Browse Source

FRAM

added FRAM sources
top_level_design
kuntzschcl 2 years ago
parent
commit
08300af99a

+ 180
- 0
Code_FRAM_Speicher/SPI_FRAM_Module.sv View File

module SPI_FRAM_Module(
input wire SI,
output wire SO,
input reg SCK,
input reg nCS,
output reg [7:0] opcode, //contains the command which controls the FRAM
output reg [23:0] addr, //contains current address that the memory is reading/writing
reg [7:0] mem_data [1023:0], //contains the memory data
reg [7:0] stat_reg, //stat_reg Bit 0 is 1 while waking up from Hibernate
reg hibernate); //if true, memory is in hibernation

reg [2:0] bitcnt_rcv; //counts the bits of the current byte when reading from SPI
reg [2:0] bitcnt_snd; //counts sent bits for the current sent byte when writing to SPI
reg [2:0] bitcnt_mem_write; //counts bits written to memory for the current received byte
reg byte_received; //gets high when a full byte is received
reg [7:0] byte_data_received; //contains the data of last received byte
reg [3:0] byte_count; //counts the bytes of one message; is reset when a new message starts
reg [7:0] byte_data_sent; //contains the sent byte after transmission
reg send_data; //is set by opcode commands Read status register and Read memory when writing to SPI
reg write_to_memory; ////is set by opcode WRITE, when high, incoming Bits from SI are written to the memory at a specific address.
integer i; //countdown variable for status register read

initial begin //values are set to startup values of FRAM
opcode = 8'h00;
stat_reg = 8'b00100000;
addr = 24'h000000;
byte_count = 4'b0000;
byte_data_sent = 8'h00;
bitcnt_rcv = 3'b000;
bitcnt_snd = 3'b111;
bitcnt_mem_write = 3'b111;
byte_received = 1'b0;
byte_data_received = 8'b00000000;
send_data = 0;
write_to_memory = 0;
i = 8;
hibernate = 0;
$readmemh("memory.txt", mem_data); //initializes the memory with the contents of memory.txt
end

//receive incoming Bits and organize them bytewise
always @(posedge SCK) begin
if (bitcnt_rcv == 3'b111) begin
byte_count <= byte_count + 4'b0001;
end
bitcnt_rcv <= bitcnt_rcv + 3'b001;
byte_data_received <= {byte_data_received[6:0], SI};

//when opcode WRÍTE is executed, the incoming bytes are written to memory
if (write_to_memory == 1 && nCS == 0) begin
mem_data[addr][bitcnt_mem_write+3'b001] = byte_data_received[0];

if(bitcnt_mem_write == 3'b000) begin
addr <= addr + 1;
bitcnt_mem_write <= 3'b111;
end
bitcnt_mem_write <= bitcnt_mem_write - 1;
end
end
always @(posedge SCK) byte_received <= (nCS == 0) && (bitcnt_rcv==3'b111);

//TRANSMISSION
//Read out memory and write to SPI, starts at addr
always @(negedge SCK) begin
if(send_data == 1 && nCS == 0)
begin
byte_data_sent <= {byte_data_sent[6:0], mem_data[addr][bitcnt_snd]};
bitcnt_snd <= bitcnt_snd - 1;
if (bitcnt_snd == 3'b000) begin
addr <= addr + 1;
bitcnt_snd <= 3'b111;
end
end
//write status register to SO when opcode RDSR is sent
else if (opcode == 8'h05 && nCS == 0 && i > 0) begin
byte_data_sent <= {byte_data_sent[6:0], stat_reg[i-1]};
i = i - 1;
end
end
assign SO = byte_data_sent[0]; // MSB of the transmission is the lsb of byte_data_sent


//the following block resets counters when a message has finished
always @ (posedge nCS) begin
if (opcode == 8'h06) begin //When WLEN opcode is executed, nCS needs to be reset.
//Since the message is not finished, no counters should be reset when executing WLEN
end
else if (opcode == 8'hb9 && nCS == 1) hibernate = 1; //When hibernation opcode 8'hb9 is sent, the device goes into hibernation
else begin
byte_count = 8'h00;
bitcnt_rcv = 3'b000;
bitcnt_snd = 3'b111;
bitcnt_mem_write = 3'b111;
byte_data_received = 8'h00;
end
send_data = 0; //disables sending data
write_to_memory = 0; // disables writing to memory
stat_reg[1] = 0; //reset WEL when writing to memory has finished
end

