Browse Source

Dateien hochladen nach „FRAM Controller“

master
Claus Kuntzsch 1 year ago
parent
commit
6e745d4367

+ 199
- 0
FRAM Controller/FRAM_Controller.sv View File

`include "SPI.sv"

module FRAM(
input i_clk, //Module (Module CLock = SPI Clock)
input i_nreset,
input logic [19:0] i_adr, //Memorycell adress in FRAM
input logic [7:0] i_data, //data to write
output logic [7:0] o_data, //data to read
input logic i_rw, //Read = 1, Write = 0
input logic i_status, //If 1 Read Staut register
input logic i_hbn, //If 1 FRAM will enter Hibernation Mode
input logic i_cready, //Starts transmission
output logic o_busy, //Indicates FRAM Busy
// SPI Interface
output o_SPI_Clk,
input i_SPI_MISO,
output o_SPI_MOSI,
output o_SPI_CS_n

);
//FRAM SPI OP Codes

//Write Enable Control
localparam WREN = 8'h06; //Set Write enable latch
localparam WRDI = 8'h04; //Reset write enable latch
//Register Access
localparam RDSR = 8'h05; //Read Status Register
localparam WRSR = 8'h01; //Write Status Register
//Memory Write
localparam WRITE = 8'h02; //Write Memory Data
//Memory Read
localparam READ = 8'h03; //Read Memory Data
localparam FSTRT = 8'h0B; //Fast read memory Data
//Special Sector Memory Access
localparam SSWR = 8'h42; //Spcial Sector Write
localparam SSRD = 8'h4B; //Special Sector Read
//Identification and serial Number
localparam RDID = 8'h9F; //Read Device ID
localparam RUID = 8'h4C; //Read Unique ID
localparam WRSN = 8'hC2; //Write Serial Number
localparam RDSN = 8'hC3; //Read Serial Number
//Low Power Modes
localparam DPD = 8'hBA; // Enter Deep Power-Down
localparam HBN = 8'hB9; // Enter Hibernate Mode
//end FRAM SPI OP Codes
//Controller Specific
logic [3:0] state;
// SPI Specific
parameter SPI_MODE = 0; // CPOL = 0, CPHA = 0
parameter CLKS_PER_HALF_BIT = 2; // 25MHz
parameter MAX_BYTES_PER_CS = 5; // 5 bytes max per chip select cycle
parameter CS_INACTIVE_CLKS = 1; // Adds delay (1clk) between cycles
logic [7:0] r_Master_TX_Byte = 0;
logic r_Master_TX_DV = 1'b0;
logic w_Master_TX_Ready;
logic w_Master_RX_DV;
logic [7:0] w_Master_RX_Byte;
logic [$clog2(MAX_BYTES_PER_CS+1)-1:0] w_Master_RX_Count, r_Master_TX_Count = 3'h1; //Standard 1 Byte pro CS Cycle
SPI_Master_With_Single_CS
#(.SPI_MODE(SPI_MODE), //SPI Mode 0-3
.CLKS_PER_HALF_BIT(CLKS_PER_HALF_BIT), //sets Frequency of SPI_CLK
.MAX_BYTES_PER_CS(MAX_BYTES_PER_CS), //Maximum Bytes per CS Cycle
.CS_INACTIVE_CLKS(CS_INACTIVE_CLKS) //Amount of Time holding CS Low befor next command
) SPI
(
// Control/Data Signals,
.i_Rst_L(i_nreset), // FPGA Reset
.i_Clk(i_clk), // FPGA Clock
// TX (MOSI) Signals
.i_TX_Count(r_Master_TX_Count), // Number of bytes per CS
.i_TX_Byte(r_Master_TX_Byte), // Byte to transmit on MOSI
.i_TX_DV(r_Master_TX_DV), // Data Valid Pulse with i_TX_Byte
.o_TX_Ready(w_Master_TX_Ready), // Transmit Ready for Byte
// RX (MISO) Signals
.o_RX_Count(w_Master_RX_Count), // Index of RX'd byte
.o_RX_DV(w_Master_RX_DV), // Data Valid pulse (1 clock cycle)
.o_RX_Byte(w_Master_RX_Byte), // Byte received on MISO

