Compare commits

..

5 Commits
main ... main

7 changed files with 52 additions and 322 deletions

Binary file not shown.

View File

@ -8,127 +8,15 @@
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
static int read_header(FILE *file, unsigned short *count, unsigned short *width, unsigned short *height)
{
size_t headerLEN = strlen(FILE_HEADER_STRING);
char buffer[BUFFER_SIZE];
if (headerLEN >= BUFFER_SIZE)
{
return 0;
}
if (fread(buffer, 1, headerLEN, file) != headerLEN)
{
return 0;
}
buffer[headerLEN] = '\0';
if (strcmp(buffer, FILE_HEADER_STRING) != 0)
{
return 0;
}
if (fread(count, sizeof(unsigned short), 1, file) != 1 || fread(width, sizeof(unsigned short), 1, file) != 1 ||
fread(height, sizeof(unsigned short), 1, file) != 1)
{
return 0;
}
return 1;
}
static int read_single_image(FILE *file, GrayScaleImage *image)
{
unsigned int number_of_pixel = image->width * image->height;
if (fread(image->buffer, sizeof(GrayScalePixelType), number_of_pixel, file) != number_of_pixel) // fehler beim lesen
{
return 0;
}
return 1;
}
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
GrayScaleImageSeries *readImages(const char *path)
{
FILE *file = fopen(path, "rb");
if (!file)
{
return 0;
}
unsigned short count, width, height;
if (!read_header(file, &count, &width, &height))
{
fclose(file);
return 0;
}
GrayScaleImageSeries *series = malloc(sizeof(GrayScaleImageSeries));
if (!series)
{
fclose(file);
return 0;
}
series->count = count;
series->images = malloc(count * sizeof(GrayScaleImage));
series->labels = malloc(count * sizeof(unsigned char));
if (!series->images || !series->labels)
{
clearSeries(series);
fclose(file);
return 0;
}
for (int i = 0; i < count; i++)
{
series->images[i].width = width;
series->images[i].height = height;
series->images[i].buffer = malloc(width * height * sizeof(GrayScalePixelType));
if (!series->images[i].buffer)
{
clearSeries(series);
fclose(file);
return 0;
}
if (!read_single_image(file, &series->images[i]))
{
clearSeries(series);
fclose(file);
return 0;
}
if (fread(&series->labels[i], 1, 1, file) != 1)
{
clearSeries(series);
fclose(file);
return 0;
}
}
fclose(file);
GrayScaleImageSeries *series = NULL;
return series;
}
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
void clearSeries(GrayScaleImageSeries *series)
{
if (series)
{
for (int i = 0; i < series->count; i++)
{
free(series->images[i].buffer);
}
free(series->images);
free(series->labels);
free(series);
}
}

View File

@ -119,13 +119,6 @@ void test_readImagesFailsOnWrongFileTag(void)
remove(path);
}
// Tests der Hilfsfunktionen
void test_read_header(void)
{
}
void setUp(void) {
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
}

