200 lines
5.7 KiB
Systemverilog
Raw Permalink Normal View History

2022-05-19 17:02:44 +02:00
`include "SPI.sv"
module FRAM(
input i_clk, //Module (Module CLock = SPI Clock)
input i_nreset,
input logic [19:0] i_adr, //Memorycell adress in FRAM
input logic [7:0] i_data, //data to write
output logic [7:0] o_data, //data to read
input logic i_rw, //Read = 1, Write = 0
input logic i_status, //If 1 Read Staut register
input logic i_hbn, //If 1 FRAM will enter Hibernation Mode
input logic i_cready, //Starts transmission
output logic o_busy, //Indicates FRAM Busy
// SPI Interface
output o_SPI_Clk,
input i_SPI_MISO,
output o_SPI_MOSI,
output o_SPI_CS_n
);
//FRAM SPI OP Codes
//Write Enable Control
localparam WREN = 8'h06; //Set Write enable latch
localparam WRDI = 8'h04; //Reset write enable latch
//Register Access
localparam RDSR = 8'h05; //Read Status Register
localparam WRSR = 8'h01; //Write Status Register
//Memory Write
localparam WRITE = 8'h02; //Write Memory Data
//Memory Read
localparam READ = 8'h03; //Read Memory Data
localparam FSTRT = 8'h0B; //Fast read memory Data
//Special Sector Memory Access
localparam SSWR = 8'h42; //Spcial Sector Write
localparam SSRD = 8'h4B; //Special Sector Read
//Identification and serial Number
localparam RDID = 8'h9F; //Read Device ID
localparam RUID = 8'h4C; //Read Unique ID
localparam WRSN = 8'hC2; //Write Serial Number
localparam RDSN = 8'hC3; //Read Serial Number
//Low Power Modes
localparam DPD = 8'hBA; // Enter Deep Power-Down
localparam HBN = 8'hB9; // Enter Hibernate Mode
//end FRAM SPI OP Codes
//Controller Specific
logic [3:0] state;
// SPI Specific
parameter SPI_MODE = 0; // CPOL = 0, CPHA = 0
parameter CLKS_PER_HALF_BIT = 2; // 25MHz
parameter MAX_BYTES_PER_CS = 5; // 5 bytes max per chip select cycle
parameter CS_INACTIVE_CLKS = 1; // Adds delay (1clk) between cycles
logic [7:0] r_Master_TX_Byte = 0;
logic r_Master_TX_DV = 1'b0;
logic w_Master_TX_Ready;
logic w_Master_RX_DV;
logic [7:0] w_Master_RX_Byte;
logic [$clog2(MAX_BYTES_PER_CS+1)-1:0] w_Master_RX_Count, r_Master_TX_Count = 3'h1; //Standard 1 Byte pro CS Cycle
SPI_Master_With_Single_CS
#(.SPI_MODE(SPI_MODE), //SPI Mode 0-3
.CLKS_PER_HALF_BIT(CLKS_PER_HALF_BIT), //sets Frequency of SPI_CLK
.MAX_BYTES_PER_CS(MAX_BYTES_PER_CS), //Maximum Bytes per CS Cycle
.CS_INACTIVE_CLKS(CS_INACTIVE_CLKS) //Amount of Time holding CS Low befor next command
) SPI
(
// Control/Data Signals,
.i_Rst_L(i_nreset), // FPGA Reset
.i_Clk(i_clk), // FPGA Clock
// TX (MOSI) Signals
.i_TX_Count(r_Master_TX_Count), // Number of bytes per CS
.i_TX_Byte(r_Master_TX_Byte), // Byte to transmit on MOSI
.i_TX_DV(r_Master_TX_DV), // Data Valid Pulse with i_TX_Byte
.o_TX_Ready(w_Master_TX_Ready), // Transmit Ready for Byte
// RX (MISO) Signals
.o_RX_Count(w_Master_RX_Count), // Index of RX'd byte
.o_RX_DV(w_Master_RX_DV), // Data Valid pulse (1 clock cycle)
.o_RX_Byte(w_Master_RX_Byte), // Byte received on MISO
// SPI Interface
.o_SPI_Clk(o_SPI_Clk),
.i_SPI_MISO(i_SPI_MISO),
.o_SPI_MOSI(o_SPI_MOSI),
.o_SPI_CS_n(o_SPI_CS_n)
);
//end SPI Specific
task SPI_SendByte(input [7:0] data);
@(posedge i_clk);
r_Master_TX_Byte <= data;
r_Master_TX_DV <= 1'b1;
@(posedge i_clk);
r_Master_TX_DV <= 1'b0;
@(posedge i_clk);
@(posedge w_Master_TX_Ready);
endtask //end SPI_SendByte
//FRAM Tasks
task FRAM_Write(input [19:0] adr, input [7:0] data); //vgl. Fig.11
logic [7:0] value;
value <= 8'h0;
//Set Write Enable
r_Master_TX_Count <= 3'b1; //1Byte Transaction
SPI_SendByte(WREN);
//Write to fram
r_Master_TX_Count <= 3'h5; //5 Byte Transaction
SPI_SendByte(WRITE); //OPCode
SPI_SendByte({4'hF,adr[19:16]}); //Adress [23-16]
SPI_SendByte(adr[15:8]); //Adress [15-8]
SPI_SendByte(adr[7:0]); //Adress [7-0]
SPI_SendByte(data); //Data [7:0]
//Reset Write Disable and Verify
do begin
r_Master_TX_Count <= 3'b1; //1Byte Transaction
SPI_SendByte(WRDI); //Set Write Disable
FRAM_Read_Status(value); //Lese Status Register
end while(((value & 8'h2) >> 1) != 0);
endtask //end FRAM_Write
task FRAM_Read(input [19:0] adr, output [7:0] data); //vgl. Fig12
r_Master_TX_Count <= 3'h5; //5 Byte Transaction
SPI_SendByte(READ); //Opcode
SPI_SendByte({4'hF,adr[19:16]}); //Adress [23-16]
SPI_SendByte(adr[15:8]); //Adress [15-8]
SPI_SendByte(adr[7:0]); //Adress [7-0]
SPI_SendByte(8'hAA); //Dummy Bits, read byte in w_Master_RX_Byte
data = w_Master_RX_Byte;
endtask //end FRAM_READ
task FRAM_Read_Status(output [7:0] data); //vgl. Fig9
r_Master_TX_Count <= 3'h2; //2 Byte Transaction
SPI_SendByte(RDSR); //OpCode
SPI_SendByte(8'hFD); //Dummy Bits, read byte in w_Master_RX_Byte
data = w_Master_RX_Byte;
endtask //FRAM_Read_Status
task FRAM_Hibernation(); //vgl. Fig22
r_Master_TX_Count <= 3'h1; //1 Byte Transaction
SPI_SendByte(HBN);
endtask //FRAM_Hibernation
//end FRAM Tasks
always @(posedge i_clk or negedge i_nreset) begin
state[0] = i_cready;
state[1] = i_hbn;
state[2] = i_status;
state[3] = i_rw;
if(~i_nreset) begin //Modul Reset
o_data <= 8'h00;
end //end if
if(w_Master_TX_Ready) begin
case(state) inside
4'b??11: FRAM_Hibernation();
4'b?101: FRAM_Read_Status(o_data);
4'b1001: FRAM_Read(i_adr, o_data);
4'b0001: FRAM_Write(i_adr, i_data);
default:;
endcase //endcase
end //endif
end //end always
assign o_busy = w_Master_TX_Ready;
endmodule