So meine Freunde jetzt passt das aber auch

This commit is contained in:
Jonas Stamm 2025-11-16 18:03:33 +01:00
parent 49977a86c5
commit b4c18bd1b1
2 changed files with 150 additions and 167 deletions

View File

@ -2,41 +2,39 @@
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdint.h>
#include "neuralNetwork.h"
#define BUFFER_SIZE 200
#define BUFFER_SIZE 100
#define FILE_HEADER_STRING "__info2_neural_network_file_format__"
static void softmax(Matrix *matrix)
{
if(matrix->cols > 0)
{
double *colSums = (double *)calloc((size_t)matrix->cols, sizeof(double));
if(colSums == NULL) return;
double *colSums = (double *)calloc(matrix->cols, sizeof(double));
for(int colIdx = 0; colIdx < matrix->cols; colIdx++)
if(colSums != NULL)
{
for(int rowIdx = 0; rowIdx < matrix->rows; rowIdx++)
for(int colIdx = 0; colIdx < matrix->cols; colIdx++)
{
MatrixType expValue = (MatrixType)exp(getMatrixAt(*matrix, rowIdx, colIdx));
setMatrixAt(expValue, *matrix, rowIdx, colIdx);
colSums[colIdx] += expValue;
for(int rowIdx = 0; rowIdx < matrix->rows; rowIdx++)
{
MatrixType expValue = exp(getMatrixAt(*matrix, rowIdx, colIdx));
setMatrixAt(expValue, *matrix, rowIdx, colIdx);
colSums[colIdx] += expValue;
}
}
}
for(int colIdx = 0; colIdx < matrix->cols; colIdx++)
{
double s = colSums[colIdx];
if(s == 0.0) s = 1.0;
for(int rowIdx = 0; rowIdx < matrix->rows; rowIdx++)
for(int colIdx = 0; colIdx < matrix->cols; colIdx++)
{
MatrixType normalizedValue = (MatrixType)(getMatrixAt(*matrix, rowIdx, colIdx) / s);
setMatrixAt(normalizedValue, *matrix, rowIdx, colIdx);
for(int rowIdx = 0; rowIdx < matrix->rows; rowIdx++)
{
MatrixType normalizedValue = getMatrixAt(*matrix, rowIdx, colIdx) / colSums[colIdx];
setMatrixAt(normalizedValue, *matrix, rowIdx, colIdx);
}
}
free(colSums);
}
free(colSums);
}
}
@ -48,53 +46,39 @@ static void relu(Matrix *matrix)
}
}
/* Prüft den Dateikopf. Liefert 1 bei Erfolg, 0 bei Fehler. */
static int checkFileHeader(FILE *file)
{
if(file == NULL) return 0;
int isValid = 0;
int fileHeaderLen = strlen(FILE_HEADER_STRING);
char buffer[BUFFER_SIZE] = {0};
size_t headerLen = strlen(FILE_HEADER_STRING);
if(headerLen == 0 || headerLen >= BUFFER_SIZE) return 0;
if(BUFFER_SIZE-1 < fileHeaderLen)
fileHeaderLen = BUFFER_SIZE-1;
char buffer[BUFFER_SIZE];
if(fseek(file, 0, SEEK_SET) != 0) return 0;
if(fread(buffer, sizeof(char), headerLen, file) != headerLen) return 0;
if(memcmp(buffer, FILE_HEADER_STRING, headerLen) != 0) return 0;
if(fread(buffer, sizeof(char), fileHeaderLen, file) == fileHeaderLen)
isValid = strcmp(buffer, FILE_HEADER_STRING) == 0;
return 1;
return isValid;
}
/* Liest eine Dimension (wie vom Test-Writer mit sizeof(int) geschrieben) und prüft Plausibilität.
Liefert 0 bei Lesefehler oder wenn der gelesene Wert offensichtlich nicht in die verbleibende Dateigröße passt.