//reset hibernate
always @ (negedge nCS) hibernate = 0;
//when a byte is received the FRAM-model reacts dependent on the number of bytes received in the current nCS low state, i. e. in one message.
always @ (posedge byte_received) begin
case (byte_count)
//Byte 1 of message
4'h1: begin //counting starts at 1, not 0.
case (byte_data_received)
8'h03: //READ Op-code
opcode = 8'h03;
8'h06: begin //WREN Op-Code
opcode = 8'h06;
#25; //wait one clock for nCS to get low
if (nCS == 1) stat_reg [1] = 1; //Set WEL Bit in Status Register after one clock cycle
end
//READ STATUS REGISTER Op-Code
8'h05: opcode = 8'h05;
//HIBERNATE Op-Code
8'hb9: begin
opcode = 8'hb9;
end
endcase
end
//Byte 2 of message
4'h2: begin
case (byte_data_received)
//WRITE
8'h02: //WRITE Op-code, only if WREN op-code was executed, WRITE Op-code is permitted.
if (opcode == 8'h06) opcode = 8'h02;
default:
//READ - get highest address byte
if (opcode == 8'h03) //upper four bits are not used and are always 0
//the address is shifted in from right to left. Byte_data_received is the highest byte of the address
addr <= {4'b0000, 12'h000, byte_data_received};
endcase
end
//Byte 3 of message
4'h3: begin
case (byte_data_received)
default:
//READ - get middle address byte
if (opcode == 8'h03) //if opcode is read, the byte_data_received
//is the next byte of the address, followed by 1 byte
addr <= {4'b0000, 4'b0000, addr[7:0], byte_data_received};
//WRITE - get highest address byte
else if (opcode == 8'h02 && stat_reg[1] == 1'b1)
addr <= {4'b0000, 12'h000, byte_data_received};
endcase
end
//Byte 4 of message
4'h4: begin
case (byte_data_received)
default:
//READ - get the lowest byte of the address
if (opcode == 8'h03) begin
addr <= {addr[15:0], byte_data_received};
send_data = 1; //sets the flag which starts sending every bit out of SO at memory address "addr".
end
//WRITE - get middle address byte
else if (opcode == 8'h02 && stat_reg[1] == 1'b1)
addr <= {4'b000, 4'b0000, addr[7:0], byte_data_received};
endcase
end
//Byte 5 of message
4'h5: begin
case (byte_data_received)
default:
//WRITE - get lowest address byte and enable write_to_memory, the following bytes are data.
if (opcode == 8'h02 && stat_reg[1] == 1'b1) begin
addr <= {addr[15:0], byte_data_received};
write_to_memory = 1; //set write to memory and wait one clock
end
endcase
end
endcase
end
endmodule

+ 223
- 0
Code_FRAM_Speicher/SPI_FRAM_tb.sv View File

//This testbench verifies all implemented functions of the Module "SPI-FRAM-Module". That contains Read/Write to memory, Status register read and Hibernation.

`timescale 1us/1ns

module SPI_FRAM_tb;
reg SI, SO; //init all registers that are connected to the identical named ports of the FRAM-Module.
reg SCK, nCS;
reg [7:0] opcode;
reg [7:0] mem_data [1023:0] ;
reg [23:0] addr; //3 Byte Memory Address for test only the lower 13 are used (2^13 = 8192)
reg [7:0] stat_reg;
reg hibernate;
SPI_FRAM_Module dut(.nCS(nCS), .SCK(SCK), .SI(SI), .SO(SO), .opcode(opcode), .addr(addr), .mem_data(mem_data),. stat_reg(stat_reg), .hibernate(hibernate));


initial begin //values are set to startup values of FRAM
nCS = 1'b1;
SCK = 1'b0;
end

//generate 40MHz clock
always @(nCS) begin
while (nCS == 0) #12.5 SCK = ~SCK;
if (nCS == 1) SCK = 0;
end

initial begin
$dumpfile("dump.vcd");
$dumpvars;

SI = 0;
nCS = 0;

//TEST READ MEMORY
// Sends 8'b00000011 as Read Opcode
SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 1;
#25 SI = 1;
#25; assert (opcode == 8'h03);

//first byte (only the highest 4 bits are used) of 20-Bit address
SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;

//second Byte of 20-Bit address
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
//third byte of address
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 1;
#25 SI = 1;

//read one Byte (200clocks/25 clocks per bit = 8 bit)
#25 assert (addr == 24'h000003); //check address
//check for correct writing to SPI out of memory
#25 assert (SO == 0);
#25 assert (SO == 0);
#25 assert (SO == 1);
#25 assert (SO == 1);
#25 assert (SO == 0);
#25 assert (SO == 0);
#25 assert (SO == 1);
#25 assert (SO == 1);

//Message is finished, so nCS is not active
nCS = 1;
#50 nCS = 0; //enable nCS after 50 clock cycles for next test

//TEST WRITE MEMORY
//send WREN opcode to set WEL bit
SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 1;
#25 SI = 1;
#25 SI = 0;

//to set WEL-bit, nCS needs to be high (inactive)
#25 nCS = 1;
#25 assert (opcode == 8'h06); //check if the WREN-opcode was recognized
#25 nCS = 0;
assert (stat_reg[1] == 1'b1); //check if WEL-Bit is set

