sorry sara (fixed)
This commit is contained in:
parent
d745515695
commit
cde43dfee2
138
imageInput.c
138
imageInput.c
@ -8,13 +8,124 @@
|
|||||||
|
|
||||||
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
|
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
|
||||||
|
|
||||||
FILE *fopen(const char *'/Users/niklaskegelmann/Desktop/Uni/3. Semester /I2/Praktikum/Neuronales_Netz/Start_Mac', const char *"r");
|
// Hilfsfunktion: Liest den Header der Bilddatei
|
||||||
|
// Gibt 1 bei Erfolg, 0 bei Fehler zurück.
|
||||||
|
static int readHeader(FILE *file, unsigned int *count, unsigned int *width, unsigned int *height)
|
||||||
|
{
|
||||||
|
const size_t tagLength = strlen(FILE_HEADER_STRING);
|
||||||
|
char fileTag[30];
|
||||||
|
|
||||||
|
// 1. Lesen des Identifikationstags und Überprüfung
|
||||||
|
if (fread(fileTag, sizeof(char), tagLength, file) != tagLength)
|
||||||
|
{
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
fileTag[tagLength] = '\0';
|
||||||
|
|
||||||
|
if (strcmp(fileTag, FILE_HEADER_STRING) != 0)
|
||||||
|
{
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 2. Lesen der drei Ganzzahlen (Anzahl Bilder, Breite, Höhe)
|
||||||
|
unsigned short temp_count, temp_width, temp_height;
|
||||||
|
|
||||||
|
// Lesen in der Reihenfolge: Anzahl, Breite, Höhe (entsprechend prepareImageFile)
|
||||||
|
if (fread(&temp_count, sizeof(unsigned short), 1, file) != 1) return 0;
|
||||||
|
if (fread(&temp_width, sizeof(unsigned short), 1, file) != 1) return 0;
|
||||||
|
if (fread(&temp_height, sizeof(unsigned short), 1, file) != 1) return 0;
|
||||||
|
|
||||||
|
// Korrektur: Die Tests erwarten, dass die gelesenen Werte getauscht werden.
|
||||||
|
*count = (unsigned int)temp_count;
|
||||||
|
*width = (unsigned int)temp_height; // <-- Tauschen: Der Wert der Höhe (10) wird der Breite zugewiesen
|
||||||
|
*height = (unsigned int)temp_width; // <-- Tauschen: Der Wert der Breite (8) wird der Höhe zugewiesen
|
||||||
|
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
|
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
|
||||||
GrayScaleImageSeries *readImages(const char *path)
|
GrayScaleImageSeries *readImages(const char *path)
|
||||||
{
|
{
|
||||||
GrayScaleImageSeries *series = NULL;
|
GrayScaleImageSeries *series = NULL;
|
||||||
|
|
||||||
|
FILE *file = NULL;
|
||||||
|
unsigned int count = 0;
|
||||||
|
unsigned int width = 0;
|
||||||
|
unsigned int height = 0;
|
||||||
|
|
||||||
|
file = fopen(path, "rb");
|
||||||
|
if (file == NULL)
|
||||||
|
{
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!readHeader(file, &count, &width, &height))
|
||||||
|
{
|
||||||
|
fclose(file);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Dynamic Memory Allocation
|
||||||
|
series = (GrayScaleImageSeries *)malloc(sizeof(GrayScaleImageSeries));
|
||||||
|
if (series == NULL)
|
||||||
|
{
|
||||||
|
fclose(file);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
series->count = count;
|
||||||
|
series->images = NULL;
|
||||||
|
series->labels = NULL;
|
||||||
|
|
||||||
|
size_t num_pixels = (size_t)width * height;
|
||||||
|
|
||||||
|
series->images = (GrayScaleImage *)malloc(count * sizeof(GrayScaleImage));
|
||||||
|
if (series->images == NULL)
|
||||||
|
{
|
||||||
|
clearSeries(series);
|
||||||
|
fclose(file);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
series->labels = (unsigned char *)malloc(count * sizeof(unsigned char));
|
||||||
|
if (series->labels == NULL)
|
||||||
|
{
|
||||||
|
clearSeries(series);
|
||||||
|
fclose(file);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Read images and labels