*/
static unsigned int readDimension(FILE *file)
{
if (file == NULL) return 0;
int dimension = 0;
int value = 0;
if (fread(&value, sizeof(int), 1, file) != 1) {
return 0;
}
if(fread(&dimension, sizeof(int), 1, file) != 1)
dimension = 0;
if (value < 0) return 0;
return (unsigned int)value;
return dimension;
}
/* Liest eine Matrix rows x cols; wenn Einlese-Fehler: leere Matrix zurückgeben */
static Matrix readMatrix(FILE *file, unsigned int rows, unsigned int cols)
{
Matrix matrix = createMatrix(rows, cols);
if(matrix.buffer == NULL) return matrix;
size_t toRead = (size_t)rows * cols;
if(toRead > 0)
if(matrix.buffer != NULL)
{
size_t readCount = fread(matrix.buffer, sizeof(MatrixType), toRead, file);
if(readCount != toRead)
{
if(fread(matrix.buffer, sizeof(MatrixType), rows*cols, file) != rows*cols)
clearMatrix(&matrix);
}
}
return matrix;
@ -103,113 +87,91 @@ static Matrix readMatrix(FILE *file, unsigned int rows, unsigned int cols)
static Layer readLayer(FILE *file, unsigned int inputDimension, unsigned int outputDimension)
{
Layer layer;
layer.activation = NULL;
layer.weights = readMatrix(file, outputDimension, inputDimension);
layer.biases = readMatrix(file, outputDimension, 1);
layer.biases = readMatrix(file, outputDimension, 1);
return layer;
}
static int isEmptyLayer(const Layer layer)
{
return layer.biases.cols == 0 || layer.biases.rows == 0 || layer.biases.buffer == NULL ||
layer.weights.rows == 0 || layer.weights.cols == 0 || layer.weights.buffer == NULL;
return layer.biases.cols == 0 || layer.biases.rows == 0 || layer.biases.buffer == NULL || layer.weights.rows == 0 || layer.weights.cols == 0 || layer.weights.buffer == NULL;
}
static void clearLayer(Layer *layer)
{
if(layer == NULL) return;
clearMatrix(&layer->weights);
clearMatrix(&layer->biases);
layer->activation = NULL;
if(layer != NULL)
{
clearMatrix(&layer->weights);
clearMatrix(&layer->biases);
layer->activation = NULL;
}
}
static void assignActivations(NeuralNetwork model)
{
if(model.numberOfLayers == 0) return;
for(int i = 0; i < (int)model.numberOfLayers - 1; i++)
for(int i = 0; i < (int)model.numberOfLayers-1; i++)
{
model.layers[i].activation = relu;
model.layers[model.numberOfLayers - 1].activation = softmax;
}
if(model.numberOfLayers > 0)
model.layers[model.numberOfLayers-1].activation = softmax;
}
NeuralNetwork loadModel(const char *path)
{
NeuralNetwork model = {NULL, 0};
FILE *file = fopen(path, "rb");
if(file == NULL) return model;
if(fseek(file, 0, SEEK_SET) != 0)
if(file != NULL)
{
if(checkFileHeader(file))
{
unsigned int inputDimension = readDimension(file);
unsigned int outputDimension = readDimension(file);
while(inputDimension > 0 && outputDimension > 0)
{
Layer layer = readLayer(file, inputDimension, outputDimension);
Layer *layerBuffer = NULL;
if(isEmptyLayer(layer))
{
clearLayer(&layer);
clearModel(&model);
break;
}
layerBuffer = (Layer *)realloc(model.layers, (model.numberOfLayers + 1) * sizeof(Layer));
if(layerBuffer != NULL)
model.layers = layerBuffer;
else
{
clearModel(&model);
break;
}
model.layers[model.numberOfLayers] = layer;
model.numberOfLayers++;
inputDimension = outputDimension;
outputDimension = readDimension(file);
}
}
fclose(file);
return model;
assignActivations(model);
}
if(!checkFileHeader(file))
{
fclose(file);
return model;
}
/* Lese erstes Dimensions-Paar (input, output) */
unsigned int inputDimension = readDimension(file);
unsigned int outputDimension = readDimension(file);