//after stat_reg is set, the next opcode WRITE can be received
SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 1;
#25 SI = 0;
#25 assert (opcode == 8'h02);
//the next 3 following Bytes are the address. the upper 4 Bits are cut off.
//Highest Byte 1
SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
//second address Byte
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
//third address Byte
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 1;
#25 SI = 0;
#25 assert (addr == 24'h000002);
//the following SI is written to the memory at the address "addr"
//one Byte is written
assert (mem_data[24'h000002] == 8'hFF); //check data at addr before to see difference after writing to it
SI = 0;
#25 SI = 1;
#25 SI = 1;
#25 SI = 1;
#25 SI = 0;
#25 SI = 0;
#25 SI = 1;
#25 SI = 0;
//Message is finished, so nCS is not active
#12.5 nCS = 1;

#50 nCS = 0; //enable nCS after 50 clock cycles for next test
assert (mem_data[24'h000002] == 8'h72); //check if the operation wrote the correct data to the correct address; 8'h72 is used because it is not symmetrical and the first and last bit are 0. Since the memory (see memory.txt) has 8'hFF written to all other bytes it is easily recognized if a 0 was accidentally written elsewhere.
assert (mem_data[24'h000001] == 8'hFF);

//test to see if write accidentally wrote in the next memory byte
assert (mem_data[24'h000003] == 8'h33);

//test opcode read status register
SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 0;
#25 SI = 1;
#25 SI = 0;
#25 SI = 1;

#25 assert (opcode == 8'h05);
//Test correct writing to SPI of status register (stat_reg = 8'h20)
#25 assert (SO == 0);
#25 assert (SO == 0);
#25 assert (SO == 1);
#25 assert (SO == 0);
#25 assert (SO == 0);
#25 assert (SO == 0);
#25 assert (SO == 0);
#25 assert (SO == 0);


assert (stat_reg == 8'h20);

//Message is finished, so nCS is not active
#50 nCS = 1;

#25 nCS = 0; //enable nCS and SCK after 50 clock cycles for next test



//TEST HIBERNATE MODE
//send opcode
SI = 1;
#25 SI = 0;
#25 SI = 1;
#25 SI = 1;
#25 SI = 1;
#25 SI = 0;
#25 SI = 0;
#25 SI = 1;
#25 assert (opcode == 8'hb9);


//Message is finished, so nCS is not active
//hibernate is set on the rising edge of nCS and reset at the falling edge of nCS
nCS = 1;
#25 assert (hibernate == 1);
#500 nCS = 0; //enable nCS and SCK after 50 clock cycles for next test
#25 assert (hibernate == 0);

end
endmodule

+ 1024
- 0
Code_FRAM_Speicher/memory.txt
File diff suppressed because it is too large
View File


+ 199
- 0
Source_FRAM_Controller/FRAM_Controller.sv View File

`include "SPI.sv"

module FRAM(
input i_clk, //Module (Module CLock = SPI Clock)
input i_nreset,
input logic [19:0] i_adr, //Memorycell adress in FRAM
input logic [7:0] i_data, //data to write
output logic [7:0] o_data, //data to read
input logic i_rw, //Read = 1, Write = 0
input logic i_status, //If 1 Read Staut register
input logic i_hbn, //If 1 FRAM will enter Hibernation Mode
input logic i_cready, //Starts transmission
output logic o_busy, //Indicates FRAM Busy
// SPI Interface
output o_SPI_Clk,
input i_SPI_MISO,
output o_SPI_MOSI,
output o_SPI_CS_n

);
//FRAM SPI OP Codes

//Write Enable Control
localparam WREN = 8'h06; //Set Write enable latch
localparam WRDI = 8'h04; //Reset write enable latch
//Register Access
localparam RDSR = 8'h05; //Read Status Register
localparam WRSR = 8'h01; //Write Status Register
//Memory Write
localparam WRITE = 8'h02; //Write Memory Data
//Memory Read
localparam READ = 8'h03; //Read Memory Data
localparam FSTRT = 8'h0B; //Fast read memory Data
//Special Sector Memory Access
localparam SSWR = 8'h42; //Spcial Sector Write
localparam SSRD = 8'h4B; //Special Sector Read
//Identification and serial Number
localparam RDID = 8'h9F; //Read Device ID
localparam RUID = 8'h4C; //Read Unique ID
localparam WRSN = 8'hC2; //Write Serial Number
localparam RDSN = 8'hC3; //Read Serial Number
//Low Power Modes
localparam DPD = 8'hBA; // Enter Deep Power-Down
localparam HBN = 8'hB9; // Enter Hibernate Mode
//end FRAM SPI OP Codes
//Controller Specific
logic [3:0] state;
// SPI Specific
parameter SPI_MODE = 0; // CPOL = 0, CPHA = 0
parameter CLKS_PER_HALF_BIT = 2; // 25MHz
parameter MAX_BYTES_PER_CS = 5; // 5 bytes max per chip select cycle
parameter CS_INACTIVE_CLKS = 1; // Adds delay (1clk) between cycles
logic [7:0] r_Master_TX_Byte = 0;
logic r_Master_TX_DV = 1'b0;
logic w_Master_TX_Ready;
logic w_Master_RX_DV;
logic [7:0] w_Master_RX_Byte;
logic [$clog2(MAX_BYTES_PER_CS+1)-1:0] w_Master_RX_Count, r_Master_TX_Count = 3'h1; //Standard 1 Byte pro CS Cycle
SPI_Master_With_Single_CS
#(.SPI_MODE(SPI_MODE), //SPI Mode 0-3
.CLKS_PER_HALF_BIT(CLKS_PER_HALF_BIT), //sets Frequency of SPI_CLK
.MAX_BYTES_PER_CS(MAX_BYTES_PER_CS), //Maximum Bytes per CS Cycle
.CS_INACTIVE_CLKS(CS_INACTIVE_CLKS) //Amount of Time holding CS Low befor next command
) SPI
(
// Control/Data Signals,
.i_Rst_L(i_nreset), // FPGA Reset
.i_Clk(i_clk), // FPGA Clock
// TX (MOSI) Signals
.i_TX_Count(r_Master_TX_Count), // Number of bytes per CS
.i_TX_Byte(r_Master_TX_Byte), // Byte to transmit on MOSI
.i_TX_DV(r_Master_TX_DV), // Data Valid Pulse with i_TX_Byte
.o_TX_Ready(w_Master_TX_Ready), // Transmit Ready for Byte
// RX (MISO) Signals
.o_RX_Count(w_Master_RX_Count), // Index of RX'd byte
.o_RX_DV(w_Master_RX_DV), // Data Valid pulse (1 clock cycle)
.o_RX_Byte(w_Master_RX_Byte), // Byte received on MISO

