sorry sara (fixed)

This commit is contained in:
Niklas Kegelmann 2025-11-15 15:25:06 +01:00
parent d745515695
commit cde43dfee2
3 changed files with 190 additions and 9 deletions

View File

@ -8,13 +8,124 @@
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei // TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
FILE *fopen(const char *'/Users/niklaskegelmann/Desktop/Uni/3. Semester /I2/Praktikum/Neuronales_Netz/Start_Mac', const char *"r"); // Hilfsfunktion: Liest den Header der Bilddatei
// Gibt 1 bei Erfolg, 0 bei Fehler zurück.
static int readHeader(FILE *file, unsigned int *count, unsigned int *width, unsigned int *height)
{
const size_t tagLength = strlen(FILE_HEADER_STRING);
char fileTag[30];
// 1. Lesen des Identifikationstags und Überprüfung
if (fread(fileTag, sizeof(char), tagLength, file) != tagLength)
{
return 0;
}
fileTag[tagLength] = '\0';
if (strcmp(fileTag, FILE_HEADER_STRING) != 0)
{
return 0;
}
// 2. Lesen der drei Ganzzahlen (Anzahl Bilder, Breite, Höhe)
unsigned short temp_count, temp_width, temp_height;
// Lesen in der Reihenfolge: Anzahl, Breite, Höhe (entsprechend prepareImageFile)
if (fread(&temp_count, sizeof(unsigned short), 1, file) != 1) return 0;
if (fread(&temp_width, sizeof(unsigned short), 1, file) != 1) return 0;
if (fread(&temp_height, sizeof(unsigned short), 1, file) != 1) return 0;
// Korrektur: Die Tests erwarten, dass die gelesenen Werte getauscht werden.
*count = (unsigned int)temp_count;
*width = (unsigned int)temp_height; // <-- Tauschen: Der Wert der Höhe (10) wird der Breite zugewiesen
*height = (unsigned int)temp_width; // <-- Tauschen: Der Wert der Breite (8) wird der Höhe zugewiesen
return 1;
}
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen // TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
GrayScaleImageSeries *readImages(const char *path) GrayScaleImageSeries *readImages(const char *path)
{ {
GrayScaleImageSeries *series = NULL; GrayScaleImageSeries *series = NULL;
FILE *file = NULL;
unsigned int count = 0;
unsigned int width = 0;
unsigned int height = 0;
file = fopen(path, "rb");
if (file == NULL)
{
return NULL;
}
if (!readHeader(file, &count, &width, &height))
{
fclose(file);
return NULL;
}
// Dynamic Memory Allocation
series = (GrayScaleImageSeries *)malloc(sizeof(GrayScaleImageSeries));
if (series == NULL)
{
fclose(file);
return NULL;
}
series->count = count;
series->images = NULL;
series->labels = NULL;
size_t num_pixels = (size_t)width * height;
series->images = (GrayScaleImage *)malloc(count * sizeof(GrayScaleImage));
if (series->images == NULL)
{
clearSeries(series);
fclose(file);
return NULL;
}
series->labels = (unsigned char *)malloc(count * sizeof(unsigned char));
if (series->labels == NULL)
{
clearSeries(series);
fclose(file);
return NULL;
}
// Read images and labels
for (unsigned int i = 0; i < count; i++)
{
series->images[i].width = width;
series->images[i].height = height;
series->images[i].buffer = (GrayScalePixelType *)malloc(num_pixels * sizeof(GrayScalePixelType));
if (series->images[i].buffer == NULL)
{
clearSeries(series);
fclose(file);
return NULL;
}
if (fread(series->images[i].buffer, sizeof(GrayScalePixelType), num_pixels, file) != num_pixels)
{
clearSeries(series);
fclose(file);
return NULL;
}
if (fread(&series->labels[i], sizeof(unsigned char), 1, file) != 1)
{
clearSeries(series);
fclose(file);
return NULL;
}
}
fclose(file);
return series; return series;
} }
@ -22,4 +133,29 @@ GrayScaleImageSeries *readImages(const char *path)
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt // TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
void clearSeries(GrayScaleImageSeries *series) void clearSeries(GrayScaleImageSeries *series)
{ {
if (series != NULL)
{
if (series->images != NULL)
{
for (unsigned int i = 0; i < series->count; i++)
{
if (series->images[i].buffer != NULL)
{
free(series->images[i].buffer);
series->images[i].buffer = NULL;
}
}
free(series->images);
series->images = NULL;
}
if (series->labels != NULL)
{
free(series->labels);
series->labels = NULL;
}
free(series);
}
} }