// SPI Interface
.o_SPI_Clk(o_SPI_Clk),
.i_SPI_MISO(i_SPI_MISO),
.o_SPI_MOSI(o_SPI_MOSI),
.o_SPI_CS_n(o_SPI_CS_n)
);
//end SPI Specific
task SPI_SendByte(input [7:0] data);
@(posedge i_clk);
r_Master_TX_Byte <= data;
r_Master_TX_DV <= 1'b1;
@(posedge i_clk);
r_Master_TX_DV <= 1'b0;
@(posedge i_clk);
@(posedge w_Master_TX_Ready);
endtask //end SPI_SendByte
//FRAM Tasks
task FRAM_Write(input [19:0] adr, input [7:0] data); //vgl. Fig.11
logic [7:0] value;
value <= 8'h0;
//Set Write Enable
r_Master_TX_Count <= 3'b1; //1Byte Transaction
SPI_SendByte(WREN);
//Write to fram
r_Master_TX_Count <= 3'h5; //5 Byte Transaction
SPI_SendByte(WRITE); //OPCode
SPI_SendByte({4'hF,adr[19:16]}); //Adress [23-16]
SPI_SendByte(adr[15:8]); //Adress [15-8]
SPI_SendByte(adr[7:0]); //Adress [7-0]
SPI_SendByte(data); //Data [7:0]
//Reset Write Disable and Verify
do begin
r_Master_TX_Count <= 3'b1; //1Byte Transaction
SPI_SendByte(WRDI); //Set Write Disable
FRAM_Read_Status(value); //Lese Status Register
end while(((value & 8'h2) >> 1) != 0);
endtask //end FRAM_Write
task FRAM_Read(input [19:0] adr, output [7:0] data); //vgl. Fig12
r_Master_TX_Count <= 3'h5; //5 Byte Transaction
SPI_SendByte(READ); //Opcode
SPI_SendByte({4'hF,adr[19:16]}); //Adress [23-16]
SPI_SendByte(adr[15:8]); //Adress [15-8]
SPI_SendByte(adr[7:0]); //Adress [7-0]
SPI_SendByte(8'hAA); //Dummy Bits, read byte in w_Master_RX_Byte
data = w_Master_RX_Byte;
endtask //end FRAM_READ
task FRAM_Read_Status(output [7:0] data); //vgl. Fig9
r_Master_TX_Count <= 3'h2; //2 Byte Transaction
SPI_SendByte(RDSR); //OpCode
SPI_SendByte(8'hFD); //Dummy Bits, read byte in w_Master_RX_Byte
data = w_Master_RX_Byte;
endtask //FRAM_Read_Status
task FRAM_Hibernation(); //vgl. Fig22
r_Master_TX_Count <= 3'h1; //1 Byte Transaction
SPI_SendByte(HBN);
endtask //FRAM_Hibernation
//end FRAM Tasks
always @(posedge i_clk or negedge i_nreset) begin
state[0] = i_cready;
state[1] = i_hbn;
state[2] = i_status;
state[3] = i_rw;
if(~i_nreset) begin //Modul Reset
o_data <= 8'h00;
end //end if
if(w_Master_TX_Ready) begin
case(state) inside
4'b??11: FRAM_Hibernation();
4'b?101: FRAM_Read_Status(o_data);
4'b1001: FRAM_Read(i_adr, o_data);
4'b0001: FRAM_Write(i_adr, i_data);
default:;
endcase //endcase
end //endif