// SPI Interface
.o_SPI_Clk(o_SPI_Clk),
.i_SPI_MISO(i_SPI_MISO),
.o_SPI_MOSI(o_SPI_MOSI),
.o_SPI_CS_n(o_SPI_CS_n)
);
//end SPI Specific
task SPI_SendByte(input [7:0] data);
@(posedge i_clk);
r_Master_TX_Byte <= data;
r_Master_TX_DV <= 1'b1;
@(posedge i_clk);
r_Master_TX_DV <= 1'b0;
@(posedge i_clk);
@(posedge w_Master_TX_Ready);
endtask //end SPI_SendByte
//FRAM Tasks
task FRAM_Write(input [19:0] adr, input [7:0] data); //vgl. Fig.11
logic [7:0] value;
value <= 8'h0;
//Set Write Enable
r_Master_TX_Count <= 3'b1; //1Byte Transaction
SPI_SendByte(WREN);
//Write to fram
r_Master_TX_Count <= 3'h5; //5 Byte Transaction
SPI_SendByte(WRITE); //OPCode
SPI_SendByte({4'hF,adr[19:16]}); //Adress [23-16]
SPI_SendByte(adr[15:8]); //Adress [15-8]
SPI_SendByte(adr[7:0]); //Adress [7-0]
SPI_SendByte(data); //Data [7:0]
//Reset Write Disable and Verify
do begin
r_Master_TX_Count <= 3'b1; //1Byte Transaction
SPI_SendByte(WRDI); //Set Write Disable
FRAM_Read_Status(value); //Lese Status Register
end while(((value & 8'h2) >> 1) != 0);
endtask //end FRAM_Write
task FRAM_Read(input [19:0] adr, output [7:0] data); //vgl. Fig12
r_Master_TX_Count <= 3'h5; //5 Byte Transaction
SPI_SendByte(READ); //Opcode
SPI_SendByte({4'hF,adr[19:16]}); //Adress [23-16]
SPI_SendByte(adr[15:8]); //Adress [15-8]
SPI_SendByte(adr[7:0]); //Adress [7-0]
SPI_SendByte(8'hAA); //Dummy Bits, read byte in w_Master_RX_Byte
data = w_Master_RX_Byte;
endtask //end FRAM_READ
task FRAM_Read_Status(output [7:0] data); //vgl. Fig9
r_Master_TX_Count <= 3'h2; //2 Byte Transaction
SPI_SendByte(RDSR); //OpCode
SPI_SendByte(8'hFD); //Dummy Bits, read byte in w_Master_RX_Byte
data = w_Master_RX_Byte;
endtask //FRAM_Read_Status
task FRAM_Hibernation(); //vgl. Fig22
r_Master_TX_Count <= 3'h1; //1 Byte Transaction
SPI_SendByte(HBN);
endtask //FRAM_Hibernation
//end FRAM Tasks
always @(posedge i_clk or negedge i_nreset) begin
state[0] = i_cready;
state[1] = i_hbn;
state[2] = i_status;
state[3] = i_rw;
if(~i_nreset) begin //Modul Reset
o_data <= 8'h00;
end //end if
if(w_Master_TX_Ready) begin
case(state) inside
4'b??11: FRAM_Hibernation();
4'b?101: FRAM_Read_Status(o_data);
4'b1001: FRAM_Read(i_adr, o_data);
4'b0001: FRAM_Write(i_adr, i_data);
default:;
endcase //endcase
end //endif

