import pandas as pd from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, roc_curve, auc import matplotlib.pyplot as plt def plot_confusion_matrix(true_labels, predictions, label_names): for normalize in [None, 'true']: cm = confusion_matrix(true_labels, predictions, normalize=normalize) cm_disp = ConfusionMatrixDisplay(cm, display_labels=label_names) cm_disp.plot(cmap="Blues") def plot_roc_curve_IF(true_labels, scores): fpr, tpr, thr = roc_curve(true_labels, -scores, pos_label=-1) auc_score = auc(fpr, tpr) plt.figure() plt.plot(fpr, tpr, '-') plt.text(0.5, 0.5, f'AUC: {auc_score:.4f}') plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.show()