end //end always
assign o_busy = w_Master_TX_Ready;
endmodule

BIN
FRAM Controller/SPI FRAM Controller.pdf View File


+ 188
- 0
FRAM Controller/SPI_Master.sv View File

///////////////////////////////////////////////////////////////////////////////
//Source: https://github.com/nandland/spi-master/tree/master/Verilog/source
//Description: SPI (Serial Peripheral Interface) Master
// With single chip-select (AKA Slave Select) capability
//
// Supports arbitrary length byte transfers.
//
// Instantiates a SPI Master and adds single CS.
// If multiple CS signals are needed, will need to use different
// module, OR multiplex the CS from this at a higher level.
//
// Note: i_Clk must be at least 2x faster than i_SPI_Clk
//
// Parameters: SPI_MODE, can be 0, 1, 2, or 3. See above.
// Can be configured in one of 4 modes:
// Mode | Clock Polarity (CPOL/CKP) | Clock Phase (CPHA)
// 0 | 0 | 0
// 1 | 0 | 1
// 2 | 1 | 0
// 3 | 1 | 1
//
// CLKS_PER_HALF_BIT - Sets frequency of o_SPI_Clk. o_SPI_Clk is
// derived from i_Clk. Set to integer number of clocks for each
// half-bit of SPI data. E.g. 100 MHz i_Clk, CLKS_PER_HALF_BIT = 2
// would create o_SPI_CLK of 25 MHz. Must be >= 2
//
// MAX_BYTES_PER_CS - Set to the maximum number of bytes that
// will be sent during a single CS-low pulse.
//
// CS_INACTIVE_CLKS - Sets the amount of time in clock cycles to
// hold the state of Chip-Selct high (inactive) before next
// command is allowed on the line. Useful if chip requires some
// time when CS is high between trasnfers.
///////////////////////////////////////////////////////////////////////////////
`include "iSPI.sv"
module SPI_Master_With_Single_CS
#(parameter SPI_MODE = 0,
parameter CLKS_PER_HALF_BIT = 2,
parameter MAX_BYTES_PER_CS = 1,
parameter CS_INACTIVE_CLKS = 1)
(
// Control/Data Signals,
input i_Rst_L, // FPGA Reset
input i_Clk, // FPGA Clock
// TX (MOSI) Signals
input [$clog2(MAX_BYTES_PER_CS+1)-1:0] i_TX_Count, // # bytes per CS low
input [7:0] i_TX_Byte, // Byte to transmit on MOSI
input i_TX_DV, // Data Valid Pulse with i_TX_Byte
output o_TX_Ready, // Transmit Ready for next byte
// RX (MISO) Signals
output reg [$clog2(MAX_BYTES_PER_CS+1)-1:0] o_RX_Count, // Index RX byte
output o_RX_DV, // Data Valid pulse (1 clock cycle)
output [7:0] o_RX_Byte, // Byte received on MISO
// SPI Interface
output o_SPI_Clk,
input i_SPI_MISO,