//fprintf(stderr, "[loadModel] first dims: input=%u output=%u\n", inputDimension, outputDimension);
while (inputDimension > 0 && outputDimension > 0)
{
Layer layer = readLayer(file, inputDimension, outputDimension);
if (isEmptyLayer(layer))
{
clearLayer(&layer);
clearModel(&model);
break;
}
Layer *tmp = (Layer *)realloc(model.layers, (model.numberOfLayers + 1) * sizeof(Layer));
if (tmp == NULL)
{
clearLayer(&layer);
clearModel(&model);
break;
}
model.layers = tmp;
model.layers[model.numberOfLayers] = layer;
model.numberOfLayers++;
/* fprintf(stderr, "[loadModel] loaded layer %d: weights %u x %u, biases %u x %u\n",
model.numberOfLayers,
layer.weights.rows, layer.weights.cols,
layer.biases.rows, layer.biases.cols); */
/* Lese das nächste Dimensions-Paar (writer schreibt für jede Schicht ein Paar) */
unsigned int nextInput = readDimension(file);
unsigned int nextOutput = readDimension(file);
//fprintf(stderr, "[loadModel] next raw dims read: nextInput=%u nextOutput=%u\n", nextInput, nextOutput);
/* Wenn nächstes Paar (0,0) -> Ende */
if (nextInput == 0 || nextOutput == 0)
{
inputDimension = 0;
outputDimension = 0;
break;
}
/* Setze für die nächste Iteration */
inputDimension = nextInput;
outputDimension = nextOutput;
//fprintf(stderr, "[loadModel] next dims: input=%u output=%u\n", inputDimension, outputDimension);
}
fclose(file);
assignActivations(model);
return model;
}
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count)
{
//Matrix matrix = {NULL, 0, 0};
// Explizite Initialisierung verwenden, um die Feldreihenfolge in matrix.h zu umgehen:
Matrix matrix;
matrix.buffer = NULL;
matrix.rows = 0;
@ -218,12 +180,15 @@ static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], un
if(count > 0 && images != NULL)
{
matrix = createMatrix(images[0].height * images[0].width, count);
if(matrix.buffer != NULL)
{
for(unsigned int i = 0; i < count; i++)
for(int i = 0; i < count; i++)
{
for(unsigned int j = 0; j < images[i].width * images[i].height; j++)
for(int j = 0; j < images[i].width * images[i].height; j++)
{
setMatrixAt((MatrixType)images[i].buffer[j], matrix, j, i);
}
}
}
}
@ -234,20 +199,23 @@ static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], un
static Matrix forward(const NeuralNetwork model, Matrix inputBatch)
{
Matrix result = inputBatch;
if(result.buffer == NULL) return result;
for(int i = 0; i < model.numberOfLayers; i++)
if(result.buffer != NULL)
{
Matrix weightResult = multiply(model.layers[i].weights, result);
clearMatrix(&result);
for(int i = 0; i < model.numberOfLayers; i++)
{
Matrix biasResult;
Matrix weightResult;
Matrix biasResult = add(weightResult, model.layers[i].biases);
clearMatrix(&weightResult);
weightResult = multiply(model.layers[i].weights, result);
clearMatrix(&result);
biasResult = add(model.layers[i].biases, weightResult);
clearMatrix(&weightResult);
if(model.layers[i].activation != NULL)
model.layers[i].activation(&biasResult);
result = biasResult;
if(model.layers[i].activation != NULL)
model.layers[i].activation(&biasResult);
result = biasResult;
}
}
return result;
@ -255,21 +223,27 @@ static Matrix forward(const NeuralNetwork model, Matrix inputBatch)
unsigned char *argmax(const Matrix matrix)
{
if(matrix.rows == 0 || matrix.cols == 0) return NULL;
unsigned char *maxIdx = NULL;
unsigned char *maxIdx = (unsigned char *)malloc((size_t)matrix.cols * sizeof(unsigned char));
if(maxIdx == NULL) return NULL;
for(int colIdx = 0; colIdx < matrix.cols; colIdx++)
if(matrix.rows > 0 && matrix.cols > 0)
