Neuronale-Netzwerke/neuralNetworkTests.c
2025-11-17 13:25:44 +01:00

291 lines
11 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "unity.h"
#include "neuralNetwork.h"
#define FILE_HEADER_STRING "__info2_neural_network_file_format__"
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{
FILE *file = fopen(path, "wb");
if (!file) return;
// 1) Header-Tag (Wort für Wort) schreiben
fwrite(FILE_HEADER_STRING, sizeof(char), strlen(FILE_HEADER_STRING), file);
// 2) Layer-Daten schreiben
for (unsigned int i = 0; i < nn.numberOfLayers; ++i)
{
const Layer *lay = &nn.layers[i];
int inputDim = (int)lay->weights.cols;
int outputDim = (int)lay->weights.rows;
// --- Spezifische Dimensions-Schreiblogik (Spiegelung der Leselogik) ---
if (i == 0) {
// FÜR DAS ERSTE LAYER (i=0):
// loadModel erwartet sowohl Input- als auch Output-Dimension direkt aus der Datei.
fwrite(&inputDim, sizeof(int), 1, file); // Schreibe Input-Dimension
fwrite(&outputDim, sizeof(int), 1, file); // Schreibe Output-Dimension
} else {
// FÜR ALLE WEITEREN LAYER (i > 0):
// loadModel merkt sich das Output-Dim des vorherigen Layers als neues Input-Dim.
// Es muss nur die neue Output-Dimension aus der Datei gelesen werden.
fwrite(&outputDim, sizeof(int), 1, file); // Schreibe NUR die Output-Dimension
}
// --- Matrizen-Daten schreiben ---
// Schreibe Gewichtsmatrix (Daten):
size_t weightCount = (size_t)lay->weights.rows * (size_t)lay->weights.cols; //size_t unsignierter ganzzahltyp
if (weightCount > 0 && lay->weights.buffer != NULL) {
// Schreibe alle MatrixType-Elemente (z.B. floats) der Gewichte.
fwrite(lay->weights.buffer, sizeof(MatrixType), weightCount, file);
}
// Schreibe Biases (Daten):
size_t biasCount = (size_t)lay->biases.rows * (size_t)lay->biases.cols;
if (biasCount > 0 && lay->biases.buffer != NULL) {
// Schreibe alle MatrixType-Elemente der Biases (oft eine Spalte).
fwrite(lay->biases.buffer, sizeof(MatrixType), biasCount, file);
}
}
// 3) Endmarkierung
// Am Ende der Schleife muss loadModel signalisiert werden, dass keine Layer mehr folgen.
// Dies geschieht, indem es beim Versuch, die nächste Dimension zu lesen, eine 0 findet.
int zero = 0;
fwrite(&zero, sizeof(int), 1, file); // Schreibe 4 Bytes, die den Wert 0 darstellen.
fclose(file); // Schließt die Datei und schreibt alle Puffer auf die Platte.
}
void test_loadModelReturnsCorrectNumberOfLayers(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2};
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3};
MatrixType buffer3[] = {1, 2, 3};
MatrixType buffer4[] = {1, 2};
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1};
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1};
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_EQUAL_INT(expectedNet.numberOfLayers, netUnderTest.numberOfLayers);
clearModel(&netUnderTest);
}
void test_loadModelReturnsCorrectWeightDimensions(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
clearModel(&netUnderTest);
}
void test_loadModelReturnsCorrectBiasDimensions(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.rows, netUnderTest.layers[0].biases.rows);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.cols, netUnderTest.layers[0].biases.cols);
clearModel(&netUnderTest);
}
void test_loadModelReturnsCorrectWeights(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
int n = netUnderTest.layers[0].weights.rows * netUnderTest.layers[0].weights.cols;
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].weights.buffer, netUnderTest.layers[0].weights.buffer, n);
clearModel(&netUnderTest);
}
void test_loadModelReturnsCorrectBiases(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
int n = netUnderTest.layers[0].biases.rows * netUnderTest.layers[0].biases.cols;
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].biases.buffer, netUnderTest.layers[0].biases.buffer, n);
clearModel(&netUnderTest);
}
void test_loadModelFailsOnWrongFileTag(void)
{
const char *path = "some_nn_test_file.info2";
NeuralNetwork netUnderTest;
FILE *file = fopen(path, "wb");
if(file != NULL)
{
const char *fileTag = "info2_neural_network_file_format";
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
fclose(file);
}
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_NULL(netUnderTest.layers);
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
}
void test_clearModelSetsMembersToNull(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_NOT_NULL(netUnderTest.layers);
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
clearModel(&netUnderTest);
TEST_ASSERT_NULL(netUnderTest.layers);
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
}
static void someActivation(Matrix *matrix)
{
for(int i = 0; i < matrix->rows * matrix->cols; i++)
{
matrix->buffer[i] = fabs(matrix->buffer[i]);
}
}
void test_predictReturnsCorrectLabels(void)
{
const unsigned char expectedLabels[] = {4, 2};
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
MatrixType biasBuffer1[] = {200, 0};
MatrixType biasBuffer2[] = {0, -100, 0};
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
{.weights=weights3, .biases=biases3, .activation=someActivation}};
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
TEST_ASSERT_NOT_NULL(predictedLabels);
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
TEST_ASSERT_EQUAL_UINT8_ARRAY(expectedLabels, predictedLabels, n);
free(predictedLabels);
}
void setUp(void) {
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
}
void tearDown(void) {
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
}
int main()
{
UNITY_BEGIN();
printf("\n============================\nNeural network tests\n============================\n");
RUN_TEST(test_loadModelReturnsCorrectNumberOfLayers);
RUN_TEST(test_loadModelReturnsCorrectWeightDimensions);
RUN_TEST(test_loadModelReturnsCorrectBiasDimensions);
RUN_TEST(test_loadModelReturnsCorrectWeights);
RUN_TEST(test_loadModelReturnsCorrectBiases);
RUN_TEST(test_loadModelFailsOnWrongFileTag);
RUN_TEST(test_clearModelSetsMembersToNull);
RUN_TEST(test_predictReturnsCorrectLabels);
return UNITY_END();
}