Compare commits
No commits in common. "main" and "prepare-neuronal-network-file-funkiton-" have entirely different histories.
main
...
prepare-ne
@ -170,7 +170,7 @@ NeuralNetwork loadModel(const char *path)
|
|||||||
|
|
||||||
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count)
|
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count)
|
||||||
{
|
{
|
||||||
Matrix matrix = {0, 0, NULL};
|
Matrix matrix = {NULL, 0, 0};
|
||||||
|
|
||||||
if(count > 0 && images != NULL)
|
if(count > 0 && images != NULL)
|
||||||
{
|
{
|
||||||
|
|||||||
@ -9,51 +9,45 @@
|
|||||||
|
|
||||||
static void writeWeights(Layer layer, FILE *file)
|
static void writeWeights(Layer layer, FILE *file)
|
||||||
{
|
{
|
||||||
unsigned int n = (unsigned int)layer.weights.rows * layer.weights.cols; //col und row müssen nicht extra eingelesen werden, da loadModel die Dimensionen selbst aus der Datei liest
|
fwrite(&layer.weights.rows, sizeof(unsigned int), 1, file);
|
||||||
fwrite(layer.weights.buffer, sizeof(MatrixType), n, file);
|
fwrite(&layer.weights.cols, sizeof(unsigned int), 1, file);
|
||||||
|
fwrite(layer.weights.buffer, sizeof(float ), layer.weights.rows * layer.weights.cols, file);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void writeBiases(Layer layer, FILE *file)
|
static void writeBiases(Layer layer, FILE *file)
|
||||||
{
|
{
|
||||||
unsigned int n = (unsigned int)layer.biases.rows * layer.biases.cols;
|
fwrite(&layer.biases.rows, sizeof(unsigned int), 1, file);
|
||||||
fwrite(layer.biases.buffer, sizeof(MatrixType), n, file);
|
fwrite(&layer.biases.cols, sizeof(unsigned int), 1, file);
|
||||||
|
fwrite(layer.biases.buffer, sizeof(float ), layer.biases.rows * layer.biases.cols, file);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||||
{
|
{
|
||||||
//file erstellen und zum Binärschreiben öffnen
|
//file erstellen und zum binärschreiben öffnen
|
||||||
FILE *file = fopen(path, "wb");
|
FILE *file = fopen(path, "wb");
|
||||||
if(file == NULL)
|
if(!file)
|
||||||
return;
|
return;
|
||||||
|
|
||||||
//header reinschreiben
|
//header reinschreiben
|
||||||
const char *header = IDENT_TAG;
|
const char *header = IDENT_TAG;
|
||||||
fwrite(header, sizeof(char), strlen(header), file);
|
fwrite(header, sizeof(char), strlen(header), file);
|
||||||
|
|
||||||
//Schließen der Datei, falls kein Layer vorhanden
|
//einfachheitshalber ein layer erstellen
|
||||||
if (nn.numberOfLayers == 0 || nn.layers == NULL)
|
|
||||||
{
|
|
||||||
fclose(file);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
//Erste Eingangsdimension: Spalten der ersten Gewichtsmatrix
|
fwrite(&nn.numberOfLayers, sizeof(unsigned int), 1, file);
|
||||||
unsigned int inputDim = (unsigned int)nn.layers[0].weights.cols;
|
|
||||||
fwrite(&inputDim, sizeof(unsigned int), 1, file);
|
|
||||||
|
|
||||||
//für jede Schicht: Dimension, Gewichte und Biases schreiben
|
|
||||||
for (unsigned int i = 0; i < nn.numberOfLayers; i++)
|
for (unsigned int i = 0; i < nn.numberOfLayers; i++)
|
||||||
{
|
{
|
||||||
Layer layer = nn.layers[i];
|
Layer layer = nn.layers[i];
|
||||||
|
|
||||||
unsigned int outputDim = (unsigned int)layer.weights.rows;
|
//activationType initialisieren (formt ergebnis der matritzenmultiplikation um, damit es in einem neuronalen Netzwerk sinnvoll weiterverwendet werden kann.)
|
||||||
fwrite(&outputDim, sizeof(unsigned int), 1, file);
|
unsigned int activationType = 1; //Aktivirungstyp id (zb 1 für ReLU)
|
||||||
|
fwrite(&activationType, sizeof(unsigned int), 1, file);
|
||||||
|
|
||||||
//Weight-Matrixwerte schreiben
|
//dimensionen festlegen(weights)
|
||||||
writeWeights(layer, file);
|
writeWeights(layer, file);
|
||||||
|
|
||||||
|
|
||||||
//Bias-Vektorwerte schreiben
|
//dimension festlegen(bias)
|
||||||
writeBiases(layer, file);
|
writeBiases(layer, file);
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user