283 lines
11 KiB
C
283 lines
11 KiB
C
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include "unity.h"
|
|
#include "neuralNetwork.h"
|
|
|
|
#define FILE_HEADER_STRING "__info2_neural_network_file_format__"
|
|
|
|
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
|
{
|
|
FILE *file = fopen(path, "wb"); //File wird zum schreiben binär geöffnet
|
|
if (!file) return; //falls fopen nicht geht -> fail
|
|
|
|
// 1) Header-Tag WORTGENAU (OHNE Nullterminator) schreiben
|
|
fwrite(FILE_HEADER_STRING, sizeof(char), strlen(FILE_HEADER_STRING), file); //header wird in Datei geschrieben
|
|
//load module erkennt ob die datei ein gültiges Neural-Network ist
|
|
// 2) Layer-Daten im Format, das loadModel() erwartet
|
|
for (unsigned int i = 0; i < nn.numberOfLayers; ++i) //Neuronales Netz Layer für Layer speichern
|
|
{
|
|
const Layer *lay = &nn.layers[i];
|
|
|
|
int inputDim = (int)lay->weights.cols; // cols == inputDimension liest die dimensionen der gewichtsmatrix aus
|
|
int outputDim = (int)lay->weights.rows; // rows == outputDimension
|
|
|
|
if (i == 0) {
|
|
// Erstes Paar: input und output schreiben (für Layer 0)
|
|
fwrite(&inputDim, sizeof(int), 1, file);
|
|
fwrite(&outputDim, sizeof(int), 1, file);
|
|
} else {
|
|
// Ab dem zweiten Layer: NUR das neue outputDimension schreiben
|
|
fwrite(&outputDim, sizeof(int), 1, file);
|
|
}
|
|
|
|
// Gewichtsmatrix (row-major)
|
|
size_t weightCount = (size_t)lay->weights.rows * (size_t)lay->weights.cols;
|
|
if (weightCount > 0 && lay->weights.buffer != NULL) {
|
|
fwrite(lay->weights.buffer, sizeof(MatrixType), weightCount, file);
|
|
}
|
|
|
|
// Biases (rows x 1)
|
|
size_t biasCount = (size_t)lay->biases.rows * (size_t)lay->biases.cols;
|
|
if (biasCount > 0 && lay->biases.buffer != NULL) {
|
|
fwrite(lay->biases.buffer, sizeof(MatrixType), biasCount, file);
|
|
}
|
|
}
|
|
|
|
// 3) Endmarkierung: EINE 0 (als int) schreiben
|
|
int zero = 0;
|
|
fwrite(&zero, sizeof(int), 1, file);
|
|
|
|
fclose(file);
|
|
}
|
|
|
|
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
|
{
|
|
const char *path = "some__nn_test_file.info2";
|
|
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
|
|
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
|
|
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2};
|
|
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3};
|
|
MatrixType buffer3[] = {1, 2, 3};
|
|
MatrixType buffer4[] = {1, 2};
|
|
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1};
|
|
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1};
|
|
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}};
|
|
|
|
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2};
|
|
NeuralNetwork netUnderTest;
|
|
|
|
prepareNeuralNetworkFile(path, expectedNet);
|
|
|
|
netUnderTest = loadModel(path);
|
|
remove(path);
|
|
|
|
TEST_ASSERT_EQUAL_INT(expectedNet.numberOfLayers, netUnderTest.numberOfLayers);
|
|
clearModel(&netUnderTest);
|
|
}
|
|
|
|
void test_loadModelReturnsCorrectWeightDimensions(void)
|
|
{
|
|
const char *path = "some__nn_test_file.info2";
|
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
|
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
|
MatrixType biasBuffer[] = {7, 8, 9};
|
|
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
|
Layer layers[] = {{.weights=weights, .biases=biases}};
|
|
|
|
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
|
NeuralNetwork netUnderTest;
|
|
|
|
prepareNeuralNetworkFile(path, expectedNet);
|
|
|
|
netUnderTest = loadModel(path);
|
|
remove(path);
|
|
|
|
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
|
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
|
|
clearModel(&netUnderTest);
|
|
}
|
|
|
|
void test_loadModelReturnsCorrectBiasDimensions(void)
|
|
{
|
|
const char *path = "some__nn_test_file.info2";
|
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
|
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
|
MatrixType biasBuffer[] = {7, 8, 9};
|
|
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
|
Layer layers[] = {{.weights=weights, .biases=biases}};
|
|
|
|
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
|
NeuralNetwork netUnderTest;
|
|
|
|
prepareNeuralNetworkFile(path, expectedNet);
|
|
|
|
netUnderTest = loadModel(path);
|
|
remove(path);
|
|
|
|
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.rows, netUnderTest.layers[0].biases.rows);
|
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.cols, netUnderTest.layers[0].biases.cols);
|
|
clearModel(&netUnderTest);
|
|
}
|
|
|
|
void test_loadModelReturnsCorrectWeights(void)
|
|
{
|
|
const char *path = "some__nn_test_file.info2";
|
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
|
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
|
MatrixType biasBuffer[] = {7, 8, 9};
|
|
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
|
Layer layers[] = {{.weights=weights, .biases=biases}};
|
|
|
|
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
|
NeuralNetwork netUnderTest;
|
|
|
|
prepareNeuralNetworkFile(path, expectedNet);
|
|
|
|
netUnderTest = loadModel(path);
|
