{ "cells": [ { "cell_type": "markdown", "id": "8fb02733", "metadata": {}, "source": [ "Imports" ] }, { "cell_type": "code", "execution_count": null, "id": "96f3b128", "metadata": {}, "outputs": [], "source": [ "import yaml\n", "import owncloud\n", "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "markdown", "id": "c20cee7c", "metadata": {}, "source": [ "Connection to Owncloud" ] }, { "cell_type": "code", "execution_count": null, "id": "c4c94558", "metadata": {}, "outputs": [], "source": [ "# Load credentials\n", "with open(\"../login.yaml\") as f:\n", " cfg = yaml.safe_load(f)\n", " \n", "url, password = cfg[0][\"url\"], cfg[1][\"password\"]\n", "\n", "# Connect once\n", "oc = owncloud.Client.from_public_link(url, folder_password=password)\n", "# File pattern\n", "base = \"adabase-public-{num:04d}-v_0_0_2.h5py\"" ] }, { "cell_type": "code", "execution_count": null, "id": "07c03d07", "metadata": {}, "outputs": [], "source": [ "num_files = 2 # number of files to process (min: 1, max: 30)\n", "performance_data = []\n", "\n", "for i in range(num_files):\n", " file_name = base.format(num=i)\n", " local_tmp = f\"tmp_{i:04d}.h5\"\n", "\n", " oc.get_file(file_name, local_tmp)\n", " print(f\"{file_name} geöffnet\")\n", "\n", " # check SIGNALS table for AUs\n", " with pd.HDFStore(local_tmp, mode=\"r\") as store:\n", " cols = store.select(\"SIGNALS\", start=0, stop=1).columns\n", " au_cols = [c for c in cols if c.startswith(\"AU\")]\n", " if not au_cols:\n", " print(f\"Subject {i} enthält keine AUs\")\n", " continue\n", "\n", " # load performance table\n", " with pd.HDFStore(local_tmp, mode=\"r\") as store:\n", " perf_df = store.select(\"PERFORMANCE\")\n", "\n", " f1_cols = [c for c in [\"AUDITIVE F1\", \"VISUAL F1\", \"F1\"] if c in perf_df.columns]\n", " if not f1_cols:\n", " print(f\"Subject {i}: keine F1-Spalten gefunden\")\n", " continue\n", "\n", " subject_entry = {\"subjectID\": i}\n", " valid_scores = []\n", "\n", " # iterate rows: each (study, level, phase)\n", " for _, row in perf_df.iterrows():\n", " study, level, phase = row[\"STUDY\"], row[\"LEVEL\"], row[\"PHASE\"]\n", " col_name = f\"STUDY_{study}_LEVEL_{level}_PHASE_{phase}\"\n", "\n", " # collect valid F1 values among the three columns\n", " scores = [row[c] for c in f1_cols if pd.notna(row[c])]\n", " if scores:\n", " mean_score = float(np.mean(scores))\n", " subject_entry[col_name] = mean_score\n", " valid_scores.extend(scores)\n", "\n", " # compute overall average across all valid combinations\n", " if valid_scores:\n", " subject_entry[\"overall_score\"] = float(np.mean(valid_scores))\n", " performance_data.append(subject_entry)\n", " print(f\"Subject {i}: {len(valid_scores)} gültige Scores, Overall = {subject_entry['overall_score']:.3f}\")\n", " else:\n", " print(f\"Subject {i}: keine gültigen F1-Scores\")\n", "\n", "# build dataframe\n", "if performance_data:\n", " performance_df = pd.DataFrame(performance_data)\n", " combination_cols = sorted([c for c in performance_df.columns if c.startswith(\"STUDY_\")])\n", " final_cols = [\"subjectID\", \"overall_score\"] + combination_cols\n", " performance_df = performance_df[final_cols]\n", " performance_df.to_csv(\"au_performance.csv\", index=False)\n", "\n", " print(f\"\\nGesamt Subjects mit Action Units: {len(performance_df)}\")\n", "else:\n", " print(\"Keine gültigen Daten gefunden.\")" ] }, { "cell_type": "code", "execution_count": null, "id": "0bcaf065", "metadata": {}, "outputs": [], "source": [ "performance_df.head()" ] }, { "cell_type": "code", "execution_count": null, "id": "db95eea7", "metadata": {}, "outputs": [], "source": [ "with pd.HDFStore(local_tmp, mode=\"r\") as store:\n", " performance = store.select(\"PERFORMANCE\")\n", "performance" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 5 }