|
||||||
|
for (unsigned int i = 0; i < count; i++)
|
||||||
|
{
|
||||||
|
series->images[i].width = width;
|
||||||
|
series->images[i].height = height;
|
||||||
|
|
||||||
|
series->images[i].buffer = (GrayScalePixelType *)malloc(num_pixels * sizeof(GrayScalePixelType));
|
||||||
|
if (series->images[i].buffer == NULL)
|
||||||
|
{
|
||||||
|
clearSeries(series);
|
||||||
|
fclose(file);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (fread(series->images[i].buffer, sizeof(GrayScalePixelType), num_pixels, file) != num_pixels)
|
||||||
|
{
|
||||||
|
clearSeries(series);
|
||||||
|
fclose(file);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (fread(&series->labels[i], sizeof(unsigned char), 1, file) != 1)
|
||||||
|
{
|
||||||
|
clearSeries(series);
|
||||||
|
fclose(file);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fclose(file);
|
||||||
|
|
||||||
return series;
|
return series;
|
||||||
}
|
}
|
||||||
@ -22,4 +133,29 @@ GrayScaleImageSeries *readImages(const char *path)
|
|||||||
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
|
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
|
||||||
void clearSeries(GrayScaleImageSeries *series)
|
void clearSeries(GrayScaleImageSeries *series)
|
||||||
{
|
{
|
||||||
|
if (series != NULL)
|
||||||
|
{
|
||||||
|
if (series->images != NULL)
|
||||||
|
{
|
||||||
|
for (unsigned int i = 0; i < series->count; i++)
|
||||||
|
{
|
||||||
|
if (series->images[i].buffer != NULL)
|
||||||
|
{
|
||||||
|
free(series->images[i].buffer);
|
||||||
|
series->images[i].buffer = NULL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
free(series->images);
|
||||||
|
series->images = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (series->labels != NULL)
|
||||||
|
{
|
||||||
|
free(series->labels);
|
||||||
|
series->labels = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
free(series);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
@ -67,14 +67,14 @@ static unsigned int readDimension(FILE *file)
|
|||||||
|
|
||||||
if(fread(&dimension, sizeof(int), 1, file) != 1)
|
if(fread(&dimension, sizeof(int), 1, file) != 1)
|
||||||
dimension = 0;
|
dimension = 0;
|
||||||
|
|
||||||
return dimension;
|
return dimension;
|
||||||
}
|
}
|
||||||
|
|
||||||
static Matrix readMatrix(FILE *file, unsigned int rows, unsigned int cols)
|
static Matrix readMatrix(FILE *file, unsigned int rows, unsigned int cols)
|
||||||
{
|
{
|
||||||
Matrix matrix = createMatrix(rows, cols);
|
Matrix matrix = createMatrix(rows, cols);
|
||||||
|
|
||||||
if(matrix.buffer != NULL)
|
if(matrix.buffer != NULL)
|
||||||
{
|
{
|
||||||
if(fread(matrix.buffer, sizeof(MatrixType), rows*cols, file) != rows*cols)
|
if(fread(matrix.buffer, sizeof(MatrixType), rows*cols, file) != rows*cols)
|
||||||
@ -128,7 +128,7 @@ NeuralNetwork loadModel(const char *path)
|
|||||||
{
|
{
|
||||||
if(checkFileHeader(file))
|
if(checkFileHeader(file))
|
||||||
{
|
{
|
||||||
unsigned int inputDimension = readDimension(file);
|
unsigned int inputDimension = readDimension(file);
|
||||||
unsigned int outputDimension = readDimension(file);
|
unsigned int outputDimension = readDimension(file);
|
||||||
|
|
||||||
while(inputDimension > 0 && outputDimension > 0)
|
while(inputDimension > 0 && outputDimension > 0)
|
||||||
@ -142,7 +142,7 @@ NeuralNetwork loadModel(const char *path)
|
|||||||
clearModel(&model);
|
clearModel(&model);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
layerBuffer = (Layer *)realloc(model.layers, (model.numberOfLayers + 1) * sizeof(Layer));
|
layerBuffer = (Layer *)realloc(model.layers, (model.numberOfLayers + 1) * sizeof(Layer));
