forked from freudenreichan/info2Praktikum-NeuronalesNetz
Compare commits
5 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 2436240736 | |||
| fde82f2d9a | |||
| 0fc70f982c | |||
| b271c865cb | |||
|
|
077c6def78 |
Binary file not shown.
114
imageInput.c
114
imageInput.c
@ -8,127 +8,15 @@
|
|||||||
|
|
||||||
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
|
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
|
||||||
|
|
||||||
static int read_header(FILE *file, unsigned short *count, unsigned short *width, unsigned short *height)
|
|
||||||
{
|
|
||||||
size_t headerLEN = strlen(FILE_HEADER_STRING);
|
|
||||||
char buffer[BUFFER_SIZE];
|
|
||||||
|
|
||||||
if (headerLEN >= BUFFER_SIZE)
|
|
||||||
{
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (fread(buffer, 1, headerLEN, file) != headerLEN)
|
|
||||||
{
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
buffer[headerLEN] = '\0';
|
|
||||||
|
|
||||||
if (strcmp(buffer, FILE_HEADER_STRING) != 0)
|
|
||||||
{
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (fread(count, sizeof(unsigned short), 1, file) != 1 || fread(width, sizeof(unsigned short), 1, file) != 1 ||
|
|
||||||
fread(height, sizeof(unsigned short), 1, file) != 1)
|
|
||||||
{
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
static int read_single_image(FILE *file, GrayScaleImage *image)
|
|
||||||
{
|
|
||||||
unsigned int number_of_pixel = image->width * image->height;
|
|
||||||
|
|
||||||
if (fread(image->buffer, sizeof(GrayScalePixelType), number_of_pixel, file) != number_of_pixel) // fehler beim lesen
|
|
||||||
{
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
|
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
|
||||||
GrayScaleImageSeries *readImages(const char *path)
|
GrayScaleImageSeries *readImages(const char *path)
|
||||||
{
|
{
|
||||||
FILE *file = fopen(path, "rb");
|
GrayScaleImageSeries *series = NULL;
|
||||||
if (!file)
|
|
||||||
{
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
unsigned short count, width, height;
|
|
||||||
|
|
||||||
if (!read_header(file, &count, &width, &height))
|
|
||||||
{
|
|
||||||
fclose(file);
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
GrayScaleImageSeries *series = malloc(sizeof(GrayScaleImageSeries));
|
|
||||||
|
|
||||||
if (!series)
|
|
||||||
{
|
|
||||||
fclose(file);
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
series->count = count;
|
|
||||||
series->images = malloc(count * sizeof(GrayScaleImage));
|
|
||||||
series->labels = malloc(count * sizeof(unsigned char));
|
|
||||||
|
|
||||||
if (!series->images || !series->labels)
|
|
||||||
{
|
|
||||||
clearSeries(series);
|
|
||||||
fclose(file);
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = 0; i < count; i++)
|
|
||||||
{
|
|
||||||
series->images[i].width = width;
|
|
||||||
series->images[i].height = height;
|
|
||||||
series->images[i].buffer = malloc(width * height * sizeof(GrayScalePixelType));
|
|
||||||
|
|
||||||
if (!series->images[i].buffer)
|
|
||||||
{
|
|
||||||
clearSeries(series);
|
|
||||||
fclose(file);
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!read_single_image(file, &series->images[i]))
|
|
||||||
{
|
|
||||||
clearSeries(series);
|
|
||||||
fclose(file);
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (fread(&series->labels[i], 1, 1, file) != 1)
|
|
||||||
{
|
|
||||||
clearSeries(series);
|
|
||||||
fclose(file);
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fclose(file);
|
|
||||||
return series;
|
return series;
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
|
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
|
||||||
void clearSeries(GrayScaleImageSeries *series)
|
void clearSeries(GrayScaleImageSeries *series)
|
||||||
{
|
{
|
||||||
if (series)
|
|
||||||
{
|
|
||||||
for (int i = 0; i < series->count; i++)
|
|
||||||
{
|