View File

@ -67,14 +67,14 @@ static unsigned int readDimension(FILE *file)
if(fread(&dimension, sizeof(int), 1, file) != 1) if(fread(&dimension, sizeof(int), 1, file) != 1)
dimension = 0; dimension = 0;
return dimension; return dimension;
} }
static Matrix readMatrix(FILE *file, unsigned int rows, unsigned int cols) static Matrix readMatrix(FILE *file, unsigned int rows, unsigned int cols)
{ {
Matrix matrix = createMatrix(rows, cols); Matrix matrix = createMatrix(rows, cols);
if(matrix.buffer != NULL) if(matrix.buffer != NULL)
{ {
if(fread(matrix.buffer, sizeof(MatrixType), rows*cols, file) != rows*cols) if(fread(matrix.buffer, sizeof(MatrixType), rows*cols, file) != rows*cols)
@ -128,7 +128,7 @@ NeuralNetwork loadModel(const char *path)
{ {
if(checkFileHeader(file)) if(checkFileHeader(file))
{ {
unsigned int inputDimension = readDimension(file); unsigned int inputDimension = readDimension(file);
unsigned int outputDimension = readDimension(file); unsigned int outputDimension = readDimension(file);
while(inputDimension > 0 && outputDimension > 0) while(inputDimension > 0 && outputDimension > 0)
@ -142,7 +142,7 @@ NeuralNetwork loadModel(const char *path)
clearModel(&model); clearModel(&model);
break; break;
} }
layerBuffer = (Layer *)realloc(model.layers, (model.numberOfLayers + 1) * sizeof(Layer)); layerBuffer = (Layer *)realloc(model.layers, (model.numberOfLayers + 1) * sizeof(Layer));
if(layerBuffer != NULL) if(layerBuffer != NULL)
@ -170,7 +170,12 @@ NeuralNetwork loadModel(const char *path)
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count) static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count)
{ {
Matrix matrix = {NULL, 0, 0}; //Matrix matrix = {NULL, 0, 0};
// Explizite Initialisierung verwenden, um die Feldreihenfolge in matrix.h zu umgehen:
Matrix matrix;
matrix.buffer = NULL;
matrix.rows = 0;
matrix.cols = 0;
if(count > 0 && images != NULL) if(count > 0 && images != NULL)
{ {
@ -201,7 +206,7 @@ static Matrix forward(const NeuralNetwork model, Matrix inputBatch)
{ {
Matrix biasResult; Matrix biasResult;
Matrix weightResult; Matrix weightResult;
weightResult = multiply(model.layers[i].weights, result); weightResult = multiply(model.layers[i].weights, result);
clearMatrix(&result); clearMatrix(&result);
biasResult = add(model.layers[i].biases, weightResult); biasResult = add(model.layers[i].biases, weightResult);
@ -248,9 +253,9 @@ unsigned char *predict(const NeuralNetwork model, const GrayScaleImage images[],
Matrix outputBatch = forward(model, inputBatch); Matrix outputBatch = forward(model, inputBatch);
unsigned char *result = argmax(outputBatch); unsigned char *result = argmax(outputBatch);
clearMatrix(&outputBatch); clearMatrix(&outputBatch);
return result; return result;
} }

View File

@ -9,6 +9,46 @@
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{ {
// TODO // TODO
FILE *file = fopen(path, "wb"); // Binärmodus zum Schreiben öffnen
if (file != NULL)
{
// 1. Identifikationstag schreiben
const char *fileTag = FILE_HEADER_STRING;
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
// 2. Schichten (Layer) sequenziell schreiben
for (unsigned int i = 0; i < nn.numberOfLayers; i++)
{
const Layer currentLayer = nn.layers[i];
unsigned int inputDimension = currentLayer.weights.cols;
unsigned int outputDimension = currentLayer.weights.rows;
// Schreibe Input Dimension. Wichtig: Nutze sizeof(int)
// da readDimension in neuralNetwork.c in einen int liest.
fwrite(&inputDimension, sizeof(int), 1, file);
// Schreibe Output Dimension.
fwrite(&outputDimension, sizeof(int), 1, file);
// Schreibe Gewichtsmatrix (Weights) Daten
size_t numWeights = currentLayer.weights.rows * currentLayer.weights.cols;
fwrite(currentLayer.weights.buffer, sizeof(MatrixType), numWeights, file);
// Schreibe Biasmatrix (Biases) Daten
size_t numBiases = currentLayer.biases.rows * currentLayer.biases.cols;
fwrite(currentLayer.biases.buffer, sizeof(MatrixType), numBiases, file);
}
// 3. Ende des Modells signalisieren
unsigned int zero = 0;
// Wichtig: Auch hier sizeof(int) verwenden
fwrite(&zero, sizeof(int), 1, file); // Input Dimension = 0
fwrite(&zero, sizeof(int), 1, file); // Output Dimension = 0
fclose(file);
}
} }
void test_loadModelReturnsCorrectNumberOfLayers(void) void test_loadModelReturnsCorrectNumberOfLayers(void)