{ "cells": [ { "cell_type": "markdown", "id": "cf894f6f", "metadata": {}, "source": [ "# Intermediate Fusion mit Deep SVDD" ] }, { "cell_type": "markdown", "id": "494626b1", "metadata": {}, "source": [ "* Input: gemeinsames Dataset aus EYE Tracking und Action Units mit selber Abtastfrequenz\n", "* Verarbeitung: Intermediate Fusion\n", "* Modell: Deep SVDD --> Erlernen einer Kugel durch ein neuronales Netz, dass die Normaldaten einschließt" ] }, { "cell_type": "markdown", "id": "bef91203", "metadata": {}, "source": [ "### Imports" ] }, { "cell_type": "code", "execution_count": null, "id": "f0b8274a", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "from pathlib import Path\n", "import sys\n", "import os\n", "\n", "base_dir = os.path.abspath(os.path.join(os.getcwd(), \"..\"))\n", "sys.path.append(base_dir)\n", "print(base_dir)\n", "\n", "from Fahrsimulator_MSY2526_AI.model_training.tools import evaluation_tools, scaler, mad_outlier_removal\n", "from sklearn.preprocessing import StandardScaler, MinMaxScaler\n", "from sklearn.svm import OneClassSVM\n", "from sklearn.model_selection import GridSearchCV, KFold, ParameterGrid, train_test_split, GroupKFold\n", "import matplotlib.pyplot as plt\n", "import tensorflow as tf\n", "import pickle\n", "from sklearn.metrics import (roc_auc_score, accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, classification_report, balanced_accuracy_score, ConfusionMatrixDisplay) " ] }, { "cell_type": "markdown", "id": "f00a477c", "metadata": {}, "source": [ "### Data Preprocessing" ] }, { "cell_type": "markdown", "id": "504c1df7", "metadata": {}, "source": [ "Laden der Daten" ] }, { "cell_type": "code", "execution_count": null, "id": "6482542b", "metadata": {}, "outputs": [], "source": [ "dataset_path = Path(r\"/home/jovyan/data-paulusjafahrsimulator-gpu/first_AU_dataset/output_windowed.parquet\")" ] }, { "cell_type": "code", "execution_count": null, "id": "ce8ab464", "metadata": {}, "outputs": [], "source": [ "df = pd.read_parquet(path=dataset_path)" ] }, { "cell_type": "markdown", "id": "b736bc58", "metadata": {}, "source": [ "### Modell Training" ] }, { "cell_type": "markdown", "id": "aa11faf3", "metadata": {}, "source": [ "Vor-Training der Gewichte mit Autoencoder, Loss: MSE" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.10" } }, "nbformat": 4, "nbformat_minor": 5 }