forked from freudenreichan/info2Praktikum-NeuronalesNetz
Compare commits
5 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 2436240736 | |||
| fde82f2d9a | |||
| 0fc70f982c | |||
| b271c865cb | |||
|
|
077c6def78 |
Binary file not shown.
114
imageInput.c
114
imageInput.c
@ -8,127 +8,15 @@
|
||||
|
||||
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
|
||||
|
||||
static int read_header(FILE *file, unsigned short *count, unsigned short *width, unsigned short *height)
|
||||
{
|
||||
size_t headerLEN = strlen(FILE_HEADER_STRING);
|
||||
char buffer[BUFFER_SIZE];
|
||||
|
||||
if (headerLEN >= BUFFER_SIZE)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (fread(buffer, 1, headerLEN, file) != headerLEN)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
buffer[headerLEN] = '\0';
|
||||
|
||||
if (strcmp(buffer, FILE_HEADER_STRING) != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (fread(count, sizeof(unsigned short), 1, file) != 1 || fread(width, sizeof(unsigned short), 1, file) != 1 ||
|
||||
fread(height, sizeof(unsigned short), 1, file) != 1)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int read_single_image(FILE *file, GrayScaleImage *image)
|
||||
{
|
||||
unsigned int number_of_pixel = image->width * image->height;
|
||||
|
||||
if (fread(image->buffer, sizeof(GrayScalePixelType), number_of_pixel, file) != number_of_pixel) // fehler beim lesen
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
|
||||
GrayScaleImageSeries *readImages(const char *path)
|
||||
{
|
||||
FILE *file = fopen(path, "rb");
|
||||
if (!file)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
|
||||
unsigned short count, width, height;
|
||||
|
||||
if (!read_header(file, &count, &width, &height))
|
||||
{
|
||||
fclose(file);
|
||||
return 0;
|
||||
}
|
||||
|
||||
GrayScaleImageSeries *series = malloc(sizeof(GrayScaleImageSeries));
|
||||
|
||||
if (!series)
|
||||
{
|
||||
fclose(file);
|
||||
return 0;
|
||||
}
|
||||
|
||||
series->count = count;
|
||||
series->images = malloc(count * sizeof(GrayScaleImage));
|
||||
series->labels = malloc(count * sizeof(unsigned char));
|
||||
|
||||
if (!series->images || !series->labels)
|
||||
{
|
||||
clearSeries(series);
|
||||
fclose(file);
|
||||
return 0;
|
||||
}
|
||||
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
series->images[i].width = width;
|
||||
series->images[i].height = height;
|
||||
series->images[i].buffer = malloc(width * height * sizeof(GrayScalePixelType));
|
||||
|
||||
if (!series->images[i].buffer)
|
||||
{
|
||||
clearSeries(series);
|
||||
fclose(file);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!read_single_image(file, &series->images[i]))
|
||||
{
|
||||
clearSeries(series);
|
||||
fclose(file);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (fread(&series->labels[i], 1, 1, file) != 1)
|
||||
{
|
||||
clearSeries(series);
|
||||
fclose(file);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
fclose(file);
|
||||
return series;
|
||||
}
|
||||
|
||||
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
|
||||
void clearSeries(GrayScaleImageSeries *series)
|
||||
{
|
||||
if (series)
|
||||
{
|
||||
for (int i = 0; i < series->count; i++)
|
||||
{
|
||||
free(series->images[i].buffer);
|
||||
}
|
||||
free(series->images);
|
||||
free(series->labels);
|
||||
free(series);
|
||||
}
|
||||
}
|
||||
@ -119,13 +119,6 @@ void test_readImagesFailsOnWrongFileTag(void)
|
||||
remove(path);
|
||||
}
|
||||
|
||||
// Tests der Hilfsfunktionen
|
||||
|
||||
void test_read_header(void)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
void setUp(void) {
