Compare commits

..

No commits in common. "main" and "prepare-neuronal-network-file-funkiton-" have entirely different histories.

2 changed files with 18 additions and 24 deletions

View File

@ -170,7 +170,7 @@ NeuralNetwork loadModel(const char *path)
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count)
{
Matrix matrix = {0, 0, NULL};
Matrix matrix = {NULL, 0, 0};
if(count > 0 && images != NULL)
{

View File

@ -9,51 +9,45 @@
static void writeWeights(Layer layer, FILE *file)
{
unsigned int n = (unsigned int)layer.weights.rows * layer.weights.cols; //col und row müssen nicht extra eingelesen werden, da loadModel die Dimensionen selbst aus der Datei liest
fwrite(layer.weights.buffer, sizeof(MatrixType), n, file);
fwrite(&layer.weights.rows, sizeof(unsigned int), 1, file);
fwrite(&layer.weights.cols, sizeof(unsigned int), 1, file);
fwrite(layer.weights.buffer, sizeof(float ), layer.weights.rows * layer.weights.cols, file);
}
static void writeBiases(Layer layer, FILE *file)
{
unsigned int n = (unsigned int)layer.biases.rows * layer.biases.cols;
fwrite(layer.biases.buffer, sizeof(MatrixType), n, file);
fwrite(&layer.biases.rows, sizeof(unsigned int), 1, file);
fwrite(&layer.biases.cols, sizeof(unsigned int), 1, file);
fwrite(layer.biases.buffer, sizeof(float ), layer.biases.rows * layer.biases.cols, file);
}
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{
//file erstellen und zum Binärschreiben öffnen
//file erstellen und zum binärschreiben öffnen
FILE *file = fopen(path, "wb");
if(file == NULL)
if(!file)
return;
//header reinschreiben
const char *header = IDENT_TAG;
fwrite(header, sizeof(char), strlen(header), file);
//Schließen der Datei, falls kein Layer vorhanden
if (nn.numberOfLayers == 0 || nn.layers == NULL)
{
fclose(file);
return;
}
//einfachheitshalber ein layer erstellen
//Erste Eingangsdimension: Spalten der ersten Gewichtsmatrix
unsigned int inputDim = (unsigned int)nn.layers[0].weights.cols;
fwrite(&inputDim, sizeof(unsigned int), 1, file);
//für jede Schicht: Dimension, Gewichte und Biases schreiben
fwrite(&nn.numberOfLayers, sizeof(unsigned int), 1, file);
for (unsigned int i = 0; i < nn.numberOfLayers; i++)
{
Layer layer = nn.layers[i];
unsigned int outputDim = (unsigned int)layer.weights.rows;
fwrite(&outputDim, sizeof(unsigned int), 1, file);
//activationType initialisieren (formt ergebnis der matritzenmultiplikation um, damit es in einem neuronalen Netzwerk sinnvoll weiterverwendet werden kann.)
unsigned int activationType = 1; //Aktivirungstyp id (zb 1 für ReLU)
fwrite(&activationType, sizeof(unsigned int), 1, file);
//Weight-Matrixwerte schreiben
//dimensionen festlegen(weights)
writeWeights(layer, file);
//Bias-Vektorwerte schreiben
//dimension festlegen(bias)
writeBiases(layer, file);