end //end always
assign o_busy = w_Master_TX_Ready;
endmodule

+ 188
- 0
Source_FRAM_Controller/SPI_Master.sv View File

///////////////////////////////////////////////////////////////////////////////
//Source: https://github.com/nandland/spi-master/tree/master/Verilog/source
//Description: SPI (Serial Peripheral Interface) Master
// With single chip-select (AKA Slave Select) capability
//
// Supports arbitrary length byte transfers.
//
// Instantiates a SPI Master and adds single CS.
// If multiple CS signals are needed, will need to use different
// module, OR multiplex the CS from this at a higher level.
//
// Note: i_Clk must be at least 2x faster than i_SPI_Clk
//
// Parameters: SPI_MODE, can be 0, 1, 2, or 3. See above.
// Can be configured in one of 4 modes:
// Mode | Clock Polarity (CPOL/CKP) | Clock Phase (CPHA)
// 0 | 0 | 0
// 1 | 0 | 1
// 2 | 1 | 0
// 3 | 1 | 1
//
// CLKS_PER_HALF_BIT - Sets frequency of o_SPI_Clk. o_SPI_Clk is
// derived from i_Clk. Set to integer number of clocks for each
// half-bit of SPI data. E.g. 100 MHz i_Clk, CLKS_PER_HALF_BIT = 2
// would create o_SPI_CLK of 25 MHz. Must be >= 2
//
// MAX_BYTES_PER_CS - Set to the maximum number of bytes that
// will be sent during a single CS-low pulse.
//
// CS_INACTIVE_CLKS - Sets the amount of time in clock cycles to
// hold the state of Chip-Selct high (inactive) before next
// command is allowed on the line. Useful if chip requires some
// time when CS is high between trasnfers.
///////////////////////////////////////////////////////////////////////////////
`include "iSPI.sv"


module SPI_Master_With_Single_CS
#(parameter SPI_MODE = 0,
parameter CLKS_PER_HALF_BIT = 2,
parameter MAX_BYTES_PER_CS = 1,
parameter CS_INACTIVE_CLKS = 1)
(
// Control/Data Signals,
input i_Rst_L, // FPGA Reset
input i_Clk, // FPGA Clock
// TX (MOSI) Signals
input [$clog2(MAX_BYTES_PER_CS+1)-1:0] i_TX_Count, // # bytes per CS low
input [7:0] i_TX_Byte, // Byte to transmit on MOSI
input i_TX_DV, // Data Valid Pulse with i_TX_Byte
output o_TX_Ready, // Transmit Ready for next byte
// RX (MISO) Signals
output reg [$clog2(MAX_BYTES_PER_CS+1)-1:0] o_RX_Count, // Index RX byte
output o_RX_DV, // Data Valid pulse (1 clock cycle)
output [7:0] o_RX_Byte, // Byte received on MISO

// SPI Interface
output o_SPI_Clk,
input i_SPI_MISO,
output o_SPI_MOSI,
output o_SPI_CS_n
);

localparam IDLE = 2'b00;
localparam TRANSFER = 2'b01;
localparam CS_INACTIVE = 2'b10;

reg [1:0] r_SM_CS;
reg r_CS_n;
reg [$clog2(CS_INACTIVE_CLKS)-1:0] r_CS_Inactive_Count;
reg [$clog2(MAX_BYTES_PER_CS+1)-1:0] r_TX_Count;
wire w_Master_Ready;

// Instantiate Master
SPI_Master
#(.SPI_MODE(SPI_MODE),
.CLKS_PER_HALF_BIT(CLKS_PER_HALF_BIT)
) SPI_Master_Inst
(
// Control/Data Signals,
.i_Rst_L(i_Rst_L), // FPGA Reset
.i_Clk(i_Clk), // FPGA Clock
// TX (MOSI) Signals
.i_TX_Byte(i_TX_Byte), // Byte to transmit
.i_TX_DV(i_TX_DV), // Data Valid Pulse
.o_TX_Ready(w_Master_Ready), // Transmit Ready for Byte
// RX (MISO) Signals
.o_RX_DV(o_RX_DV), // Data Valid pulse (1 clock cycle)
.o_RX_Byte(o_RX_Byte), // Byte received on MISO

// SPI Interface
.o_SPI_Clk(o_SPI_Clk),
.i_SPI_MISO(i_SPI_MISO),
.o_SPI_MOSI(o_SPI_MOSI)
);


// Purpose: Control CS line using State Machine
always @(posedge i_Clk or negedge i_Rst_L)
begin
if (~i_Rst_L)
begin
r_SM_CS <= IDLE;
r_CS_n <= 1'b1; // Resets to high
r_TX_Count <= 0;
r_CS_Inactive_Count <= CS_INACTIVE_CLKS;
end
else
begin

case (r_SM_CS)
IDLE:
begin
if (r_CS_n & i_TX_DV) // Start of transmission
begin
r_TX_Count <= i_TX_Count - 1; // Register TX Count
r_CS_n <= 1'b0; // Drive CS low
r_SM_CS <= TRANSFER; // Transfer bytes
end
end