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
}
|
||||
|
||||
143
matrix.c
143
matrix.c
@ -1,178 +1,35 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "matrix.h"
|
||||
#include <stdio.h>
|
||||
|
||||
// TODO Matrix-Funktionen implementieren
|
||||
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
||||
{
|
||||
Matrix matrix;
|
||||
|
||||
if (rows == 0 || cols == 0)
|
||||
{
|
||||
matrix.rows = 0;
|
||||
matrix.cols = 0;
|
||||
matrix.buffer = NULL;
|
||||
return matrix;
|
||||
}
|
||||
|
||||
matrix.rows = rows;
|
||||
matrix.cols = cols;
|
||||
|
||||
matrix.buffer = (MatrixType *)malloc(rows * cols * sizeof(MatrixType));
|
||||
|
||||
if (matrix.buffer == NULL)
|
||||
{
|
||||
|
||||
matrix.rows = 0;
|
||||
matrix.cols = 0;
|
||||
|
||||
return matrix;
|
||||
}
|
||||
|
||||
for (int i = 0; i < rows; i++)
|
||||
{
|
||||
for (int j = 0; j < cols; j++)
|
||||
{
|
||||
matrix.buffer[i * matrix.cols + j] = UNDEFINED_MATRIX_VALUE;
|
||||
}
|
||||
}
|
||||
return matrix;
|
||||
}
|
||||
|
||||
void clearMatrix(Matrix *matrix)
|
||||
{
|
||||
if (matrix->buffer != NULL)
|
||||
{
|
||||
free(matrix->buffer);
|
||||
matrix->buffer = NULL;
|
||||
}
|
||||
|
||||
matrix->rows = 0;
|
||||
matrix->cols = 0;
|
||||
}
|
||||
|
||||
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||
{
|
||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols)
|
||||
{
|
||||
fprintf(stderr, "Fehler: Ungültiger Index (%u, %u) bei Matrixgröße %u x %u\n", rowIdx, colIdx, matrix.rows, matrix.cols);
|
||||
return; // abbruch falls fehler
|
||||
}
|
||||
|
||||
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
|
||||
}
|
||||
|
||||
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
||||
{
|
||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols)
|
||||
{
|
||||
fprintf(stderr, "Fehler: Ungültiger Index (%u, %u) bei Matrixgröße %u x %u\n", rowIdx, colIdx, matrix.rows, matrix.cols);
|
||||
return UNDEFINED_MATRIX_VALUE;
|
||||
}
|
||||
|
||||
return matrix.buffer[rowIdx * matrix.cols + colIdx];
|
||||
}
|
||||
|
||||
Matrix add(const Matrix matrix1, const Matrix matrix2)
|
||||
{
|
||||
if (matrix1.rows == matrix2.rows && matrix1.cols == matrix2.cols) // gleiche Dimension
|
||||
{
|
||||
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
|
||||
|
||||
if (result.buffer == NULL)
|
||||
{
|
||||
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
|
||||
return result;
|
||||
}
|
||||
|
||||
for (int i = 0; i < matrix1.rows; i++)
|
||||
{
|
||||
for (int j = 0; j < matrix1.cols; j++)
|
||||
{
|
||||
result.buffer[i * result.cols + j] = matrix1.buffer[i * matrix1.cols + j] + matrix2.buffer[i * matrix2.cols + j];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
if (matrix1.rows == matrix2.rows && matrix2.cols == 1) // Matrix 2 hat eine Spalte
|
||||
{
|
||||
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
|
||||
|
||||
if(result.buffer == NULL)
|
||||
{
|
||||
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
|
||||
return result;
|
||||
}
|
||||
for (int i = 0; i < matrix1.rows; i++)
|
||||
{
|
||||
for (int j = 0; j < matrix1.cols; j++)
|
||||
{
|
||||
result.buffer[i * result.cols + j] = matrix1.buffer[i * matrix1.cols + j] + matrix2.buffer[i];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
if (matrix1.rows == matrix2.rows && matrix1.cols == 1) // Matrix 1 hat eine Spalte
|
||||
{
|
||||
Matrix result = createMatrix(matrix2.rows, matrix2.cols);
|
||||
|
||||
if(result.buffer == NULL)
|
||||
{
|
||||
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
|
||||
return result;
|
||||
}
|
||||
for (int i = 0; i < matrix2.rows; i++)
|
||||
{
|
||||
for (int j = 0; j < matrix2.cols; j++)