|
||||||
free(series->images[i].buffer);
|
|
||||||
}
|
|
||||||
free(series->images);
|
|
||||||
free(series->labels);
|
|
||||||
free(series);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
@ -5,40 +5,37 @@
|
|||||||
#include "unity.h"
|
#include "unity.h"
|
||||||
#include "imageInput.h"
|
#include "imageInput.h"
|
||||||
|
|
||||||
|
|
||||||
static void prepareImageFile(const char *path, unsigned short int width, unsigned short int height, unsigned int short numberOfImages, unsigned char label)
|
static void prepareImageFile(const char *path, unsigned short int width, unsigned short int height, unsigned int short numberOfImages, unsigned char label)
|
||||||
{
|
{
|
||||||
FILE *file = fopen(path, "wb");
|
FILE *file = fopen(path, "wb");
|
||||||
|
|
||||||
if (file != NULL)
|
if(file != NULL)
|
||||||
{
|
{
|
||||||
const char *fileTag = "__info2_image_file_format__";
|
const char *fileTag = "__info2_image_file_format__";
|
||||||
GrayScalePixelType *buffer = (GrayScalePixelType *)calloc(numberOfImages * width * height, sizeof(GrayScalePixelType));
|
GrayScalePixelType *zeroBuffer = (GrayScalePixelType *)calloc(numberOfImages * width * height, sizeof(GrayScalePixelType));
|
||||||
|
|
||||||
if (buffer != NULL)
|
if(zeroBuffer != NULL)
|
||||||
{
|
{
|
||||||
for (int i = 0; i < width * height; i++)
|
fwrite(fileTag, sizeof(fileTag[0]), strlen(fileTag), file);
|
||||||
{
|
|
||||||
buffer[i] = (GrayScalePixelType)i; // füllen des buffers mit Graustufen des Pixel für Test
|
|
||||||
}
|
|
||||||
|
|
||||||
fwrite(fileTag, 1, strlen(fileTag), file);
|
|
||||||
fwrite(&numberOfImages, sizeof(numberOfImages), 1, file);
|
fwrite(&numberOfImages, sizeof(numberOfImages), 1, file);
|
||||||
fwrite(&width, sizeof(width), 1, file);
|
fwrite(&width, sizeof(width), 1, file);
|
||||||
fwrite(&height, sizeof(height), 1, file);
|
fwrite(&height, sizeof(height), 1, file);
|
||||||
|
|
||||||
for (int i = 0; i < numberOfImages; i++)
|
for(int i = 0; i < numberOfImages; i++)
|
||||||
{
|
{
|
||||||
fwrite(buffer, sizeof(GrayScalePixelType), width * height, file);
|
fwrite(zeroBuffer, sizeof(GrayScalePixelType), width * height, file);
|
||||||
fwrite(&label, sizeof(unsigned char), 1, file);
|
fwrite(&label, sizeof(unsigned char), 1, file);
|
||||||
}
|
}
|
||||||
|
|
||||||
free(buffer);
|
free(zeroBuffer);
|
||||||
}
|
}
|
||||||
|
|
||||||
fclose(file);
|
fclose(file);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
void test_readImagesReturnsCorrectNumberOfImages(void)
|
void test_readImagesReturnsCorrectNumberOfImages(void)
|
||||||
{
|
{
|
||||||
GrayScaleImageSeries *series = NULL;
|
GrayScaleImageSeries *series = NULL;
|
||||||
@ -95,8 +92,7 @@ void test_readImagesReturnsCorrectLabels(void)
|
|||||||
TEST_ASSERT_NOT_NULL(series);
|
TEST_ASSERT_NOT_NULL(series);
|
||||||
TEST_ASSERT_NOT_NULL(series->labels);
|
TEST_ASSERT_NOT_NULL(series->labels);
|
||||||
TEST_ASSERT_EQUAL_UINT16(2, series->count);
|
TEST_ASSERT_EQUAL_UINT16(2, series->count);
|
||||||
for (int i = 0; i < 2; i++)
|
for (int i = 0; i < 2; i++) {
|
||||||
{
|
|
||||||
TEST_ASSERT_EQUAL_UINT8(expectedLabel, series->labels[i]);
|
TEST_ASSERT_EQUAL_UINT8(expectedLabel, series->labels[i]);
|
||||||
}
|
}
|
||||||
clearSeries(series);
|
clearSeries(series);
|
||||||
@ -114,7 +110,7 @@ void test_readImagesFailsOnWrongFileTag(void)
|
|||||||
{
|
{
|
||||||
const char *path = "testFile.info2";
|
const char *path = "testFile.info2";
|
||||||
FILE *file = fopen(path, "w");
|
FILE *file = fopen(path, "w");
|
||||||
if (file != NULL)
|
if(file != NULL)
|
||||||
{
|
{
|
||||||
fprintf(file, "some_tag ");
|
fprintf(file, "some_tag ");
|
||||||
fclose(file);
|
fclose(file);
|
||||||
@ -123,36 +119,11 @@ void test_readImagesFailsOnWrongFileTag(void)
|
|||||||
remove(path);
|
remove(path);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Test der Hilfsfunktionen
