added eye feature dataset generator script

This commit is contained in:
Michael Weig 2025-12-04 12:32:34 +01:00
parent 8234893c54
commit 951550be96
2 changed files with 435 additions and 1 deletions

View File

@ -1 +0,0 @@
import pandas as pd

View File

@ -0,0 +1,435 @@
import numpy as np
import pandas as pd
import h5py
import yaml
import os
from pathlib import Path
from sklearn.preprocessing import MinMaxScaler
from scipy.signal import welch
from pygazeanalyser.detectors import fixation_detection, saccade_detection
##############################################################################
# KONFIGURATION - HIER ANPASSEN!
##############################################################################
INPUT_DIR = Path(r"/home/jovyan/data-paulusjafahrsimulator-gpu/parquet_Eye_features_old/")
OUTPUT_FILE = Path(r"/home/jovyan/data-paulusjafahrsimulator-gpu/Eye_dataset_old/eye_dataset_old.parquet")
WINDOW_SIZE_SAMPLES = 12500 # Anzahl Samples pro Window (z.B. 1250 = 50s bei 25Hz, oder 5s bei 250Hz)
STEP_SIZE_SAMPLES = 1250 # Schrittweite (z.B. 125 = 5s bei 25Hz, oder 0.5s bei 250Hz)
SAMPLING_RATE = 250 # Hz
##############################################################################
# 1. HELFERFUNKTIONEN
##############################################################################
def clean_eye_df(df):
"""
Entfernt alle Zeilen, die keine echten Eyetracking-Daten enthalten.
Löst das Problem, dass das Haupt-DataFrame NaN-Zeilen für andere Sensoren enthält.
"""
eye_cols = [c for c in df.columns if ("LEFT_" in c or "RIGHT_" in c)]
df_eye = df[eye_cols]
# INF → NaN
df_eye = df_eye.replace([np.inf, -np.inf], np.nan)
# Nur Zeilen behalten, wo es echte Eyetracking-Daten gibt
df_eye = df_eye.dropna(subset=eye_cols, how="all")
print(f" Eyetracking-Zeilen: {len(df)}{len(df_eye)}")
return df_eye.reset_index(drop=True)
def extract_gaze_signal(df):
"""
Extrahiert 2D-Gaze-Positionen auf dem Display,
maskiert ungültige Samples und interpoliert Lücken.
"""
# Gaze-Spalten
gx_L = df["LEFT_GAZE_POINT_ON_DISPLAY_AREA_X"].astype(float).copy()
gy_L = df["LEFT_GAZE_POINT_ON_DISPLAY_AREA_Y"].astype(float).copy()
gx_R = df["RIGHT_GAZE_POINT_ON_DISPLAY_AREA_X"].astype(float).copy()
gy_R = df["RIGHT_GAZE_POINT_ON_DISPLAY_AREA_Y"].astype(float).copy()
# Validity-Spalten (1 = gültig)
val_L = (df["LEFT_GAZE_POINT_VALIDITY"] == 1)
val_R = (df["RIGHT_GAZE_POINT_VALIDITY"] == 1)
# Inf ersetzen mit NaN (kommt bei Tobii bei Blinks vor)
gx_L.replace([np.inf, -np.inf], np.nan, inplace=True)
gy_L.replace([np.inf, -np.inf], np.nan, inplace=True)
gx_R.replace([np.inf, -np.inf], np.nan, inplace=True)
gy_R.replace([np.inf, -np.inf], np.nan, inplace=True)
# Ungültige Werte maskieren
gx_L[~val_L] = np.nan
gy_L[~val_L] = np.nan
gx_R[~val_R] = np.nan
gy_R[~val_R] = np.nan
# Mittelwert der beiden Augen pro Sample (nanmean ist robust)
gx = np.mean(np.column_stack([gx_L, gx_R]), axis=1)
gy = np.mean(np.column_stack([gy_L, gy_R]), axis=1)
# Interpolation (wichtig für PyGaze!)
gx = pd.Series(gx).interpolate(limit=50, limit_direction="both").bfill().ffill()
gy = pd.Series(gy).interpolate(limit=50, limit_direction="both").bfill().ffill()
out = np.column_stack((gx, gy))
return out
def extract_pupil(df):
"""Extrahiert Pupillengröße (beide Augen gemittelt)."""
