Compare commits

..

4 Commits

Author SHA1 Message Date
AD005\z004z3ez
ed983fc250 Kommentare angepasst 2025-11-24 15:21:25 +01:00
AD005\z004z3ez
8e5c32f197 weitere Verbesserungen 2025-11-24 15:14:51 +01:00
AD005\z004z3ez
15b4d5d016 Verbesserungen für die Unittests 2025-11-24 15:08:02 +01:00
e86179f3f1 bugfix für Unittests 2025-11-23 15:39:27 +01:00
2 changed files with 24 additions and 18 deletions

View File

@ -170,7 +170,7 @@ NeuralNetwork loadModel(const char *path)
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count) static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count)
{ {
Matrix matrix = {NULL, 0, 0}; Matrix matrix = {0, 0, NULL};
if(count > 0 && images != NULL) if(count > 0 && images != NULL)
{ {

View File

@ -9,45 +9,51 @@
static void writeWeights(Layer layer, FILE *file) static void writeWeights(Layer layer, FILE *file)
{ {
fwrite(&layer.weights.rows, sizeof(unsigned int), 1, file); unsigned int n = (unsigned int)layer.weights.rows * layer.weights.cols; //col und row müssen nicht extra eingelesen werden, da loadModel die Dimensionen selbst aus der Datei liest
fwrite(&layer.weights.cols, sizeof(unsigned int), 1, file); fwrite(layer.weights.buffer, sizeof(MatrixType), n, file);
fwrite(layer.weights.buffer, sizeof(float ), layer.weights.rows * layer.weights.cols, file);
} }
static void writeBiases(Layer layer, FILE *file) static void writeBiases(Layer layer, FILE *file)
{ {
fwrite(&layer.biases.rows, sizeof(unsigned int), 1, file); unsigned int n = (unsigned int)layer.biases.rows * layer.biases.cols;
fwrite(&layer.biases.cols, sizeof(unsigned int), 1, file); fwrite(layer.biases.buffer, sizeof(MatrixType), n, file);
fwrite(layer.biases.buffer, sizeof(float ), layer.biases.rows * layer.biases.cols, file);
} }
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{ {
//file erstellen und zum binärschreiben öffnen //file erstellen und zum Binärschreiben öffnen
FILE *file = fopen(path, "wb"); FILE *file = fopen(path, "wb");
if(!file) if(file == NULL)
return; return;
//header reinschreiben //header reinschreiben
const char *header = IDENT_TAG; const char *header = IDENT_TAG;
fwrite(header, sizeof(char), strlen(header), file); fwrite(header, sizeof(char), strlen(header), file);
//einfachheitshalber ein layer erstellen //Schließen der Datei, falls kein Layer vorhanden
if (nn.numberOfLayers == 0 || nn.layers == NULL)
{
fclose(file);
return;
}
fwrite(&nn.numberOfLayers, sizeof(unsigned int), 1, file); //Erste Eingangsdimension: Spalten der ersten Gewichtsmatrix
unsigned int inputDim = (unsigned int)nn.layers[0].weights.cols;
fwrite(&inputDim, sizeof(unsigned int), 1, file);
//für jede Schicht: Dimension, Gewichte und Biases schreiben
for (unsigned int i = 0; i < nn.numberOfLayers; i++) for (unsigned int i = 0; i < nn.numberOfLayers; i++)
{ {
Layer layer = nn.layers[i]; Layer layer = nn.layers[i];
//activationType initialisieren (formt ergebnis der matritzenmultiplikation um, damit es in einem neuronalen Netzwerk sinnvoll weiterverwendet werden kann.) unsigned int outputDim = (unsigned int)layer.weights.rows;
unsigned int activationType = 1; //Aktivirungstyp id (zb 1 für ReLU) fwrite(&outputDim, sizeof(unsigned int), 1, file);
fwrite(&activationType, sizeof(unsigned int), 1, file);
//dimensionen festlegen(weights) //Weight-Matrixwerte schreiben
writeWeights(layer, file); writeWeights(layer, file);
//dimension festlegen(bias) //Bias-Vektorwerte schreiben
writeBiases(layer, file); writeBiases(layer, file);