{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "e3be057e-8d2a-4d05-bd42-6b1dc75df5ed", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from pathlib import Path\n", "from sklearn.preprocessing import StandardScaler, MinMaxScaler" ] }, { "cell_type": "code", "execution_count": null, "id": "13ad96f5", "metadata": {}, "outputs": [], "source": [ "# data_path = Path(r\"~/Fahrsimulator_MSY2526_AI/model_training/xgboost/output_windowed.parquet\")\n", "data_path = Path(r\"~/data-paulusjafahrsimulator-gpu/first_AU_dataset/output_windowed.parquet\")" ] }, { "cell_type": "code", "execution_count": null, "id": "95e1a351", "metadata": {}, "outputs": [], "source": [ "df = pd.read_parquet(path=data_path)" ] }, { "cell_type": "code", "execution_count": null, "id": "68afd83e", "metadata": {}, "outputs": [], "source": [ "subjects = df['subjectID'].unique()\n", "print(subjects)\n", "print(len(subjects))\n", "print(len(subjects)*0.66)\n", "print(len(subjects)*0.33)" ] }, { "cell_type": "code", "execution_count": null, "id": "52dfd885", "metadata": {}, "outputs": [], "source": [ "low_all = df[\n", " ((df[\"PHASE\"] == \"baseline\") |\n", " ((df[\"STUDY\"] == \"n-back\") & (df[\"PHASE\"] != \"baseline\") & (df[\"LEVEL\"].isin([1, 4]))))\n", "]\n", "print(f\"low all: {low_all.shape}\")\n", "\n", "high_nback = df[\n", " (df[\"STUDY\"]==\"n-back\") &\n", " (df[\"LEVEL\"].isin([2, 3, 5, 6])) &\n", " (df[\"PHASE\"].isin([\"train\", \"test\"]))\n", "]\n", "print(f\"high n-back: {high_nback.shape}\")\n", "\n", "high_kdrive = df[\n", " (df[\"STUDY\"] == \"k-drive\") & (df[\"PHASE\"] != \"baseline\")\n", "]\n", "print(f\"high k-drive: {high_kdrive.shape}\")\n", "\n", "high_all = pd.concat([high_nback, high_kdrive])\n", "print(f\"high all: {high_all.shape}\")" ] }, { "cell_type": "code", "execution_count": null, "id": "8fba6edf", "metadata": {}, "outputs": [], "source": [ "def fit_normalizer(train_data, au_columns, method='standard', scope='global'):\n", " if method == 'standard':\n", " Scaler = StandardScaler\n", " elif method == 'minmax':\n", " Scaler = MinMaxScaler\n", " else:\n", " raise ValueError(\"method must be 'standard' or 'minmax'\")\n", " \n", " scalers = {}\n", " \n", " if scope == 'subject':\n", " for subject in train_data['subjectID'].unique():\n", " subject_mask = train_data['subjectID'] == subject\n", " scaler = Scaler()\n", " scaler.fit(train_data.loc[subject_mask, au_columns])\n", " scalers[subject] = scaler\n", "\n", " elif scope == 'global':\n", " scaler = Scaler()\n", " scaler.fit(train_data[au_columns])\n", " scalers['global'] = scaler\n", "\n", " else:\n", " raise ValueError(\"scope must be 'subject' or 'global'\")\n", " \n", " return {'scalers': scalers, 'method': method, 'scope': scope}\n" ] }, { "cell_type": "code", "execution_count": null, "id": "24e3a77b", "metadata": {}, "outputs": [], "source": [ "%pip install xgboost" ] }, { "cell_type": "code", "execution_count": null, "id": "8e7fa0fa", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.model_selection import train_test_split,StratifiedKFold, GridSearchCV\n", "from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, classification_report, confusion_matrix\n", "import xgboost as xgb\n", "import joblib\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": null, "id": "325ef71c", "metadata": {}, "outputs": [], "source": [ "low = low_all.copy()\n", "high = high_all.copy()\n", "\n", "low[\"label\"] = 0\n", "high[\"label\"] = 1\n", "\n", "data = pd.concat([low, high], ignore_index=True)\n", "data = data.drop_duplicates()\n", "\n", "print(\"Label distribution:\")\n", "print(data[\"label\"].value_counts())" ] }, { "cell_type": "code", "execution_count": null, "id": "67d70e84", "metadata": {}, "outputs": [], "source": [ "au_columns = [col for col in data.columns if col.lower().startswith(\"au\")]\n", "print(\"Gefundene AU-Spalten:\", au_columns)" ] }, { "cell_type": "code", "execution_count": null, "id": "960bb8c7", "metadata": {}, "outputs": [], "source": [ "subjects = np.random.permutation(data[\"subjectID\"].unique())\n", "\n", "n = len(subjects)\n", "n_train = int(n * 0.66)\n", "\n", "train_subjects = subjects[:n_train]\n", "test_subjects = subjects[n_train:]\n", "train_subs, val_subs = train_test_split(train_subjects, test_size=0.2, random_state=42)\n", "\n", "train_df = data[data.subjectID.isin(train_subs)]\n", "val_df = data[data.subjectID.isin(val_subs)]\n", "test_df = data[data.subjectID.isin(test_subjects)]\n", "\n", "print(train_df.shape, val_df.shape, test_df.shape)" ] }, { "cell_type": "code", "execution_count": null, "id": "802a45c9", "metadata": {}, "outputs": [], "source": [ "def apply_normalizer(df_to_transform, normalizer_dict, au_columns):\n", " scalers = normalizer_dict[\"scalers\"]\n", " scope = normalizer_dict[\"scope\"]\n", " df_out = df_to_transform.copy()\n", "\n", " if scope == \"global\":\n", " scaler = scalers[\"global\"]\n", " df_out[au_columns] = scaler.transform(df_out[au_columns])\n", "\n", " elif scope == \"subject\":\n", " for subj, subdf in df_out.groupby(\"subjectID\"):\n", " if subj in scalers:\n", " df_out.loc[subdf.index, au_columns] = scalers[subj].transform(subdf[au_columns])\n", " elif \"global\" in scalers:\n", " df_out.loc[subdf.index, au_columns] = scalers[\"global\"].transform(subdf[au_columns])\n", "\n", " return df_out" ] }, { "cell_type": "code", "execution_count": null, "id": "dbb58abd", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "def calculate_mad_params(df, columns):\n", " \"\"\"\n", " Calculate median and MAD parameters for each column.\n", " This should be run ONLY on the training data.\n", " \n", " Returns a dictionary: {col: (median, mad)}\n", " \"\"\"\n", " params = {}\n", " for col in columns:\n", " median = df[col].median()\n", " mad = np.median(np.abs(df[col] - median))\n", " params[col] = (median, mad)\n", " return params\n", "\n", "def apply_mad_filter(df, params, threshold=3.5):\n", " \"\"\"\n", " Apply MAD-based outlier removal using precomputed parameters.\n", " Works on training, validation, and test data.\n", " \n", " df: DataFrame to filter\n", " params: dictionary {col: (median, mad)} from training data\n", " threshold: cutoff for robust Z-score\n", " \"\"\"\n", " df_clean = df.copy()\n", "\n", " for col, (median, mad) in params.items():\n", " if mad == 0:\n", " continue # no spread; nothing to remove for this column\n", "\n", " robust_z = 0.6745 * (df_clean[col] - median) / mad\n", " outlier_mask = np.abs(robust_z) > threshold\n", "\n", " # Remove values only in this specific column\n", " df_clean.loc[outlier_mask, col] = np.nan\n", " \n", " return df_clean" ] }, { "cell_type": "code", "execution_count": null, "id": "0f03f1b4", "metadata": {}, "outputs": [], "source": [ "# Step 1: Fit parameters on training data\n", "params = calculate_mad_params(train_df, au_columns)\n", "\n", "# Step 2: Apply filter consistently\n", "train_outlier_removed = apply_mad_filter(train_df, params, threshold=3.5)\n", "val_outlier_removed = apply_mad_filter(val_df, params, threshold=50)\n", "test_outlier_removed = apply_mad_filter(test_df, params, threshold=50)" ] }, { "cell_type": "code", "execution_count": null, "id": "289f6b89", "metadata": {}, "outputs": [], "source": [ "normalizer = fit_normalizer(train_outlier_removed, au_columns, method=\"standard\", scope=\"global\")\n", "\n", "train_scaled = apply_normalizer(train_outlier_removed, normalizer, au_columns)\n", "val_scaled = apply_normalizer(val_df, normalizer, au_columns)\n", "test_scaled = apply_normalizer(test_df, normalizer, au_columns)" ] }, { "cell_type": "code", "execution_count": null, "id": "5df30e8d", "metadata": {}, "outputs": [], "source": [ "X_train, y_train = train_scaled[au_columns].values, train_scaled[\"label\"].values\n", "X_val, y_val = val_scaled[au_columns].values, val_scaled[\"label\"].values\n", "X_test, y_test = test_scaled[au_columns].values, test_scaled[\"label\"].values" ] }, { "cell_type": "code", "execution_count": null, "id": "6fb7c86a", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "from sklearn.metrics import RocCurveDisplay, log_loss, accuracy_score\n", "early_stop = xgb.callback.EarlyStopping(\n", " rounds=30, metric_name='auc', data_name='validation_0', save_best=True\n", ")\n", "\n", "# Basis-Modell\n", "xgb_clf = xgb.XGBClassifier(\n", " objective=\"binary:logistic\",\n", " scale_pos_weight=1100/1550,\n", " eval_metric=[\"logloss\",\"auc\",\"error\"],\n", " use_label_encoder=False,\n", " random_state=42,\n", " callbacks=[early_stop],\n", " verbosity=0,\n", ")\n", "\n", "# Parameter-Raster\n", "param_grid = {\n", " \"learning_rate\": [0.01, 0.02, 0.05],\n", " \"max_depth\": [2, 3, 4],\n", " # \"n_estimators\": [200, 500, 800],\n", " \"subsample\": [0.4, 0.5],\n", " \"colsample_bytree\": [0.7, 0.8],\n", " \"reg_alpha\": [0, 0.1, 1, 10], # L1 regularization\n", " \"reg_lambda\": [0.5, 1, 5, 10] # L2 regularization\n", "}\n", "\n", "# old values - acc 100%\n", " # \"learning_rate\": [0.01, 0.05, 0.1],\n", " # \"max_depth\": [4, 6, 8],\n", " # \"n_estimators\": [200, 500, 800],\n", " # \"subsample\": [0.8, 1.0],\n", " # \"colsample_bytree\": [0.8, 1.0]\n", "\n", "# K-Fold Cross Validation\n", "cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)\n", "\n", "# Grid Search Setup\n", "grid_search = GridSearchCV(\n", " estimator=xgb_clf,\n", " param_grid=param_grid,\n", " scoring=\"roc_auc\",\n", " n_jobs=-1,\n", " cv=cv,\n", " verbose=0\n", ")\n", "\n", "# Training mit Cross Validation\n", "grid_search.fit(\n", " X_train, y_train,\n", " eval_set=[(X_train, y_train), (X_val, y_val)],\n", " verbose=False,\n", ")\n", "\n", "print(\"Beste Parameter:\", grid_search.best_params_)\n", "print(\"Bestes AUC:\", grid_search.best_score_)\n", "\n", "# Bestes Modell extrahieren\n", "model = grid_search.best_estimator_" ] }, { "cell_type": "code", "execution_count": null, "id": "d2681022", "metadata": {}, "outputs": [], "source": [ "# Plots\n", "\n", "results = model.evals_result()\n", "epochs = len(results['validation_0']['auc'])\n", "x_axis = range(0, epochs)\n", "\n", "# --- Plot Loss ---\n", "plt.figure(figsize=(8,6))\n", "plt.plot(x_axis, results['validation_0']['logloss'], label='Validation Loss')\n", "plt.plot(x_axis, results['validation_1']['logloss'], label='Training Loss')\n", "plt.legend()\n", "plt.xlabel('Epochs')\n", "plt.ylabel('Logloss')\n", "plt.title('XGBoost Loss during Training')\n", "plt.grid(True)\n", "plt.show()\n", "\n", "# --- Plot Accuracy ---\n", "plt.figure(figsize=(8,6))\n", "plt.plot(x_axis, [1-e for e in results['validation_0']['error']], label='Validation Accuracy')\n", "plt.plot(x_axis, [1-e