
|
|
for (int j = 0; j < cols2; j++) {
|
|
int valueM1 = getMatrixAt(newMatrix, i, j);
|
|
int valueM2 = getMatrixAt(matrix2, i, j);
|
|
int sum = valueM1 + valueM2;
|
|
setMatrixAt(sum, result, i, j);
|
|
}
|
|
}
|
|
clearMatrix(&newMatrix);
|
|
return result;
|
|
} else {
|
|
Matrix newMatrix2 = broadCastCols(matrix2, cols1);
|
|
// add
|
|
Matrix result = createMatrix(newMatrix2.rows, newMatrix2.cols);
|
|
if (result.buffer == NULL) {
|
|
return (Matrix){0, 0, NULL};
|
|
}
|
|
for (int i = 0; i < rows1; i++) {
|
|
for (int j = 0; j < cols1; j++) {
|
|
int valueM1 = getMatrixAt(matrix1, i, j);
|
|
int valueM2 = getMatrixAt(newMatrix2, i, j);
|
|
int sum = valueM1 + valueM2;
|
|
setMatrixAt(sum, result, i, j);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
}
|
|
|
|
else if ((rows1 == 1 || rows2 == 1) && colsEqual == 1) {
|
|
if (rows1 == 1) {
|
|
Matrix newMatrix = broadCastRows(matrix1, rows2);
|
|
// add
|
|
Matrix result = createMatrix(newMatrix.rows, newMatrix.cols);
|
|
if (result.buffer == NULL) {
|
|
return (Matrix){0, 0, NULL};
|
|
}
|
|
for (int i = 0; i < rows2; i++) {
|
|
for (int j = 0; j < cols1; j++) {
|
|
int valueM1 = getMatrixAt(newMatrix, i, j);
|
|
int valueM2 = getMatrixAt(matrix2, i, j);
|
|
int sum = valueM1 + valueM2;
|
|
setMatrixAt(sum, result, i, j);
|
|
}
|
|
}
|
|
return result;
|
|
} else {
|
|
Matrix newMatrix2 = broadCastRows(matrix2, rows1);
|
|
// add
|
|
Matrix result = createMatrix(newMatrix2.rows, newMatrix2.cols);
|
|
if (result.buffer == NULL) {
|
|
return (Matrix){0, 0, NULL};
|
|
}
|
|
for (int i = 0; i < rows1; i++) {
|
|
for (int j = 0; j < cols1; j++) {
|
|
int valueM1 = getMatrixAt(matrix1, i, j);
|
|
int valueM2 = getMatrixAt(newMatrix2, i, j);
|
|
int sum = valueM1 + valueM2;
|
|
setMatrixAt(sum, result, i, j);
|
|
}
|
|
}
|
|
clearMatrix(&newMatrix2);
|
|
return result;
|
|
}
|
|
} else {
|
|
// kein add möglich
|
|
Matrix errorMatrix = {0, 0, NULL};
|
|
return errorMatrix;
|
|
}
|
|
return result;
|
|
}
|
|
Matrix multiply(const Matrix matrix1, const Matrix matrix2) {
|
|
// Spalten1 müssen gleich zeilen2 sein! dann multiplizieren
|
|
if (matrix1.cols == matrix2.rows) {
|
|
Matrix multMatrix = createMatrix(matrix1.rows, matrix2.cols);
|
|
// durch neue matrix iterieren
|
|
for (int r = 0; r < matrix1.rows; r++) {
|
|
for (int c = 0; c < matrix2.cols; c++) {
|
|
MatrixType sum = 0.0;
|
|
// skalarprodukte berechnen, k damit die ganze zeile mal die ganze
|
|
// spalte genommen wird quasi
|
|
for (int k = 0; k < matrix1.cols; k++) {
|
|
// sum+=
|
|
// matrix1.buffer[r*matrix1.cols+k]*matrix2.buffer[k*matrix2.cols+c];
|
|
sum += getMatrixAt(matrix1, r, k) * getMatrixAt(matrix2, k, c);
|
|
}
|
|
// Ergebnisse in neue matrix speichern
|
|
setMatrixAt(sum, multMatrix, r, c);
|
|
}
|
|
}
|
|
return multMatrix;
|
|
}
|
|
// sonst fehler, kein multiply möglich
|
|
else {
|
|
Matrix errorMatrix = {0, 0, NULL};
|
|
return errorMatrix;
|
|
}
|
|
}
|