pl = df["LEFT_PUPIL_DIAMETER"].replace([np.inf, -np.inf], np.nan)
pr = df["RIGHT_PUPIL_DIAMETER"].replace([np.inf, -np.inf], np.nan)
vl = df.get("LEFT_PUPIL_VALIDITY")
vr = df.get("RIGHT_PUPIL_VALIDITY")
if vl is None or vr is None:
validity = (~pl.isna() | ~pr.isna()).astype(int).to_numpy()
else:
validity = ((vl == 1) | (vr == 1)).astype(int).to_numpy()
# Mittelwert der verfügbaren Pupillen
p = np.mean(np.column_stack([pl, pr]), axis=1)
# INF/NaN reparieren
p = pd.Series(p).interpolate(limit=50, limit_direction="both").bfill().ffill()
p = p.to_numpy()
return p, validity
def detect_blinks(pupil_validity, min_duration=5):
"""Erkennt Blinks: Validity=0 → Blink."""
blinks = []
start = None
for i, v in enumerate(pupil_validity):
if v == 0 and start is None:
start = i
elif v == 1 and start is not None:
if i - start >= min_duration:
blinks.append([start, i])
start = None
return blinks
def compute_IPA(pupil, fs=250):
"""
IPA = Index of Pupillary Activity (nach Duchowski 2018).
Hochfrequenzanteile der Pupillenzeitreihe.
"""
f, Pxx = welch(pupil, fs=fs, nperseg=int(fs*2)) # 2 Sekunden Fenster
hf_band = (f >= 0.6) & (f <= 2.0)
ipa = np.sum(Pxx[hf_band])
return ipa
##############################################################################
# 2. FEATURE-EXTRAKTION MIT SLIDING WINDOW
##############################################################################
def extract_eye_features_sliding(df_eye, df_meta, window_size, step_size, fs=250):
"""
Extrahiert Features mit Sliding Window aus einem einzelnen Level/Phase.
Parameters:
-----------
df_eye : DataFrame
Eye-Tracking Daten (bereits gereinigt)
df_meta : DataFrame
Metadaten (subjectID, rowID, STUDY, LEVEL, PHASE)
window_size : int
Anzahl Samples pro Window
step_size : int
Schrittweite in Samples
fs : int
Sampling Rate in Hz
"""
# Gaze
gaze = extract_gaze_signal(df_eye)
# Pupille
pupil, pupil_validity = extract_pupil(df_eye)
features = []
num_windows = (len(df_eye) - window_size) // step_size + 1
if num_windows <= 0:
return pd.DataFrame()
for i in range(num_windows):
start_idx = i * step_size
end_idx = start_idx + window_size
w_gaze = gaze[start_idx:end_idx]
w_pupil = pupil[start_idx:end_idx]
w_valid = pupil_validity[start_idx:end_idx]
# Metadaten für dieses Window
meta_row = df_meta.iloc[start_idx]
# ----------------------------
# FIXATIONS (PyGaze)
# ----------------------------
time_ms = np.arange(window_size) * 1000.0 / fs
fix, efix = fixation_detection(
x=w_gaze[:, 0], y=w_gaze[:, 1], time=time_ms,
missing=0.0, maxdist=0.003, mindur=10
)
fixation_durations = []
for f in efix:
if np.isfinite(f[2]) and f[2] > 0:
fixation_durations.append(f[2])
# Kategorien laut Paper
F_short = sum(66 <= d <= 150 for d in fixation_durations)
F_medium = sum(300 <= d <= 500 for d in fixation_durations)