|
||||
{
|
||||
result.buffer[i * result.cols + j] = matrix1.buffer[i] + matrix2.buffer[i * matrix2.cols + j];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// passt nicht
|
||||
fprintf(stderr, "Fehler: Matrizen haben unterschiedliche Größen (%u x %u) und (%u x %u)\n",
|
||||
matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols);
|
||||
|
||||
Matrix empty = {NULL, 0, 0};
|
||||
return empty;
|
||||
}
|
||||
|
||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
||||
{
|
||||
if (matrix1.cols != matrix2.rows)
|
||||
{
|
||||
fprintf(stderr, "Fehler: Matrizen der Dimension (%u x %u) und (%u x %u) koennen nicht multipliziert werden\n",
|
||||
matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols);
|
||||
|
||||
Matrix empty = {NULL, 0, 0};
|
||||
return empty;
|
||||
}
|
||||
|
||||
Matrix result = createMatrix(matrix1.rows, matrix2.cols);
|
||||
|
||||
if (result.buffer == NULL)
|
||||
{
|
||||
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
|
||||
return result;
|
||||
}
|
||||
|
||||
for (int i = 0; i < matrix1.rows; i++)
|
||||
{
|
||||
for (int j = 0; j < matrix2.cols; j++)
|
||||
{
|
||||
MatrixType sum = 0.0;
|
||||
|
||||
for (int k = 0; k < matrix1.cols; k++)
|
||||
{
|
||||
sum += matrix1.buffer[i * matrix1.cols + k] * matrix2.buffer[k * matrix2.cols + j];
|
||||
}
|
||||
result.buffer[i * result.cols + j] = sum;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
7
matrix.h
7
matrix.h
@ -7,13 +7,6 @@ typedef float MatrixType;
|
||||
|
||||
// TODO Matrixtyp definieren
|
||||
|
||||
typedef struct Matrix {
|
||||
MatrixType *buffer;
|
||||
unsigned int rows;
|
||||
unsigned int cols;
|
||||
} Matrix;
|
||||
|
||||
|
||||
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols);
|
||||
void clearMatrix(Matrix *matrix);
|
||||
|
||||
@ -164,7 +164,7 @@ void test_setMatrixAtFailsOnIndicesOutOfRange(void)
|
||||
Matrix matrixToTest = {.rows=2, .cols=3, .buffer=buffer};
|
||||
|
||||
setMatrixAt(-1, matrixToTest, 2, 3);
|
||||
TEST_ASSERT_EQUAL_FLOAT_ARRAY(expectedResults, matrixToTest.buffer, matrixToTest.cols * matrixToTest.rows);
|
||||
TEST_ASSERT_EQUAL_FLOAT_ARRAY(expectedResults, matrixToTest.buffer, sizeof(buffer)/sizeof(MatrixType));
|
||||
}
|
||||
|
||||
void setUp(void) {
|
||||
|
||||
@ -5,9 +5,10 @@
|
||||
#include "unity.h"
|
||||
#include "neuralNetwork.h"
|
||||
|
||||
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
{
|
||||
|
||||
// TODO
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||
@ -204,8 +205,8 @@ void test_predictReturnsCorrectLabels(void)
|
||||
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
|
||||
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
|
||||
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
|
||||
Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation},
|
||||
{.weights = weights2, .biases = biases2, .activation = someActivation},
|
||||
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
|
||||
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
|
||||
{.weights=weights3, .biases=biases3, .activation=someActivation}};
|
||||
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
|
||||
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
||||
@ -215,13 +216,11 @@ void test_predictReturnsCorrectLabels(void)
|
||||
free(predictedLabels);
|
||||
}
|
||||
|
||||
void setUp(void)
|
||||
{
|
||||
void setUp(void) {
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
}
|
||||
|
||||
void tearDown(void)
|
||||
{
|
||||
void tearDown(void) {
|
||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||
}
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user