output o_SPI_MOSI,
output o_SPI_CS_n
);
localparam IDLE = 2'b00;
localparam TRANSFER = 2'b01;
localparam CS_INACTIVE = 2'b10;
reg [1:0] r_SM_CS;
reg r_CS_n;
reg [$clog2(CS_INACTIVE_CLKS)-1:0] r_CS_Inactive_Count;
reg [$clog2(MAX_BYTES_PER_CS+1)-1:0] r_TX_Count;
wire w_Master_Ready;
// Instantiate Master
SPI_Master
#(.SPI_MODE(SPI_MODE),
.CLKS_PER_HALF_BIT(CLKS_PER_HALF_BIT)
) SPI_Master_Inst
(
// Control/Data Signals,
.i_Rst_L(i_Rst_L), // FPGA Reset
.i_Clk(i_Clk), // FPGA Clock
// TX (MOSI) Signals
.i_TX_Byte(i_TX_Byte), // Byte to transmit
.i_TX_DV(i_TX_DV), // Data Valid Pulse
.o_TX_Ready(w_Master_Ready), // Transmit Ready for Byte
// RX (MISO) Signals
.o_RX_DV(o_RX_DV), // Data Valid pulse (1 clock cycle)
.o_RX_Byte(o_RX_Byte), // Byte received on MISO
// SPI Interface
.o_SPI_Clk(o_SPI_Clk),
.i_SPI_MISO(i_SPI_MISO),
.o_SPI_MOSI(o_SPI_MOSI)
);
// Purpose: Control CS line using State Machine
always @(posedge i_Clk or negedge i_Rst_L)
begin
if (~i_Rst_L)
begin
r_SM_CS <= IDLE;
r_CS_n <= 1'b1; // Resets to high
r_TX_Count <= 0;
r_CS_Inactive_Count <= CS_INACTIVE_CLKS;
end
else
begin
case (r_SM_CS)
IDLE:
begin
if (r_CS_n & i_TX_DV) // Start of transmission
begin
r_TX_Count <= i_TX_Count - 1; // Register TX Count
r_CS_n <= 1'b0; // Drive CS low
r_SM_CS <= TRANSFER; // Transfer bytes
end
end
TRANSFER:
begin
// Wait until SPI is done transferring do next thing
if (w_Master_Ready)
begin
if (r_TX_Count > 0)
begin
if (i_TX_DV)
begin
r_TX_Count <= r_TX_Count - 1;
end
end
else
begin
r_CS_n <= 1'b1; // we done, so set CS high
r_CS_Inactive_Count <= CS_INACTIVE_CLKS;
r_SM_CS <= CS_INACTIVE;
end // else: !if(r_TX_Count > 0)
end // if (w_Master_Ready)
end // case: TRANSFER
CS_INACTIVE:
begin
if (r_CS_Inactive_Count > 0)
begin
r_CS_Inactive_Count <= r_CS_Inactive_Count - 1'b1;
end
else
begin
r_SM_CS <= IDLE;
end
end
default:
begin
r_CS_n <= 1'b1; // we done, so set CS high
r_SM_CS <= IDLE;
end
endcase // case (r_SM_CS)
end
end // always @ (posedge i_Clk or negedge i_Rst_L)
// Purpose: Keep track of RX_Count
always @(posedge i_Clk)
begin
begin
if (r_CS_n)
begin
o_RX_Count <= 0;
end
else if (o_RX_DV)
begin
o_RX_Count <= o_RX_Count + 1'b1;
end
end
end
assign o_SPI_CS_n = r_CS_n;
assign o_TX_Ready = ((r_SM_CS == IDLE) | (r_SM_CS == TRANSFER && w_Master_Ready == 1'b1 && r_TX_Count > 0)) & ~i_TX_DV;
endmodule // SPI_Master_With_Single_CS