TRANSFER:
begin
// Wait until SPI is done transferring do next thing
if (w_Master_Ready)
begin
if (r_TX_Count > 0)
begin
if (i_TX_DV)
begin
r_TX_Count <= r_TX_Count - 1;
end
end
else
begin
r_CS_n <= 1'b1; // we done, so set CS high
r_CS_Inactive_Count <= CS_INACTIVE_CLKS;
r_SM_CS <= CS_INACTIVE;
end // else: !if(r_TX_Count > 0)
end // if (w_Master_Ready)
end // case: TRANSFER

CS_INACTIVE:
begin
if (r_CS_Inactive_Count > 0)
begin
r_CS_Inactive_Count <= r_CS_Inactive_Count - 1'b1;
end
else
begin
r_SM_CS <= IDLE;
end
end

default:
begin
r_CS_n <= 1'b1; // we done, so set CS high
r_SM_CS <= IDLE;
end
endcase // case (r_SM_CS)
end
end // always @ (posedge i_Clk or negedge i_Rst_L)


// Purpose: Keep track of RX_Count
always @(posedge i_Clk)
begin
begin
if (r_CS_n)
begin
o_RX_Count <= 0;
end
else if (o_RX_DV)
begin
o_RX_Count <= o_RX_Count + 1'b1;
end
end
end

assign o_SPI_CS_n = r_CS_n;

assign o_TX_Ready = ((r_SM_CS == IDLE) | (r_SM_CS == TRANSFER && w_Master_Ready == 1'b1 && r_TX_Count > 0)) & ~i_TX_DV;

endmodule // SPI_Master_With_Single_CS

+ 240
- 0
Source_FRAM_Controller/SPI_Master_Control.sv View File

///////////////////////////////////////////////////////////////////////////////
//Source: https://github.com/nandland/spi-master/tree/master/Verilog/source
// Description: SPI (Serial Peripheral Interface) Master
// Creates master based on input configuration.
// Sends a byte one bit at a time on MOSI
// Will also receive byte data one bit at a time on MISO.
// Any data on input byte will be shipped out on MOSI.
//
// To kick-off transaction, user must pulse i_TX_DV.
// This module supports multi-byte transmissions by pulsing
// i_TX_DV and loading up i_TX_Byte when o_TX_Ready is high.
//
// This module is only responsible for controlling Clk, MOSI,
// and MISO. If the SPI peripheral requires a chip-select,
// this must be done at a higher level.
//
// Note: i_Clk must be at least 2x faster than i_SPI_Clk
//
// Parameters: SPI_MODE, can be 0, 1, 2, or 3. See above.
// Can be configured in one of 4 modes:
// Mode | Clock Polarity (CPOL/CKP) | Clock Phase (CPHA)
// 0 | 0 | 0
// 1 | 0 | 1
// 2 | 1 | 0
// 3 | 1 | 1
// More: https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus#Mode_numbers
// CLKS_PER_HALF_BIT - Sets frequency of o_SPI_Clk. o_SPI_Clk is
// derived from i_Clk. Set to integer number of clocks for each
// half-bit of SPI data. E.g. 100 MHz i_Clk, CLKS_PER_HALF_BIT = 2
// would create o_SPI_CLK of 25 MHz. Must be >= 2
//
///////////////////////////////////////////////////////////////////////////////

module SPI_Master
#(parameter SPI_MODE = 0,
parameter CLKS_PER_HALF_BIT = 2)
(
// Control/Data Signals,
input i_Rst_L, // FPGA Reset
input i_Clk, // FPGA Clock
// TX (MOSI) Signals
input [7:0] i_TX_Byte, // Byte to transmit on MOSI
input i_TX_DV, // Data Valid Pulse with i_TX_Byte
output reg o_TX_Ready, // Transmit Ready for next byte
// RX (MISO) Signals
output reg o_RX_DV, // Data Valid pulse (1 clock cycle)
output reg [7:0] o_RX_Byte, // Byte received on MISO

// SPI Interface
output reg o_SPI_Clk,
input i_SPI_MISO,
output reg o_SPI_MOSI
);

// SPI Interface (All Runs at SPI Clock Domain)
wire w_CPOL; // Clock polarity
wire w_CPHA; // Clock phase

reg [$clog2(CLKS_PER_HALF_BIT*2)-1:0] r_SPI_Clk_Count;
reg r_SPI_Clk;
reg [4:0] r_SPI_Clk_Edges;
reg r_Leading_Edge;
reg r_Trailing_Edge;
reg r_TX_DV;
reg [7:0] r_TX_Byte;

reg [2:0] r_RX_Bit_Count;
reg [2:0] r_TX_Bit_Count;

// CPOL: Clock Polarity
// CPOL=0 means clock idles at 0, leading edge is rising edge.
// CPOL=1 means clock idles at 1, leading edge is falling edge.
assign w_CPOL = (SPI_MODE == 2) | (SPI_MODE == 3);