|
void setUp(void) {
|
||||||
|
|
||||||
void test_read_GrayScale_Pixel(void)
|
|
||||||
{
|
|
||||||
GrayScaleImageSeries *series = NULL;
|
|
||||||
const char *path = "testFile.info2";
|
|
||||||
|
|
||||||
prepareImageFile(path, 8, 8, 1, 1);
|
|
||||||
series = readImages(path);
|
|
||||||
|
|
||||||
TEST_ASSERT_NOT_NULL(series);
|
|
||||||
TEST_ASSERT_NOT_NULL(series->images);
|
|
||||||
TEST_ASSERT_EQUAL_UINT16(1, series->count);
|
|
||||||
|
|
||||||
for (int i = 0; i < (8 * 8); i++)
|
|
||||||
{
|
|
||||||
TEST_ASSERT_EQUAL_UINT8((GrayScalePixelType)i, series->images->buffer[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
clearSeries(series);
|
|
||||||
remove(path);
|
|
||||||
}
|
|
||||||
|
|
||||||
void setUp(void)
|
|
||||||
{
|
|
||||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||||
}
|
}
|
||||||
|
|
||||||
void tearDown(void)
|
void tearDown(void) {
|
||||||
{
|
|
||||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -167,7 +138,6 @@ int main()
|
|||||||
RUN_TEST(test_readImagesReturnsCorrectLabels);
|
RUN_TEST(test_readImagesReturnsCorrectLabels);
|
||||||
RUN_TEST(test_readImagesReturnsNullOnNotExistingPath);
|
RUN_TEST(test_readImagesReturnsNullOnNotExistingPath);
|
||||||
RUN_TEST(test_readImagesFailsOnWrongFileTag);
|
RUN_TEST(test_readImagesFailsOnWrongFileTag);
|
||||||
RUN_TEST(test_read_GrayScale_Pixel);
|
|
||||||
|
|
||||||
return UNITY_END();
|
return UNITY_END();
|
||||||
}
|
}
|
||||||
143
matrix.c
143
matrix.c
@ -1,178 +1,35 @@
|
|||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
#include "matrix.h"
|
#include "matrix.h"
|
||||||
#include <stdio.h>
|
|
||||||
|
|
||||||
// TODO Matrix-Funktionen implementieren
|
// TODO Matrix-Funktionen implementieren
|
||||||
|
|
||||||
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
||||||
{
|
{
|
||||||
Matrix matrix;
|
|
||||||
|
|
||||||
if (rows == 0 || cols == 0)
|
|
||||||
{
|
|
||||||
matrix.rows = 0;
|
|
||||||
matrix.cols = 0;
|
|
||||||
matrix.buffer = NULL;
|
|
||||||
return matrix;
|
|
||||||
}
|
|
||||||
|
|
||||||
matrix.rows = rows;
|
|
||||||
matrix.cols = cols;
|
|
||||||
|
|
||||||
matrix.buffer = (MatrixType *)malloc(rows * cols * sizeof(MatrixType));
|
|
||||||
|
|
||||||
if (matrix.buffer == NULL)
|
|
||||||
{
|
|
||||||
|
|
||||||
matrix.rows = 0;
|
|
||||||
matrix.cols = 0;
|
|
||||||
|
|
||||||
return matrix;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = 0; i < rows; i++)
|
|
||||||
{
|
|
||||||
for (int j = 0; j < cols; j++)
|
|
||||||
{
|
|
||||||
matrix.buffer[i * matrix.cols + j] = UNDEFINED_MATRIX_VALUE;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return matrix;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void clearMatrix(Matrix *matrix)
|
void clearMatrix(Matrix *matrix)
|
||||||
{
|
{
|
||||||
if (matrix->buffer != NULL)
|
|
||||||
{
|
|
||||||
free(matrix->buffer);
|
|
||||||
matrix->buffer = NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
matrix->rows = 0;
|
|
||||||
matrix->cols = 0;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||||
{
|
{
|
||||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols)
|
|
||||||
{
|
|
||||||
fprintf(stderr, "Fehler: Ungültiger Index (%u, %u) bei Matrixgröße %u x %u\n", rowIdx, colIdx, matrix.rows, matrix.cols);
|
|
||||||
return; // abbruch falls fehler
|
|
||||||
}
|
|
||||||
|
|
||||||
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||||
{
|
{
|
||||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols)
|
|
||||||
{
|
|
||||||
fprintf(stderr, "Fehler: Ungültiger Index (%u, %u) bei Matrixgröße %u x %u\n", rowIdx, colIdx, matrix.rows, matrix.cols);
|
|
||||||
return UNDEFINED_MATRIX_VALUE;
|
|
||||||
}
|
|
||||||
|
|
||||||
return matrix.buffer[rowIdx * matrix.cols + colIdx];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