{
int best = 0;
for(int rowIdx = 1; rowIdx < matrix.rows; rowIdx++)
maxIdx = (unsigned char *)malloc(sizeof(unsigned char) * matrix.cols);
if(maxIdx != NULL)
{
if(getMatrixAt(matrix, rowIdx, colIdx) > getMatrixAt(matrix, best, colIdx))
best = rowIdx;
for(int colIdx = 0; colIdx < matrix.cols; colIdx++)
{
maxIdx[colIdx] = 0;
for(int rowIdx = 1; rowIdx < matrix.rows; rowIdx++)
{
if(getMatrixAt(matrix, rowIdx, colIdx) > getMatrixAt(matrix, maxIdx[colIdx], colIdx))
maxIdx[colIdx] = rowIdx;
}
}
}
maxIdx[colIdx] = (unsigned char)best;
}
return maxIdx;
}
@ -277,17 +251,23 @@ unsigned char *predict(const NeuralNetwork model, const GrayScaleImage images[],
{
Matrix inputBatch = imageBatchToMatrixOfImageVectors(images, numberOfImages);
Matrix outputBatch = forward(model, inputBatch);
unsigned char *result = argmax(outputBatch);
clearMatrix(&outputBatch);
return result;
}
void clearModel(NeuralNetwork *model)
{
if(model == NULL) return;
for(int i = 0; i < model->numberOfLayers; i++)
clearLayer(&model->layers[i]);
free(model->layers);
model->layers = NULL;
model->numberOfLayers = 0;
}
if(model != NULL)
{
for(int i = 0; i < model->numberOfLayers; i++)
{
clearLayer(&model->layers[i]);
}
model->layers = NULL;
model->numberOfLayers = 0;
}
}

View File

@ -9,48 +9,51 @@
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{
// TODO
FILE *file = fopen(path, "wb");
if (!file) return;
// 1) Header-Tag WORTGENAU (OHNE Nullterminator) schreiben
fwrite(FILE_HEADER_STRING, sizeof(char), strlen(FILE_HEADER_STRING), file);
// 2) Für jeden Layer die Paare (inputDim, outputDim) und dann Gewichte & Biases schreiben
// inputDim == weights.cols
// outputDim == weights.rows
// 2) Layer-Daten im Format, das loadModel() erwartet
for (unsigned int i = 0; i < nn.numberOfLayers; ++i)
{
const Layer *lay = &nn.layers[i];
unsigned int inputDim = lay->weights.cols;
unsigned int outputDim = lay->weights.rows;
int inputDim = (int)lay->weights.cols; // cols == inputDimension
int outputDim = (int)lay->weights.rows; // rows == outputDimension
// schreibe Dimensionen (4-Byte int / unsigned int)
fwrite(&inputDim, sizeof(unsigned int), 1, file);
fwrite(&outputDim, sizeof(unsigned int), 1, file);
if (i == 0) {
// Erstes Paar: input und output schreiben
fwrite(&inputDim, sizeof(int), 1, file);
fwrite(&outputDim, sizeof(int), 1, file);
} else {
// Ab dem zweiten Layer: NUR das neue outputDimension schreiben
fwrite(&outputDim, sizeof(int), 1, file);
}
// schreibe Gewichtsmatrix (row-major: rows*cols Elemente vom Typ MatrixType)
// Gewichtsmatrix (row-major)
size_t weightCount = (size_t)lay->weights.rows * (size_t)lay->weights.cols;
if (weightCount > 0 && lay->weights.buffer != NULL) {
fwrite(lay->weights.buffer, sizeof(MatrixType), weightCount, file);
}
// schreibe Biasmatrix (rows * cols) - normalerweise rows x 1
// Biases (rows x 1)
size_t biasCount = (size_t)lay->biases.rows * (size_t)lay->biases.cols;
if (biasCount > 0 && lay->biases.buffer != NULL) {
fwrite(lay->biases.buffer, sizeof(MatrixType), biasCount, file);
}
}
// 3) Endmarkierung: nächstes Input / Output = 0, damit loadModel() die Schleife beendet
unsigned int zero = 0;
fwrite(&zero, sizeof(unsigned int), 1, file);
fwrite(&zero, sizeof(unsigned int), 1, file);
// 3) Endmarkierung: EINE 0 (als int) schreiben
int zero = 0;
fwrite(&zero, sizeof(int), 1, file);
fclose(file);
}
void test_loadModelReturnsCorrectNumberOfLayers(void)
{
const char *path = "some__nn_test_file.info2";