157 lines
3.3 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "2b3fface",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74f1f5ec",
"metadata": {},
"outputs": [],
"source": [
"df= pd.read_parquet(r\"C:\\Users\\micha\\FAUbox\\WS2526_Fahrsimulator_MSY (Celina Korzer)\\AU_dataset\\output_windowed.parquet\")\n",
"print(df.shape)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "05775454",
"metadata": {},
"outputs": [],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "99e17328",
"metadata": {},
"outputs": [],
"source": [
"df.tail()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "69e53731",
"metadata": {},
"outputs": [],
"source": [
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3754c664",
"metadata": {},
"outputs": [],
"source": [
"# Zeigt alle Kombinationen mit Häufigkeit\n",
"df[['STUDY', 'PHASE', 'LEVEL']].value_counts(ascending=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f83b595c",
"metadata": {},
"outputs": [],
"source": [
"high_nback = df[\n",
" (df[\"STUDY\"]==\"n-back\") &\n",
" (df[\"LEVEL\"].isin([2, 3, 5, 6])) &\n",
" (df[\"PHASE\"].isin([\"train\", \"test\"]))\n",
"]\n",
"high_nback.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c0940343",
"metadata": {},
"outputs": [],
"source": [
"low_all = df[\n",
" ((df[\"PHASE\"] == \"baseline\") |\n",
" ((df[\"STUDY\"] == \"n-back\") & (df[\"PHASE\"] != \"baseline\") & (df[\"LEVEL\"].isin([1,4]))))\n",
"]\n",
"print(low_all.shape)\n",
"high_kdrive = df[\n",
" (df[\"STUDY\"] == \"k-drive\") & (df[\"PHASE\"] != \"baseline\")\n",
"]\n",
"print(high_kdrive.shape)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f7ce38d3",
"metadata": {},
"outputs": [],
"source": [
"print((df.shape[0]==(high_kdrive.shape[0]+high_nback.shape[0]+low_all.shape[0])))\n",
"print(df.shape[0])\n",
"print((high_kdrive.shape[0]+high_nback.shape[0]+low_all.shape[0]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "48ba0379",
"metadata": {},
"outputs": [],
"source": [
"high_all = pd.concat([high_nback, high_kdrive])\n",
"high_all.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "77dda26c",
"metadata": {},
"outputs": [],
"source": [
"print(f\"Gesamt: {df.shape[0]}=={low_all.shape[0]+high_all.shape[0]}\")\n",
"print(f\"Anzahl an low load Samples: {low_all.shape[0]}\")\n",
"print(f\"Anzahl an high load Samples: {high_all.shape[0]}\")\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}