// CPHA: Clock Phase
// CPHA=0 means the "out" side changes the data on trailing edge of clock
// the "in" side captures data on leading edge of clock
// CPHA=1 means the "out" side changes the data on leading edge of clock
// the "in" side captures data on the trailing edge of clock
assign w_CPHA = (SPI_MODE == 1) | (SPI_MODE == 3);



// Purpose: Generate SPI Clock correct number of times when DV pulse comes
always @(posedge i_Clk or negedge i_Rst_L)
begin
if (~i_Rst_L)
begin
o_TX_Ready <= 1'b0;
r_SPI_Clk_Edges <= 0;
r_Leading_Edge <= 1'b0;
r_Trailing_Edge <= 1'b0;
r_SPI_Clk <= w_CPOL; // assign default state to idle state
r_SPI_Clk_Count <= 0;
end
else
begin

// Default assignments
r_Leading_Edge <= 1'b0;
r_Trailing_Edge <= 1'b0;
if (i_TX_DV)
begin
o_TX_Ready <= 1'b0;
r_SPI_Clk_Edges <= 16; // Total # edges in one byte ALWAYS 16
end
else if (r_SPI_Clk_Edges > 0)
begin
o_TX_Ready <= 1'b0;
if (r_SPI_Clk_Count == CLKS_PER_HALF_BIT*2-1)
begin
r_SPI_Clk_Edges <= r_SPI_Clk_Edges - 1;
r_Trailing_Edge <= 1'b1;
r_SPI_Clk_Count <= 0;
r_SPI_Clk <= ~r_SPI_Clk;
end
else if (r_SPI_Clk_Count == CLKS_PER_HALF_BIT-1)
begin
r_SPI_Clk_Edges <= r_SPI_Clk_Edges - 1;
r_Leading_Edge <= 1'b1;
r_SPI_Clk_Count <= r_SPI_Clk_Count + 1;
r_SPI_Clk <= ~r_SPI_Clk;
end
else
begin
r_SPI_Clk_Count <= r_SPI_Clk_Count + 1;
end
end
else
begin
o_TX_Ready <= 1'b1;
end
end // else: !if(~i_Rst_L)
end // always @ (posedge i_Clk or negedge i_Rst_L)


// Purpose: Register i_TX_Byte when Data Valid is pulsed.
// Keeps local storage of byte in case higher level module changes the data
always @(posedge i_Clk or negedge i_Rst_L)
begin
if (~i_Rst_L)
begin
r_TX_Byte <= 8'h00;
r_TX_DV <= 1'b0;
end
else
begin
r_TX_DV <= i_TX_DV; // 1 clock cycle delay
if (i_TX_DV)
begin
r_TX_Byte <= i_TX_Byte;
end
end // else: !if(~i_Rst_L)
end // always @ (posedge i_Clk or negedge i_Rst_L)


// Purpose: Generate MOSI data
// Works with both CPHA=0 and CPHA=1
always @(posedge i_Clk or negedge i_Rst_L)
begin
if (~i_Rst_L)
begin
o_SPI_MOSI <= 1'b0;
r_TX_Bit_Count <= 3'b111; // send MSb first
end
else
begin
// If ready is high, reset bit counts to default
if (o_TX_Ready)
begin
r_TX_Bit_Count <= 3'b111;
end
// Catch the case where we start transaction and CPHA = 0
else if (r_TX_DV & ~w_CPHA)
begin
o_SPI_MOSI <= r_TX_Byte[3'b111];
r_TX_Bit_Count <= 3'b110;
end
else if ((r_Leading_Edge & w_CPHA) | (r_Trailing_Edge & ~w_CPHA))
begin
r_TX_Bit_Count <= r_TX_Bit_Count - 1;
o_SPI_MOSI <= r_TX_Byte[r_TX_Bit_Count];
end
end
end


// Purpose: Read in MISO data.
always @(posedge i_Clk or negedge i_Rst_L)
begin
if (~i_Rst_L)
begin
o_RX_Byte <= 8'h00;
o_RX_DV <= 1'b0;
r_RX_Bit_Count <= 3'b111;
end
else
begin

// Default Assignments
o_RX_DV <= 1'b0;

if (o_TX_Ready) // Check if ready is high, if so reset bit count to default
begin
r_RX_Bit_Count <= 3'b111;
end
else if ((r_Leading_Edge & ~w_CPHA) | (r_Trailing_Edge & w_CPHA))
begin
o_RX_Byte[r_RX_Bit_Count] <= i_SPI_MISO; // Sample data
r_RX_Bit_Count <= r_RX_Bit_Count - 1;
if (r_RX_Bit_Count == 3'b000)
begin
o_RX_DV <= 1'b1; // Byte done, pulse Data Valid
end
end
end
end
// Purpose: Add clock delay to signals for alignment.
always @(posedge i_Clk or negedge i_Rst_L)
begin
if (~i_Rst_L)
begin
o_SPI_Clk <= w_CPOL;
end
else
begin
o_SPI_Clk <= r_SPI_Clk;
end // else: !if(~i_Rst_L)
end // always @ (posedge i_Clk or negedge i_Rst_L)

