Compare commits
4 Commits
prepare-ne
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ed983fc250 | ||
|
|
8e5c32f197 | ||
|
|
15b4d5d016 | ||
| e86179f3f1 |
@ -170,7 +170,7 @@ NeuralNetwork loadModel(const char *path)
|
||||
|
||||
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count)
|
||||
{
|
||||
Matrix matrix = {NULL, 0, 0};
|
||||
Matrix matrix = {0, 0, NULL};
|
||||
|
||||
if(count > 0 && images != NULL)
|
||||
{
|
||||
|
||||
@ -9,45 +9,51 @@
|
||||
|
||||
static void writeWeights(Layer layer, FILE *file)
|
||||
{
|
||||
fwrite(&layer.weights.rows, sizeof(unsigned int), 1, file);
|
||||
fwrite(&layer.weights.cols, sizeof(unsigned int), 1, file);
|
||||
fwrite(layer.weights.buffer, sizeof(float ), layer.weights.rows * layer.weights.cols, file);
|
||||
unsigned int n = (unsigned int)layer.weights.rows * layer.weights.cols; //col und row müssen nicht extra eingelesen werden, da loadModel die Dimensionen selbst aus der Datei liest
|
||||
fwrite(layer.weights.buffer, sizeof(MatrixType), n, file);
|
||||
}
|
||||
|
||||
static void writeBiases(Layer layer, FILE *file)
|
||||
{
|
||||
fwrite(&layer.biases.rows, sizeof(unsigned int), 1, file);
|
||||
fwrite(&layer.biases.cols, sizeof(unsigned int), 1, file);
|
||||
fwrite(layer.biases.buffer, sizeof(float ), layer.biases.rows * layer.biases.cols, file);
|
||||
unsigned int n = (unsigned int)layer.biases.rows * layer.biases.cols;
|
||||
fwrite(layer.biases.buffer, sizeof(MatrixType), n, file);
|
||||
}
|
||||
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
{
|
||||
//file erstellen und zum binärschreiben öffnen
|
||||
//file erstellen und zum Binärschreiben öffnen
|
||||
FILE *file = fopen(path, "wb");
|
||||
if(!file)
|
||||
if(file == NULL)
|
||||
return;
|
||||
|
||||
//header reinschreiben
|
||||
const char *header = IDENT_TAG;
|
||||
fwrite(header, sizeof(char), strlen(header), file);
|
||||
|
||||
//einfachheitshalber ein layer erstellen
|
||||
//Schließen der Datei, falls kein Layer vorhanden
|
||||
if (nn.numberOfLayers == 0 || nn.layers == NULL)
|
||||
{
|
||||
fclose(file);
|
||||
return;
|
||||
}
|
||||
|
||||
fwrite(&nn.numberOfLayers, sizeof(unsigned int), 1, file);
|
||||
//Erste Eingangsdimension: Spalten der ersten Gewichtsmatrix
|
||||
unsigned int inputDim = (unsigned int)nn.layers[0].weights.cols;
|
||||
fwrite(&inputDim, sizeof(unsigned int), 1, file);
|
||||
|
||||
//für jede Schicht: Dimension, Gewichte und Biases schreiben
|
||||
for (unsigned int i = 0; i < nn.numberOfLayers; i++)
|
||||
{
|
||||
Layer layer = nn.layers[i];
|
||||
|
||||
//activationType initialisieren (formt ergebnis der matritzenmultiplikation um, damit es in einem neuronalen Netzwerk sinnvoll weiterverwendet werden kann.)
|
||||
unsigned int activationType = 1; //Aktivirungstyp id (zb 1 für ReLU)
|
||||
fwrite(&activationType, sizeof(unsigned int), 1, file);
|
||||
unsigned int outputDim = (unsigned int)layer.weights.rows;
|
||||
fwrite(&outputDim, sizeof(unsigned int), 1, file);
|
||||
|
||||
//dimensionen festlegen(weights)
|
||||
//Weight-Matrixwerte schreiben
|
||||
writeWeights(layer, file);
|
||||
|
||||
|
||||
//dimension festlegen(bias)
|
||||
//Bias-Vektorwerte schreiben
|
||||
writeBiases(layer, file);
|
||||
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user