for e in results['validation_1']['error']], label='Training Accuracy')\n", "plt.legend()\n", "plt.xlabel('Epochs')\n", "plt.ylabel('Accuracy')\n", "plt.title('XGBoost Accuracy during Training')\n", "plt.grid(True)\n", "plt.show()\n", "\n", "# Plot AUC\n", "\n", "plt.figure(figsize=(8,6))\n", "plt.plot(x_axis, results['validation_0']['auc'], label='Validation AUC')\n", "plt.plot(x_axis, results['validation_0']['auc'], marker='o')\n", "plt.legend()\n", "plt.xlabel('Epochs')\n", "plt.ylabel('AUC')\n", "plt.title('XGBoost AUC during Training')\n", "plt.grid(True)\n", "plt.show()\n", "\n", "# ROC-Kurve plotten\n", "y_pred_proba = model.predict_proba(X_val)[:, 1]\n", "RocCurveDisplay.from_predictions(y_val, y_pred_proba)\n", "plt.title(\"ROC Curve (Validation Set)\")\n", "plt.grid(True)\n", "plt.show()\n", "\n", "# Test: Loss und Accuracy\n", "y_test_proba = model.predict_proba(X_test)[:,1]\n", "y_test_pred = (y_test_proba > 0.5).astype(int)\n", "\n", "print(\"Test Loss:\", log_loss(y_test, y_test_proba))\n", "print(\"Test Accuracy:\", accuracy_score(y_test, y_test_pred))" ] }, { "cell_type": "code", "execution_count": null, "id": "09a8cd21", "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import confusion_matrix, accuracy_score, f1_score, roc_auc_score, classification_report, ConfusionMatrixDisplay\n", "\n", "def evaluate(model, X, y, title=\"Evaluation\"):\n", " # Vorhersagen\n", " preds_proba = model.predict_proba(X)[:, 1]\n", " preds = (preds_proba > 0.5).astype(int)\n", "\n", " # Metriken ausgeben\n", " print(\"Accuracy:\", accuracy_score(y, preds))\n", " print(\"F1:\", f1_score(y, preds))\n", " print(\"AUC:\", roc_auc_score(y, preds))\n", " print(\"Confusion:\\n\", confusion_matrix(y, preds))\n", " print(classification_report(y, preds))\n", "\n", " # Confusion Matrix plotten\n", " def plot_confusion_matrix(true_labels, predictions, label_names):\n", " for normalize in [None, 'true']:\n", " cm = confusion_matrix(true_labels, predictions, normalize=normalize)\n", " cm_disp = ConfusionMatrixDisplay(cm, display_labels=label_names)\n", " cm_disp.plot(cmap=\"Blues\")\n", " #cm = confusion_matrix(y, preds)\n", " plot_confusion_matrix(y,preds, label_names=['Low','High'])\n", " # plt.figure(figsize=(5,4))\n", " # sns.heatmap(cm, annot=True, fmt=\"d\", cmap=\"Blues\", cbar=False,\n", " # xticklabels=[\"Predicted low\", \"Predicted high\"],\n", " # yticklabels=[\"Actual low\", \"Actual high\"])\n", " # plt.title(f\"Confusion Matrix - {title}\")\n", " # plt.ylabel(\"True label\")\n", " # plt.xlabel(\"Predicted label\")\n", " # plt.show()\n", "\n", "# Aufrufen für Train/Val/Test\n", "print(\"TRAIN:\")\n", "evaluate(model, X_train, y_train, title=\"Train\")\n", "\n", "print(\"VAL:\")\n", "evaluate(model, X_val, y_val, title=\"Validation\")\n", "\n", "print(\"TEST:\")\n", "evaluate(model, X_test, y_test, title=\"Test\")\n" ] }, { "cell_type": "code", "execution_count": null, "id": "c43b0c80", "metadata": {}, "outputs": [], "source": [ "joblib.dump(model, \"xgb_model_with_MAD.joblib\")\n", "joblib.dump(normalizer, \"normalizer_with_MAD.joblib\")\n", "print(\"Model gespeichert.\")\n", "\n", "model.save_model(\"xgb_model_with_MAD.json\") # als JSON (lesbar, portabel)\n", "model.save_model(\"xgb_model_with_MAD.bin\") # als Binärdatei (kompakt)" ] }, { "cell_type": "code", "execution_count": null, "id": "3195cc84", "metadata": {}, "outputs": [], "source": [ "import os\n", "os.getcwd()\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.10" } }, "nbformat": 4, "nbformat_minor": 5 }