155
matrix.c
View File

@ -1,178 +1,35 @@
#include <stdlib.h>
#include <string.h>
#include "matrix.h"
#include <stdio.h>
// TODO Matrix-Funktionen implementieren
Matrix createMatrix(unsigned int rows, unsigned int cols)
{
Matrix matrix;
if (rows == 0 || cols == 0)
{
matrix.rows = 0;
matrix.cols = 0;
matrix.buffer = NULL;
return matrix;
}
matrix.rows = rows;
matrix.cols = cols;
matrix.buffer = (MatrixType *)malloc(rows * cols * sizeof(MatrixType));
if (matrix.buffer == NULL)
{
matrix.rows = 0;
matrix.cols = 0;
return matrix;
}
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
{
matrix.buffer[i * matrix.cols + j] = UNDEFINED_MATRIX_VALUE;
}
}
return matrix;
}
void clearMatrix(Matrix *matrix)
{
if (matrix->buffer != NULL)
{
free(matrix->buffer);
matrix->buffer = NULL;
}
matrix->rows = 0;
matrix->cols = 0;
}
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
{
if (rowIdx >= matrix.rows || colIdx >= matrix.cols)
{
fprintf(stderr, "Fehler: Ungültiger Index (%u, %u) bei Matrixgröße %u x %u\n", rowIdx, colIdx, matrix.rows, matrix.cols);
return; // abbruch falls fehler
}
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
}
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
{
if (rowIdx >= matrix.rows || colIdx >= matrix.cols)
{
fprintf(stderr, "Fehler: Ungültiger Index (%u, %u) bei Matrixgröße %u x %u\n", rowIdx, colIdx, matrix.rows, matrix.cols);
return UNDEFINED_MATRIX_VALUE;
}
return matrix.buffer[rowIdx * matrix.cols + colIdx];
}
Matrix add(const Matrix matrix1, const Matrix matrix2)
{
if (matrix1.rows == matrix2.rows && matrix1.cols == matrix2.cols) // gleiche Dimension
{
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
if (result.buffer == NULL)
{
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
return result;
}
for (int i = 0; i < matrix1.rows; i++)
{
for (int j = 0; j < matrix1.cols; j++)
{
result.buffer[i * result.cols + j] = matrix1.buffer[i * matrix1.cols + j] + matrix2.buffer[i * matrix2.cols + j];
}
}
return result;
}
if (matrix1.rows == matrix2.rows && matrix2.cols == 1) // Matrix 2 hat eine Spalte
{
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
if(result.buffer == NULL)
{
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
return result;
}
for (int i = 0; i < matrix1.rows; i++)
{
for (int j = 0; j < matrix1.cols; j++)
{
result.buffer[i * result.cols + j] = matrix1.buffer[i * matrix1.cols + j] + matrix2.buffer[i];
}
}
return result;
}
if (matrix1.rows == matrix2.rows && matrix1.cols == 1) // Matrix 1 hat eine Spalte
{
Matrix result = createMatrix(matrix2.rows, matrix2.cols);
if(result.buffer == NULL)
{
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
return result;
}
for (int i = 0; i < matrix2.rows; i++)
{
for (int j = 0; j < matrix2.cols; j++)
{
result.buffer[i * result.cols + j] = matrix1.buffer[i] + matrix2.buffer[i * matrix2.cols + j];
}
}
return result;
}
// passt nicht
fprintf(stderr, "Fehler: Matrizen haben unterschiedliche Größen (%u x %u) und (%u x %u)\n",
matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols);
Matrix empty = {NULL, 0, 0};
return empty;
}
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
{
if (matrix1.cols != matrix2.rows)
{
fprintf(stderr, "Fehler: Matrizen der Dimension (%u x %u) und (%u x %u) koennen nicht multipliziert werden\n",
matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols);
Matrix empty = {NULL, 0, 0};
return empty;
}
Matrix result = createMatrix(matrix1.rows, matrix2.cols);
if (result.buffer == NULL)
{
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
return result;
}
for (int i = 0; i < matrix1.rows; i++)
{
for (int j = 0; j < matrix2.cols; j++)
{
MatrixType sum = 0.0;
for (int k = 0; k < matrix1.cols; k++)
{
sum += matrix1.buffer[i * matrix1.cols + k] * matrix2.buffer[k * matrix2.cols + j];
}
result.buffer[i * result.cols + j] = sum;
}
}
return result;
}
}

View File

@ -7,13 +7,6 @@ typedef float MatrixType;
// TODO Matrixtyp definieren
typedef struct Matrix {
MatrixType *buffer;
unsigned int rows;
unsigned int cols;
} Matrix;
Matrix createMatrix(unsigned int rows, unsigned int cols);
void clearMatrix(Matrix *matrix);