Matrix add(const Matrix matrix1, const Matrix matrix2)
|
Matrix add(const Matrix matrix1, const Matrix matrix2)
|
||||||
{
|
{
|
||||||
if (matrix1.rows == matrix2.rows && matrix1.cols == matrix2.cols) // gleiche Dimension
|
|
||||||
{
|
|
||||||
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
|
|
||||||
|
|
||||||
if (result.buffer == NULL)
|
|
||||||
{
|
|
||||||
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = 0; i < matrix1.rows; i++)
|
|
||||||
{
|
|
||||||
for (int j = 0; j < matrix1.cols; j++)
|
|
||||||
{
|
|
||||||
result.buffer[i * result.cols + j] = matrix1.buffer[i * matrix1.cols + j] + matrix2.buffer[i * matrix2.cols + j];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
if (matrix1.rows == matrix2.rows && matrix2.cols == 1) // Matrix 2 hat eine Spalte
|
|
||||||
{
|
|
||||||
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
|
|
||||||
|
|
||||||
if(result.buffer == NULL)
|
|
||||||
{
|
|
||||||
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
for (int i = 0; i < matrix1.rows; i++)
|
|
||||||
{
|
|
||||||
for (int j = 0; j < matrix1.cols; j++)
|
|
||||||
{
|
|
||||||
result.buffer[i * result.cols + j] = matrix1.buffer[i * matrix1.cols + j] + matrix2.buffer[i];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (matrix1.rows == matrix2.rows && matrix1.cols == 1) // Matrix 1 hat eine Spalte
|
|
||||||
{
|
|
||||||
Matrix result = createMatrix(matrix2.rows, matrix2.cols);
|
|
||||||
|
|
||||||
if(result.buffer == NULL)
|
|
||||||
{
|
|
||||||
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
for (int i = 0; i < matrix2.rows; i++)
|
|
||||||
{
|
|
||||||
for (int j = 0; j < matrix2.cols; j++)
|
|
||||||
{
|
|
||||||
result.buffer[i * result.cols + j] = matrix1.buffer[i] + matrix2.buffer[i * matrix2.cols + j];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
// passt nicht
|
|
||||||
fprintf(stderr, "Fehler: Matrizen haben unterschiedliche Größen (%u x %u) und (%u x %u)\n",
|
|
||||||
matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols);
|
|
||||||
|
|
||||||
Matrix empty = {NULL, 0, 0};
|
|
||||||
return empty;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
||||||
{
|
{
|
||||||
if (matrix1.cols != matrix2.rows)
|
|
||||||
{
|
|
||||||
fprintf(stderr, "Fehler: Matrizen der Dimension (%u x %u) und (%u x %u) koennen nicht multipliziert werden\n",
|
|
||||||
matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols);
|
|
||||||
|
|
||||||
Matrix empty = {NULL, 0, 0};
|
|
||||||
return empty;
|
|
||||||
}
|
|
||||||
|
|
||||||
Matrix result = createMatrix(matrix1.rows, matrix2.cols);
|
|
||||||
|
|
||||||
if (result.buffer == NULL)
|
|
||||||
{
|
|
||||||
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = 0; i < matrix1.rows; i++)
|
|
||||||
{
|
|
||||||
for (int j = 0; j < matrix2.cols; j++)
|
|
||||||
{
|
|
||||||
MatrixType sum = 0.0;
|
|
||||||
|
|
||||||
for (int k = 0; k < matrix1.cols; k++)
|
|
||||||
{
|
|
||||||
sum += matrix1.buffer[i * matrix1.cols + k] * matrix2.buffer[k * matrix2.cols + j];
|
|
||||||
}
|
|
||||||
result.buffer[i * result.cols + j] = sum;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return result;
|
|
||||||
}
|
}
|
||||||
7
matrix.h
7
matrix.h
@ -7,13 +7,6 @@ typedef float MatrixType;
|
|||||||
|
|
||||||
// TODO Matrixtyp definieren
|
// TODO Matrixtyp definieren
|
||||||
|
|
||||||
typedef struct Matrix {
|
|
||||||
MatrixType *buffer;
|
|
||||||
unsigned int rows;
|
|
||||||
unsigned int cols;
|
|
||||||
} Matrix;
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Matrix createMatrix(unsigned int rows, unsigned int cols);
|
Matrix createMatrix(unsigned int rows, unsigned int cols);
|
||||||
void clearMatrix(Matrix *matrix);
|
void clearMatrix(Matrix *matrix);
|
||||||
|
|||||||
@ -164,7 +164,7 @@ void test_setMatrixAtFailsOnIndicesOutOfRange(void)
|
|||||||
Matrix matrixToTest = {.rows=2, .cols=3, .buffer=buffer};