+ 240
- 0
FRAM Controller/SPI_Master_Control.sv View File

///////////////////////////////////////////////////////////////////////////////
//Source: https://github.com/nandland/spi-master/tree/master/Verilog/source
// Description: SPI (Serial Peripheral Interface) Master
// Creates master based on input configuration.
// Sends a byte one bit at a time on MOSI
// Will also receive byte data one bit at a time on MISO.
// Any data on input byte will be shipped out on MOSI.
//
// To kick-off transaction, user must pulse i_TX_DV.
// This module supports multi-byte transmissions by pulsing
// i_TX_DV and loading up i_TX_Byte when o_TX_Ready is high.
//
// This module is only responsible for controlling Clk, MOSI,
// and MISO. If the SPI peripheral requires a chip-select,
// this must be done at a higher level.
//
// Note: i_Clk must be at least 2x faster than i_SPI_Clk
//
// Parameters: SPI_MODE, can be 0, 1, 2, or 3. See above.
// Can be configured in one of 4 modes:
// Mode | Clock Polarity (CPOL/CKP) | Clock Phase (CPHA)
// 0 | 0 | 0
// 1 | 0 | 1
// 2 | 1 | 0
// 3 | 1 | 1
// More: https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus#Mode_numbers
// CLKS_PER_HALF_BIT - Sets frequency of o_SPI_Clk. o_SPI_Clk is
// derived from i_Clk. Set to integer number of clocks for each
// half-bit of SPI data. E.g. 100 MHz i_Clk, CLKS_PER_HALF_BIT = 2
// would create o_SPI_CLK of 25 MHz. Must be >= 2
//
///////////////////////////////////////////////////////////////////////////////
module SPI_Master
#(parameter SPI_MODE = 0,
parameter CLKS_PER_HALF_BIT = 2)
(
// Control/Data Signals,
input i_Rst_L, // FPGA Reset
input i_Clk, // FPGA Clock
// TX (MOSI) Signals
input [7:0] i_TX_Byte, // Byte to transmit on MOSI
input i_TX_DV, // Data Valid Pulse with i_TX_Byte
output reg o_TX_Ready, // Transmit Ready for next byte
// RX (MISO) Signals
output reg o_RX_DV, // Data Valid pulse (1 clock cycle)
output reg [7:0] o_RX_Byte, // Byte received on MISO
// SPI Interface
output reg o_SPI_Clk,
input i_SPI_MISO,
output reg o_SPI_MOSI
);
// SPI Interface (All Runs at SPI Clock Domain)
wire w_CPOL; // Clock polarity
wire w_CPHA; // Clock phase
reg [$clog2(CLKS_PER_HALF_BIT*2)-1:0] r_SPI_Clk_Count;
reg r_SPI_Clk;
reg [4:0] r_SPI_Clk_Edges;
reg r_Leading_Edge;
reg r_Trailing_Edge;
reg r_TX_DV;
reg [7:0] r_TX_Byte;
reg [2:0] r_RX_Bit_Count;
reg [2:0] r_TX_Bit_Count;
// CPOL: Clock Polarity
// CPOL=0 means clock idles at 0, leading edge is rising edge.
// CPOL=1 means clock idles at 1, leading edge is falling edge.
assign w_CPOL = (SPI_MODE == 2) | (SPI_MODE == 3);
// CPHA: Clock Phase
// CPHA=0 means the "out" side changes the data on trailing edge of clock
// the "in" side captures data on leading edge of clock
// CPHA=1 means the "out" side changes the data on leading edge of clock
// the "in" side captures data on the trailing edge of clock
assign w_CPHA = (SPI_MODE == 1) | (SPI_MODE == 3);
// Purpose: Generate SPI Clock correct number of times when DV pulse comes