endmodule // SPI_Master

+ 168
- 0
Source_FRAM_Controller/testbench.sv View File

module testbench();
logic clk;
logic nReset;
logic [19:0] FRAM_Adr;
logic [7:0] FRAM_DATA_OUT;
logic [7:0] FRAM_DATA_IN;
logic FRAM_RW;
logic FRAM_RSTATUS;
logic FRAM_hbn;
logic FRAM_go;
logic FRAM_busy;
logic SPI_CLK;
logic SPI_MISO;
logic SPI_MOSI;
logic SPI_CS;
logic [2:0]test;
logic test_running;
logic starttesting;
localparam TESTS_cnt = 5;
initial begin
// Required for EDA Playground
$dumpfile("dump.vcd");
$dumpvars;
clk = 1'h0;
nReset = 1'h0;
FRAM_Adr <= 20'h0;
FRAM_DATA_IN <= 8'h0;
FRAM_RW = 0;
FRAM_RSTATUS = 0;
FRAM_hbn = 0;
FRAM_go = 0;
test <= 2'h0;
repeat(10) @(posedge clk);
nReset = 1'h1;
starttesting <= 1'h1;
test_running <= 1'h0;
end //initial end
// Clock Generation:
always #(5) clk = ~clk; //clk 100MHz
// end Clock Generation
always @ (posedge starttesting or posedge FRAM_busy) begin
repeat(10) @(posedge clk);
if(test_running == 1'h0 & FRAM_busy == 1'h1) begin
if(test == TESTS_cnt+1) begin
test_running <= 1'h0;
$display("Tests Finished");
$finish;
end
case(test) inside
3'b000: begin Test1(); test <= test + 1'h1; end
3'b001: begin Test2(); test <= test + 1'h1; end
3'b010: begin Test3(); test <= test + 1'h1; end
3'b011: begin Test4(); test <= test + 1'h1; end
endcase
end // endif
end // end always
task Test1();
test_running <= 1'h1;
$display("DEBUG: %0tns: Test_1_Hibernation",$realtime);
FRAM_hbn <= 1'h1; //Enter Hibernation
FRAM_go <= 1'h1;
#10;
FRAM_hbn <= 1'h0; //Reset Hibernation Flag
FRAM_go <= 1'h0;
$display("DEBUG: %0tns: Test_1_Hibernation__-END",$realtime);
test_running <= 1'h0;
endtask
task Test2();
test_running <= 1'h1;
$display("DEBUG: %0tns: Test_2_ReadStatus",$realtime);
FRAM_RSTATUS <= 1'h1; //Read Status
FRAM_go <= 1'h1; //Go
#10;
FRAM_RSTATUS <= 1'h0; //Read Status
FRAM_go <= 1'h0; //reset Go
$display("DEBUG: %0tns: Test_2_ReadStatus__-END",$realtime);
test_running <= 1'h0;
endtask
task Test3();
test_running <= 1'h1;
$display("DEBUG: %0tns: Test_3_FRAM_WRITE",$realtime);
FRAM_Adr <= 20'h8FFF1; //Load 8FFF1 as adress
FRAM_DATA_IN <= 8'hAA; //Load AA as Data to Write into FRAM
FRAM_RW <= 1'h0; //Write Operation
FRAM_go <= 1'h1; //Go
#10;
FRAM_go <= 1'h0; //resetGo
$display("DEBUG: %0tns: Test_3_FRAM_WRITE__-END",$realtime);
test_running <= 1'h0;
endtask
task Test4();
test_running <= 1'h1;
$display("DEBUG: %0tns: Test_4_FRAM_READ",$realtime);
FRAM_Adr <= 20'h8FFF1; //Load 8FFF1 as adress
FRAM_RW <= 1'h1; //Read
FRAM_go <= 1'h1; //Go
#10;
FRAM_go <= 1'h0; //resetGo
FRAM_RW <= 1'h0; //Read
$display("DEBUG: %0tns: Test_4_FRAM_READ__-END",$realtime);
test_running <= 1'h0;
endtask
FRAM FRAM_ut(
.i_clk(clk),
.i_nreset(nReset),
.i_adr(FRAM_Adr),
.i_data(FRAM_DATA_IN),
.o_data(FRAM_DATA_OUT),
.i_rw(FRAM_RW),
.i_status(FRAM_RSTATUS),
.i_hbn(FRAM_hbn),
.i_cready(FRAM_go),
.o_busy(FRAM_busy),
.o_SPI_Clk(SPI_CLK),
.i_SPI_MISO(SPI_MOSI), // !!! only for Testing!!!
.o_SPI_MOSI(SPI_MOSI), //
.o_SPI_CS_n(SPI_CS)
);
endmodule



Loading…
Cancel
Save