|
Matrix matrixToTest = {.rows=2, .cols=3, .buffer=buffer};
|
||||||
|
|
||||||
setMatrixAt(-1, matrixToTest, 2, 3);
|
setMatrixAt(-1, matrixToTest, 2, 3);
|
||||||
TEST_ASSERT_EQUAL_FLOAT_ARRAY(expectedResults, matrixToTest.buffer, matrixToTest.cols * matrixToTest.rows);
|
TEST_ASSERT_EQUAL_FLOAT_ARRAY(expectedResults, matrixToTest.buffer, sizeof(buffer)/sizeof(MatrixType));
|
||||||
}
|
}
|
||||||
|
|
||||||
void setUp(void) {
|
void setUp(void) {
|
||||||
|
|||||||
@ -5,49 +5,10 @@
|
|||||||
#include "unity.h"
|
#include "unity.h"
|
||||||
#include "neuralNetwork.h"
|
#include "neuralNetwork.h"
|
||||||
|
|
||||||
|
|
||||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||||
{
|
{
|
||||||
FILE *f = fopen(path, "wb");
|
// TODO
|
||||||
if (!f) return;
|
|
||||||
|
|
||||||
const char *tag = "__info2_neural_network_file_format__";
|
|
||||||
fwrite(tag, 1, strlen(tag), f);
|
|
||||||
|
|
||||||
if (nn.numberOfLayers == 0) {
|
|
||||||
fclose(f);
|
|
||||||
return;
|
|
||||||
} // In localmodel Struktur Testdateu aufruf:
|
|
||||||
// Header --> Input Dim --> Output Dim
|
|
||||||
// i. Layer weights --> biases --> nächste Dim
|
|
||||||
|
|
||||||
|
|
||||||
int input = nn.layers[0].weights.cols;
|
|
||||||
int output = nn.layers[0].weights.rows;
|
|
||||||
|
|
||||||
fwrite(&input, sizeof(int), 1, f);
|
|
||||||
fwrite(&output, sizeof(int), 1, f);
|
|
||||||
|
|
||||||
for (int i = 0; i < nn.numberOfLayers; i++)
|
|
||||||
{
|
|
||||||
const Layer *layer = &nn.layers[i];
|
|
||||||
int out = layer->weights.rows;
|
|
||||||
int in = layer->weights.cols;
|
|
||||||
|
|
||||||
|
|
||||||
fwrite(layer->weights.buffer, sizeof(MatrixType), out * in, f);
|
|
||||||
|
|
||||||
|
|
||||||
fwrite(layer->biases.buffer, sizeof(MatrixType), out * 1, f);
|
|
||||||
|
|
||||||
|
|
||||||
if (i + 1 < nn.numberOfLayers)
|
|
||||||
{
|
|
||||||
int nextOut = nn.layers[i + 1].weights.rows;
|
|
||||||
fwrite(&nextOut, sizeof(int), 1, f);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fclose(f);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||||
@ -55,15 +16,15 @@ void test_loadModelReturnsCorrectNumberOfLayers(void)
|
|||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
|
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
|
||||||
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
|
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights1 = {.buffer = buffer1, .rows = 3, .cols = 2};
|
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2};
|
||||||
Matrix weights2 = {.buffer = buffer2, .rows = 2, .cols = 3};
|
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3};
|
||||||
MatrixType buffer3[] = {1, 2, 3};
|
MatrixType buffer3[] = {1, 2, 3};
|
||||||
MatrixType buffer4[] = {1, 2};
|
MatrixType buffer4[] = {1, 2};
|
||||||
Matrix biases1 = {.buffer = buffer3, .rows = 3, .cols = 1};
|
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1};
|
||||||
Matrix biases2 = {.buffer = buffer4, .rows = 2, .cols = 1};
|
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1};
|
||||||
Layer layers[] = {{.weights = weights1, .biases = biases1}, {.weights = weights2, .biases = biases2}};
|
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 2};
|
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -79,12 +40,12 @@ void test_loadModelReturnsCorrectWeightDimensions(void)
|
|||||||
{
|
{
|
||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -102,12 +63,12 @@ void test_loadModelReturnsCorrectBiasDimensions(void)
|
|||||||
{
|
{
|
||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -125,12 +86,12 @@ void test_loadModelReturnsCorrectWeights(void)
|
|||||||
{
|
{
|
||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -150,12 +111,12 @@ void test_loadModelReturnsCorrectBiases(void)
|
|||||||
{
|
{
|