always @(posedge i_Clk or negedge i_Rst_L)
begin
if (~i_Rst_L)
begin
o_TX_Ready <= 1'b0;
r_SPI_Clk_Edges <= 0;
r_Leading_Edge <= 1'b0;
r_Trailing_Edge <= 1'b0;
r_SPI_Clk <= w_CPOL; // assign default state to idle state
r_SPI_Clk_Count <= 0;
end
else
begin
// Default assignments
r_Leading_Edge <= 1'b0;
r_Trailing_Edge <= 1'b0;
if (i_TX_DV)
begin
o_TX_Ready <= 1'b0;
r_SPI_Clk_Edges <= 16; // Total # edges in one byte ALWAYS 16
end
else if (r_SPI_Clk_Edges > 0)
begin
o_TX_Ready <= 1'b0;
if (r_SPI_Clk_Count == CLKS_PER_HALF_BIT*2-1)
begin
r_SPI_Clk_Edges <= r_SPI_Clk_Edges - 1;
r_Trailing_Edge <= 1'b1;
r_SPI_Clk_Count <= 0;
r_SPI_Clk <= ~r_SPI_Clk;
end
else if (r_SPI_Clk_Count == CLKS_PER_HALF_BIT-1)
begin
r_SPI_Clk_Edges <= r_SPI_Clk_Edges - 1;
r_Leading_Edge <= 1'b1;
r_SPI_Clk_Count <= r_SPI_Clk_Count + 1;
r_SPI_Clk <= ~r_SPI_Clk;
end
else
begin
r_SPI_Clk_Count <= r_SPI_Clk_Count + 1;
end
end
else
begin
o_TX_Ready <= 1'b1;
end
end // else: !if(~i_Rst_L)
end // always @ (posedge i_Clk or negedge i_Rst_L)
// Purpose: Register i_TX_Byte when Data Valid is pulsed.
// Keeps local storage of byte in case higher level module changes the data
always @(posedge i_Clk or negedge i_Rst_L)
begin
if (~i_Rst_L)
begin
r_TX_Byte <= 8'h00;
r_TX_DV <= 1'b0;
end
else
begin
r_TX_DV <= i_TX_DV; // 1 clock cycle delay
if (i_TX_DV)
begin
r_TX_Byte <= i_TX_Byte;
end
end // else: !if(~i_Rst_L)
end // always @ (posedge i_Clk or negedge i_Rst_L)
// Purpose: Generate MOSI data
// Works with both CPHA=0 and CPHA=1
always @(posedge i_Clk or negedge i_Rst_L)
begin
if (~i_Rst_L)
begin
o_SPI_MOSI <= 1'b0;
r_TX_Bit_Count <= 3'b111; // send MSb first
end
else
begin
// If ready is high, reset bit counts to default
if (o_TX_Ready)
begin
r_TX_Bit_Count <= 3'b111;
end
// Catch the case where we start transaction and CPHA = 0
else if (r_TX_DV & ~w_CPHA)
begin
o_SPI_MOSI <= r_TX_Byte[3'b111];
r_TX_Bit_Count <= 3'b110;
end
else if ((r_Leading_Edge & w_CPHA) | (r_Trailing_Edge & ~w_CPHA))
begin
r_TX_Bit_Count <= r_TX_Bit_Count - 1;
o_SPI_MOSI <= r_TX_Byte[r_TX_Bit_Count];
end
end
end
// Purpose: Read in MISO data.
always @(posedge i_Clk or negedge i_Rst_L)
begin
if (~i_Rst_L)
begin
o_RX_Byte <= 8'h00;
o_RX_DV <= 1'b0;
r_RX_Bit_Count <= 3'b111;
end
else
begin
// Default Assignments
o_RX_DV <= 1'b0;
if (o_TX_Ready) // Check if ready is high, if so reset bit count to default
begin
r_RX_Bit_Count <= 3'b111;
end
else if ((r_Leading_Edge & ~w_CPHA) | (r_Trailing_Edge & w_CPHA))
begin
o_RX_Byte[r_RX_Bit_Count] <= i_SPI_MISO; // Sample data
r_RX_Bit_Count <= r_RX_Bit_Count - 1;
if (r_RX_Bit_Count == 3'b000)
begin
o_RX_DV <= 1'b1; // Byte done, pulse Data Valid
end
end
end
end
// Purpose: Add clock delay to signals for alignment.
always @(posedge i_Clk or negedge i_Rst_L)
begin
if (~i_Rst_L)
begin
o_SPI_Clk <= w_CPOL;
end
else
begin
o_SPI_Clk <= r_SPI_Clk;
end // else: !if(~i_Rst_L)
end // always @ (posedge i_Clk or negedge i_Rst_L)
endmodule // SPI_Master