F_long = sum(d >= 1000 for d in fixation_durations)
F_hundred = sum(d > 100 for d in fixation_durations)
# F_Cancel = sum(66 < d for d in fixation_durations)
# ----------------------------
# SACCADES
# ----------------------------
sac, esac = saccade_detection(
x=w_gaze[:, 0], y=w_gaze[:, 1], time=time_ms,
missing=0, minlen=12, maxvel=0.2, maxacc=1
)
sac_durations = [s[2] for s in esac]
sac_amplitudes = [((s[5]-s[3])**2 + (s[6]-s[4])**2)**0.5 for s in esac]
# ----------------------------
# BLINKS
# ----------------------------
blinks = detect_blinks(w_valid)
blink_durations = [(b[1] - b[0]) / fs for b in blinks]
# ----------------------------
# PUPIL
# ----------------------------
if np.all(np.isnan(w_pupil)):
mean_pupil = np.nan
ipa = np.nan
else:
mean_pupil = np.nanmean(w_pupil)
ipa = compute_IPA(w_pupil, fs=fs)
# ----------------------------
# FEATURE-DICTIONARY
# ----------------------------
features.append({
# Metadaten
'subjectID': meta_row['subjectID'],
'start_time': meta_row['rowID'],
'STUDY': meta_row.get('STUDY', np.nan),
'LEVEL': meta_row.get('LEVEL', np.nan),
'PHASE': meta_row.get('PHASE', np.nan),
# Fixation Features
"Fix_count_short_66_150": F_short,
"Fix_count_medium_300_500": F_medium,
"Fix_count_long_gt_1000": F_long,
"Fix_count_100": F_hundred,
# "Fix_cancel": F_Cancel,
"Fix_mean_duration": np.mean(fixation_durations) if fixation_durations else 0,
"Fix_median_duration": np.median(fixation_durations) if fixation_durations else 0,
# Saccade Features
"Sac_count": len(sac),
"Sac_mean_amp": np.mean(sac_amplitudes) if sac_amplitudes else 0,
"Sac_mean_dur": np.mean(sac_durations) if sac_durations else 0,
"Sac_median_dur": np.median(sac_durations) if sac_durations else 0,
# Blink Features
"Blink_count": len(blinks),
"Blink_mean_dur": np.mean(blink_durations) if blink_durations else 0,
"Blink_median_dur": np.median(blink_durations) if blink_durations else 0,
# Pupil Features
"Pupil_mean": mean_pupil,
"Pupil_IPA": ipa
})
return pd.DataFrame(features)
##############################################################################
# 3. BATCH-VERARBEITUNG
##############################################################################
def process_parquet_directory(input_dir, output_file, window_size, step_size, fs=250):
"""
Verarbeitet alle Parquet-Dateien in einem Verzeichnis.
Parameters:
-----------
input_dir : str
Pfad zum Verzeichnis mit Parquet-Dateien
output_file : str
Pfad für die Ausgabe-Parquet-Datei
window_size : int
Window-Größe in Samples
step_size : int
Schrittweite in Samples
fs : int
Sampling Rate in Hz
"""
input_path = Path(input_dir)
parquet_files = sorted(input_path.glob("*.parquet"))
if not parquet_files:
print(f"FEHLER: Keine Parquet-Dateien in {input_dir} gefunden!")