||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -177,7 +138,7 @@ void test_loadModelFailsOnWrongFileTag(void)
|
|||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
FILE *file = fopen(path, "wb");
|
FILE *file = fopen(path, "wb");
|
||||||
|
|
||||||
if (file != NULL)
|
if(file != NULL)
|
||||||
{
|
{
|
||||||
const char *fileTag = "info2_neural_network_file_format";
|
const char *fileTag = "info2_neural_network_file_format";
|
||||||
|
|
||||||
@ -198,12 +159,12 @@ void test_clearModelSetsMembersToNull(void)
|
|||||||
{
|
{
|
||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -220,7 +181,7 @@ void test_clearModelSetsMembersToNull(void)
|
|||||||
|
|
||||||
static void someActivation(Matrix *matrix)
|
static void someActivation(Matrix *matrix)
|
||||||
{
|
{
|
||||||
for (int i = 0; i < matrix->rows * matrix->cols; i++)
|
for(int i = 0; i < matrix->rows * matrix->cols; i++)
|
||||||
{
|
{
|
||||||
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
||||||
}
|
}
|
||||||
@ -231,23 +192,23 @@ void test_predictReturnsCorrectLabels(void)
|
|||||||
const unsigned char expectedLabels[] = {4, 2};
|
const unsigned char expectedLabels[] = {4, 2};
|
||||||
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
||||||
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
||||||
GrayScaleImage inputImages[] = {{.buffer = imageBuffer1, .width = 2, .height = 2}, {.buffer = imageBuffer2, .width = 2, .height = 2}};
|
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
|
||||||
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
||||||
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
||||||
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
|
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
|
||||||
Matrix weights1 = {.buffer = weightsBuffer1, .rows = 2, .cols = 4};
|
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
|
||||||
Matrix weights2 = {.buffer = weightsBuffer2, .rows = 3, .cols = 2};
|
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
|
||||||
Matrix weights3 = {.buffer = weightsBuffer3, .rows = 5, .cols = 3};
|
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
|
||||||
MatrixType biasBuffer1[] = {200, 0};
|
MatrixType biasBuffer1[] = {200, 0};
|
||||||
MatrixType biasBuffer2[] = {0, -100, 0};
|
MatrixType biasBuffer2[] = {0, -100, 0};
|
||||||
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
||||||
Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
|
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
|
||||||
Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
|
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
|
||||||
Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
|
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
|
||||||
Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation},
|
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
|
||||||
{.weights = weights2, .biases = biases2, .activation = someActivation},
|
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
|
||||||
{.weights = weights3, .biases = biases3, .activation = someActivation}};
|
{.weights=weights3, .biases=biases3, .activation=someActivation}};
|
||||||
NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
|
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
|
||||||
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
||||||
TEST_ASSERT_NOT_NULL(predictedLabels);
|
TEST_ASSERT_NOT_NULL(predictedLabels);
|
||||||
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
||||||
@ -255,13 +216,11 @@ void test_predictReturnsCorrectLabels(void)
|
|||||||
free(predictedLabels);
|
free(predictedLabels);
|
||||||
}
|
}
|
||||||
|
|
||||||
void setUp(void)
|
void setUp(void) {
|
||||||
{
|
|
||||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||||
}
|
}
|
||||||
|
|
||||||
void tearDown(void)
|
void tearDown(void) {
|
||||||
{
|
|
||||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user