|
remove(path);
|
|
|
|
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
|
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
|
|
int n = netUnderTest.layers[0].weights.rows * netUnderTest.layers[0].weights.cols;
|
|
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].weights.buffer, netUnderTest.layers[0].weights.buffer, n);
|
|
clearModel(&netUnderTest);
|
|
}
|
|
|
|
void test_loadModelReturnsCorrectBiases(void)
|
|
{
|
|
const char *path = "some__nn_test_file.info2";
|
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
|
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
|
MatrixType biasBuffer[] = {7, 8, 9};
|
|
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
|
Layer layers[] = {{.weights=weights, .biases=biases}};
|
|
|
|
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
|
NeuralNetwork netUnderTest;
|
|
|
|
prepareNeuralNetworkFile(path, expectedNet);
|
|
|
|
netUnderTest = loadModel(path);
|
|
remove(path);
|
|
|
|
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
|
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
|
|
int n = netUnderTest.layers[0].biases.rows * netUnderTest.layers[0].biases.cols;
|
|
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].biases.buffer, netUnderTest.layers[0].biases.buffer, n);
|
|
clearModel(&netUnderTest);
|
|
}
|
|
|
|
void test_loadModelFailsOnWrongFileTag(void)
|
|
{
|
|
const char *path = "some_nn_test_file.info2";
|
|
NeuralNetwork netUnderTest;
|
|
FILE *file = fopen(path, "wb");
|
|
|
|
if(file != NULL)
|
|
{
|
|
const char *fileTag = "info2_neural_network_file_format";
|
|
|
|
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
|
|
|
|
fclose(file);
|
|
}
|
|
|
|
netUnderTest = loadModel(path);
|
|
|
|
remove(path);
|
|
|
|
TEST_ASSERT_NULL(netUnderTest.layers);
|
|
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
|
|
}
|
|
|
|
void test_clearModelSetsMembersToNull(void)
|
|
{
|
|
const char *path = "some__nn_test_file.info2";
|
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
|
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
|
MatrixType biasBuffer[] = {7, 8, 9};
|
|
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
|
Layer layers[] = {{.weights=weights, .biases=biases}};
|
|
|
|
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
|
NeuralNetwork netUnderTest;
|
|
|
|
prepareNeuralNetworkFile(path, expectedNet);
|
|
|
|
netUnderTest = loadModel(path);
|
|
remove(path);
|
|
|
|
TEST_ASSERT_NOT_NULL(netUnderTest.layers);
|
|
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
|
clearModel(&netUnderTest);
|
|
TEST_ASSERT_NULL(netUnderTest.layers);
|
|
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
|
|
}
|
|
|
|
static void someActivation(Matrix *matrix)
|
|
{
|
|
for(int i = 0; i < matrix->rows * matrix->cols; i++)
|
|
{
|
|
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
|
}
|
|
}
|
|
|
|
void test_predictReturnsCorrectLabels(void)
|
|
{
|
|
const unsigned char expectedLabels[] = {4, 2};
|
|
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
|
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
|
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
|
|
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
|
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
|
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
|
|
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
|
|
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
|
|
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
|
|
MatrixType biasBuffer1[] = {200, 0};
|
|
MatrixType biasBuffer2[] = {0, -100, 0};
|
|
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
|
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
|
|
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
|
|
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
|
|
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
|
|
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
|
|
{.weights=weights3, .biases=biases3, .activation=someActivation}};
|
|
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
|
|
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
|
TEST_ASSERT_NOT_NULL(predictedLabels);
|
|
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
|
TEST_ASSERT_EQUAL_UINT8_ARRAY(expectedLabels, predictedLabels, n);
|
|
free(predictedLabels);
|
|
}
|
|
|
|
void setUp(void) {
|
|
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
|
}
|
|
|
|
void tearDown(void) {
|
|
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
|
}
|
|
|
|
int main()
|
|
{
|
|
UNITY_BEGIN();
|
|
|
|
printf("\n============================\nNeural network tests\n============================\n");
|
|
RUN_TEST(test_loadModelReturnsCorrectNumberOfLayers);
|
|
RUN_TEST(test_loadModelReturnsCorrectWeightDimensions);
|
|
RUN_TEST(test_loadModelReturnsCorrectBiasDimensions);
|
|
RUN_TEST(test_loadModelReturnsCorrectWeights);
|
|
RUN_TEST(test_loadModelReturnsCorrectBiases);
|
|
RUN_TEST(test_loadModelFailsOnWrongFileTag);
|
|
RUN_TEST(test_clearModelSetsMembersToNull);
|
|
RUN_TEST(test_predictReturnsCorrectLabels);
|
|
|
|
return UNITY_END();
|
|
} |