return
print(f"\n{'='*70}")
print(f"STARTE BATCH-VERARBEITUNG")
print(f"{'='*70}")
print(f"Gefundene Dateien: {len(parquet_files)}")
print(f"Window Size: {window_size} Samples ({window_size/fs:.1f}s bei {fs}Hz)")
print(f"Step Size: {step_size} Samples ({step_size/fs:.1f}s bei {fs}Hz)")
print(f"{'='*70}\n")
all_features = []
for file_idx, parquet_file in enumerate(parquet_files, 1):
print(f"\n[{file_idx}/{len(parquet_files)}] Verarbeite: {parquet_file.name}")
try:
# Lade Parquet-Datei
df = pd.read_parquet(parquet_file)
print(f" Einträge geladen: {len(df)}")
# Prüfe ob benötigte Spalten vorhanden sind
required_cols = ['subjectID', 'rowID']
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
print(f" WARNUNG: Fehlende Spalten: {missing_cols} - Überspringe Datei")
continue
# Reinige Eye-Tracking-Daten
df_eye = clean_eye_df(df)
if len(df_eye) == 0:
print(f" WARNUNG: Keine gültigen Eye-Tracking-Daten - Überspringe Datei")
continue
# Metadaten extrahieren (aligned mit df_eye)
meta_cols = ['subjectID', 'rowID']
if 'STUDY' in df.columns:
meta_cols.append('STUDY')
if 'LEVEL' in df.columns:
meta_cols.append('LEVEL')
if 'PHASE' in df.columns:
meta_cols.append('PHASE')
df_meta = df[meta_cols].iloc[df_eye.index].reset_index(drop=True)
# Gruppiere nach STUDY, LEVEL, PHASE (falls vorhanden)
group_cols = [col for col in ['STUDY', 'LEVEL', 'PHASE'] if col in df_meta.columns]
if group_cols:
print(f" Gruppiere nach: {', '.join(group_cols)}")
for group_vals, group_df in df_meta.groupby(group_cols, sort=False):
group_eye = df_eye.iloc[group_df.index].reset_index(drop=True)
group_meta = group_df.reset_index(drop=True)
print(f" Gruppe {group_vals}: {len(group_eye)} Samples", end="")
features_df = extract_eye_features_sliding(
group_eye, group_meta, window_size, step_size, fs
)
if not features_df.empty:
all_features.append(features_df)
print(f"{len(features_df)} Windows")
else:
print("Zu wenige Daten")
else:
# Keine Gruppierung
print(f" Keine Gruppierungsspalten gefunden")
features_df = extract_eye_features_sliding(
df_eye, df_meta, window_size, step_size, fs
)
if not features_df.empty:
all_features.append(features_df)
print(f"{len(features_df)} Windows erstellt")
else:
print(f" → Zu wenige Daten")
except Exception as e:
print(f" FEHLER bei Verarbeitung: {str(e)}")
import traceback
traceback.print_exc()
continue
# Kombiniere alle Features
if not all_features:
print("\nKEINE FEATURES EXTRAHIERT!")
return None
print(f"\n{'='*70}")
print(f"ZUSAMMENFASSUNG")
print(f"{'='*70}")
final_df = pd.concat(all_features, ignore_index=True)
print(f"Gesamt Windows: {len(final_df)}")
print(f"Spalten: {len(final_df.columns)}")
print(f"Subjects: {final_df['subjectID'].nunique()}")
# Speichere Ergebnis
output_path = Path(output_file)
output_path.parent.mkdir(parents=True, exist_ok=True)
final_df.to_parquet(output_file, index=False)
print(f"\n✓ Ergebnis gespeichert: {output_file}")
print(f"{'='*70}\n")
return final_df
##############################################################################
# 4. MAIN
##############################################################################
def main():
print("\n" + "="*70)
print("EYE-TRACKING FEATURE EXTRAKTION - BATCH MODE")
print("="*70)
result = process_parquet_directory(
input_dir=INPUT_DIR,
output_file=OUTPUT_FILE,
window_size=WINDOW_SIZE_SAMPLES,
step_size=STEP_SIZE_SAMPLES,
fs=SAMPLING_RATE
)
if result is not None:
print("\nErste 5 Zeilen des Ergebnisses:")
print(result.head())
print("\nSpalten-Übersicht:")
print(result.columns.tolist())
print("\nDatentypen:")
print(result.dtypes)
print("\n✓ FERTIG!\n")
if __name__ == "__main__":
main()