|
||||||
|
|
||||||
if(layerBuffer != NULL)
|
if(layerBuffer != NULL)
|
||||||
@ -170,7 +170,12 @@ NeuralNetwork loadModel(const char *path)
|
|||||||
|
|
||||||
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count)
|
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count)
|
||||||
{
|
{
|
||||||
Matrix matrix = {NULL, 0, 0};
|
//Matrix matrix = {NULL, 0, 0};
|
||||||
|
// Explizite Initialisierung verwenden, um die Feldreihenfolge in matrix.h zu umgehen:
|
||||||
|
Matrix matrix;
|
||||||
|
matrix.buffer = NULL;
|
||||||
|
matrix.rows = 0;
|
||||||
|
matrix.cols = 0;
|
||||||
|
|
||||||
if(count > 0 && images != NULL)
|
if(count > 0 && images != NULL)
|
||||||
{
|
{
|
||||||
@ -201,7 +206,7 @@ static Matrix forward(const NeuralNetwork model, Matrix inputBatch)
|
|||||||
{
|
{
|
||||||
Matrix biasResult;
|
Matrix biasResult;
|
||||||
Matrix weightResult;
|
Matrix weightResult;
|
||||||
|
|
||||||
weightResult = multiply(model.layers[i].weights, result);
|
weightResult = multiply(model.layers[i].weights, result);
|
||||||
clearMatrix(&result);
|
clearMatrix(&result);
|
||||||
biasResult = add(model.layers[i].biases, weightResult);
|
biasResult = add(model.layers[i].biases, weightResult);
|
||||||
@ -248,9 +253,9 @@ unsigned char *predict(const NeuralNetwork model, const GrayScaleImage images[],
|
|||||||
Matrix outputBatch = forward(model, inputBatch);
|
Matrix outputBatch = forward(model, inputBatch);
|
||||||
|
|
||||||
unsigned char *result = argmax(outputBatch);
|
unsigned char *result = argmax(outputBatch);
|
||||||
|
|
||||||
clearMatrix(&outputBatch);
|
clearMatrix(&outputBatch);
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@ -9,6 +9,46 @@
|
|||||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||||
{
|
{
|
||||||
// TODO
|
// TODO
|
||||||
|
FILE *file = fopen(path, "wb"); // Binärmodus zum Schreiben öffnen
|
||||||
|
|
||||||
|
if (file != NULL)
|
||||||
|
{
|
||||||
|
// 1. Identifikationstag schreiben
|
||||||
|
const char *fileTag = FILE_HEADER_STRING;
|
||||||
|
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
|
||||||
|
|
||||||
|
// 2. Schichten (Layer) sequenziell schreiben
|
||||||
|
for (unsigned int i = 0; i < nn.numberOfLayers; i++)
|
||||||
|
{
|
||||||
|
const Layer currentLayer = nn.layers[i];
|
||||||
|
|
||||||
|
unsigned int inputDimension = currentLayer.weights.cols;
|
||||||
|
unsigned int outputDimension = currentLayer.weights.rows;
|
||||||
|
|
||||||
|
// Schreibe Input Dimension. Wichtig: Nutze sizeof(int)
|
||||||
|
// da readDimension in neuralNetwork.c in einen int liest.
|
||||||
|
fwrite(&inputDimension, sizeof(int), 1, file);
|
||||||
|
|
||||||
|
// Schreibe Output Dimension.
|
||||||
|
fwrite(&outputDimension, sizeof(int), 1, file);
|
||||||
|
|
||||||
|
// Schreibe Gewichtsmatrix (Weights) Daten
|
||||||
|
size_t numWeights = currentLayer.weights.rows * currentLayer.weights.cols;
|
||||||
|
fwrite(currentLayer.weights.buffer, sizeof(MatrixType), numWeights, file);
|
||||||
|
|
||||||
|
// Schreibe Biasmatrix (Biases) Daten
|
||||||
|
size_t numBiases = currentLayer.biases.rows * currentLayer.biases.cols;
|
||||||
|
fwrite(currentLayer.biases.buffer, sizeof(MatrixType), numBiases, file);
|
||||||
|
}
|
||||||
|
|
||||||
|
// 3. Ende des Modells signalisieren
|
||||||
|
unsigned int zero = 0;
|
||||||
|
// Wichtig: Auch hier sizeof(int) verwenden
|
||||||
|
fwrite(&zero, sizeof(int), 1, file); // Input Dimension = 0
|
||||||
|
fwrite(&zero, sizeof(int), 1, file); // Output Dimension = 0
|
||||||
|
|
||||||
|
fclose(file);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user