View File

@ -164,7 +164,7 @@ void test_setMatrixAtFailsOnIndicesOutOfRange(void)
Matrix matrixToTest = {.rows=2, .cols=3, .buffer=buffer};
setMatrixAt(-1, matrixToTest, 2, 3);
TEST_ASSERT_EQUAL_FLOAT_ARRAY(expectedResults, matrixToTest.buffer, matrixToTest.cols * matrixToTest.rows);
TEST_ASSERT_EQUAL_FLOAT_ARRAY(expectedResults, matrixToTest.buffer, sizeof(buffer)/sizeof(MatrixType));
}
void setUp(void) {

View File

@ -5,9 +5,10 @@
#include "unity.h"
#include "neuralNetwork.h"
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{
// TODO
}
void test_loadModelReturnsCorrectNumberOfLayers(void)
@ -15,15 +16,15 @@ void test_loadModelReturnsCorrectNumberOfLayers(void)
const char *path = "some__nn_test_file.info2";
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
Matrix weights1 = {.buffer = buffer1, .rows = 3, .cols = 2};
Matrix weights2 = {.buffer = buffer2, .rows = 2, .cols = 3};
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2};
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3};
MatrixType buffer3[] = {1, 2, 3};
MatrixType buffer4[] = {1, 2};
Matrix biases1 = {.buffer = buffer3, .rows = 3, .cols = 1};
Matrix biases2 = {.buffer = buffer4, .rows = 2, .cols = 1};
Layer layers[] = {{.weights = weights1, .biases = biases1}, {.weights = weights2, .biases = biases2}};
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1};
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1};
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 2};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -39,12 +40,12 @@ void test_loadModelReturnsCorrectWeightDimensions(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -62,12 +63,12 @@ void test_loadModelReturnsCorrectBiasDimensions(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -85,12 +86,12 @@ void test_loadModelReturnsCorrectWeights(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -110,12 +111,12 @@ void test_loadModelReturnsCorrectBiases(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -137,7 +138,7 @@ void test_loadModelFailsOnWrongFileTag(void)
NeuralNetwork netUnderTest;
FILE *file = fopen(path, "wb");
if (file != NULL)
if(file != NULL)
{
const char *fileTag = "info2_neural_network_file_format";
@ -158,12 +159,12 @@ void test_clearModelSetsMembersToNull(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -180,7 +181,7 @@ void test_clearModelSetsMembersToNull(void)
static void someActivation(Matrix *matrix)
{
for (int i = 0; i < matrix->rows * matrix->cols; i++)
for(int i = 0; i < matrix->rows * matrix->cols; i++)
{
matrix->buffer[i] = fabs(matrix->buffer[i]);
}
@ -191,23 +192,23 @@ void test_predictReturnsCorrectLabels(void)
const unsigned char expectedLabels[] = {4, 2};
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
GrayScaleImage inputImages[] = {{.buffer = imageBuffer1, .width = 2, .height = 2}, {.buffer = imageBuffer2, .width = 2, .height = 2}};
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
Matrix weights1 = {.buffer = weightsBuffer1, .rows = 2, .cols = 4};
Matrix weights2 = {.buffer = weightsBuffer2, .rows = 3, .cols = 2};
Matrix weights3 = {.buffer = weightsBuffer3, .rows = 5, .cols = 3};
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
MatrixType biasBuffer1[] = {200, 0};
MatrixType biasBuffer2[] = {0, -100, 0};
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation},
{.weights = weights2, .biases = biases2, .activation = someActivation},
{.weights = weights3, .biases = biases3, .activation = someActivation}};
NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
{.weights=weights3, .biases=biases3, .activation=someActivation}};
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
TEST_ASSERT_NOT_NULL(predictedLabels);
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
@ -215,13 +216,11 @@ void test_predictReturnsCorrectLabels(void)
free(predictedLabels);
}
void setUp(void)
{
void setUp(void) {
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
}
void tearDown(void)
{
void tearDown(void) {
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
}