+ 168
- 0
FRAM Controller/testbench.sv View File

module testbench();
logic clk;
logic nReset;
logic [19:0] FRAM_Adr;
logic [7:0] FRAM_DATA_OUT;
logic [7:0] FRAM_DATA_IN;
logic FRAM_RW;
logic FRAM_RSTATUS;
logic FRAM_hbn;
logic FRAM_go;
logic FRAM_busy;
logic SPI_CLK;
logic SPI_MISO;
logic SPI_MOSI;
logic SPI_CS;
logic [2:0]test;
logic test_running;
logic starttesting;
localparam TESTS_cnt = 5;
initial begin
// Required for EDA Playground
$dumpfile("dump.vcd");
$dumpvars;
clk = 1'h0;
nReset = 1'h0;
FRAM_Adr <= 20'h0;
FRAM_DATA_IN <= 8'h0;
FRAM_RW = 0;
FRAM_RSTATUS = 0;
FRAM_hbn = 0;
FRAM_go = 0;
test <= 2'h0;
repeat(10) @(posedge clk);
nReset = 1'h1;
starttesting <= 1'h1;
test_running <= 1'h0;
end //initial end
// Clock Generation:
always #(5) clk = ~clk; //clk 100MHz
// end Clock Generation
always @ (posedge starttesting or posedge FRAM_busy) begin
repeat(10) @(posedge clk);
if(test_running == 1'h0 & FRAM_busy == 1'h1) begin
if(test == TESTS_cnt+1) begin
test_running <= 1'h0;
$display("Tests Finished");
$finish;
end
case(test) inside
3'b000: begin Test1(); test <= test + 1'h1; end
3'b001: begin Test2(); test <= test + 1'h1; end
3'b010: begin Test3(); test <= test + 1'h1; end
3'b011: begin Test4(); test <= test + 1'h1; end
endcase
end // endif
end // end always
task Test1();
test_running <= 1'h1;
$display("DEBUG: %0tns: Test_1_Hibernation",$realtime);
FRAM_hbn <= 1'h1; //Enter Hibernation
FRAM_go <= 1'h1;
#10;
FRAM_hbn <= 1'h0; //Reset Hibernation Flag
FRAM_go <= 1'h0;
$display("DEBUG: %0tns: Test_1_Hibernation__-END",$realtime);
test_running <= 1'h0;
endtask
task Test2();
test_running <= 1'h1;
$display("DEBUG: %0tns: Test_2_ReadStatus",$realtime);
FRAM_RSTATUS <= 1'h1; //Read Status
FRAM_go <= 1'h1; //Go
#10;
FRAM_RSTATUS <= 1'h0; //Read Status
FRAM_go <= 1'h0; //reset Go
$display("DEBUG: %0tns: Test_2_ReadStatus__-END",$realtime);
test_running <= 1'h0;
endtask
task Test3();
test_running <= 1'h1;
$display("DEBUG: %0tns: Test_3_FRAM_WRITE",$realtime);
FRAM_Adr <= 20'h8FFF1; //Load 8FFF1 as adress
FRAM_DATA_IN <= 8'hAA; //Load AA as Data to Write into FRAM
FRAM_RW <= 1'h0; //Write Operation
FRAM_go <= 1'h1; //Go
#10;
FRAM_go <= 1'h0; //resetGo
$display("DEBUG: %0tns: Test_3_FRAM_WRITE__-END",$realtime);
test_running <= 1'h0;
endtask
task Test4();
test_running <= 1'h1;
$display("DEBUG: %0tns: Test_4_FRAM_READ",$realtime);
FRAM_Adr <= 20'h8FFF1; //Load 8FFF1 as adress
FRAM_RW <= 1'h1; //Read
FRAM_go <= 1'h1; //Go
#10;
FRAM_go <= 1'h0; //resetGo
FRAM_RW <= 1'h0; //Read
$display("DEBUG: %0tns: Test_4_FRAM_READ__-END",$realtime);
test_running <= 1'h0;
endtask
FRAM FRAM_ut(
.i_clk(clk),
.i_nreset(nReset),
.i_adr(FRAM_Adr),
.i_data(FRAM_DATA_IN),
.o_data(FRAM_DATA_OUT),
.i_rw(FRAM_RW),
.i_status(FRAM_RSTATUS),
.i_hbn(FRAM_hbn),
.i_cready(FRAM_go),
.o_busy(FRAM_busy),
.o_SPI_Clk(SPI_CLK),
.i_SPI_MISO(SPI_MOSI), // !!! only for Testing!!!
.o_SPI_MOSI(SPI_MOSI), //
.o_SPI_CS_n(SPI_CS)
);
endmodule



Loading…
Cancel
Save